
Lecture 16: Stereo

CPSC 425: Computer Vision 

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Menu for Today (November 4, 2024)
Topics: 

— Stereo Vision, Epipolar Geometry

Readings: 

— Today’s Lecture:  Szeliski 12.1, 12.3-12.4, 9.3                            


Reminders: 
— Midterms are graded (Mean/Median: 72 (after scale); 67 (before scale)) 

                38 A’s (80+), 54 B’s (>=68), 44 C’s and below

— Assignment 4: RANSAC and Panoramas due November 7th -> 8th 
— Assignment 5: NEW — Stereo and Optical Flow



Today’s “fun” Example: Omnimatte 360 
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Advantages: 

— Can handle high percentage of outliers: each point votes separately

— Can detect multiple instances of a model in a single pass 


Disadvantages: 

— Search time increases exponentially with the number of model parameters

— Can be tricky to pick a good bin size 


Idea of Hough transform: 

— For each token vote for all models to which the token could belong 

— Return models that get many votes 

e.g., For each point, vote for all lines that could pass through it; the true lines 
will pass through many points and so receive many votes 


Summary of Hough Transform



Lines: Normal form

0  ✓  2⇡

r � 0

Forsyth/Ponce convention

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

x cos(θ) + y sin(θ) = ρ

x cos(θ) + y sin(θ) + r = 0
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Hough Transform: Lines

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

x cos(θ) + y sin(θ) = ρ



Example: Hough Transform for Lines
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Example 1: Object Recognition — Implicit Shape Model
“Training” images of cows

* Slide from Sanja Fidler
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Visual Words

* Slide from Sanja Fidler



B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, 

ECCV Workshop on Statistical Learning in Computer Vision 2004

training image

visual codeword with 
displacement vectors

Index displacements by “visual codeword”

Example 1: Object Recognition — Implicit Shape Model
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Inferring Other Information: Segmentation 

* Slide from Sanja Fidler

Idea: When back-projecting, back-project labeled segmentations per training patch



Inferring Other Information: Segmentation 

* Slide from Sanja Fidler



Inferring Other Information: Part Labels

* Slide from Sanja Fidler



Inferring Other Information: Depth

* Slide from Sanja Fidler



Problem Formulation: 

Determine depth using two images acquired from (slightly) different viewpoints 


Key Idea(s): 

The 3D coordinates of each point imaged are constrained to lie along a ray. This 
is true also for a second image obtained from a (slightly) different viewpoint. 
Rays for the same point in the world intersect at the actual 3D location of that 
point 


Stereo Vision



With two eyes, we acquire images of the world from slightly different viewpoints


We perceive depth based on differences in the relative position of points 
in the left image and in the right image 


Stereo Vision



Figure credit: http://en.wikipedia.org/wiki/Binoculars


Binoculars
Binoculars enhance binocular depth perception in two distinct ways: 

	1. magnification 

	2. longer baseline (i.e., distance between entering light paths) compared to the 

normal human inter-pupillary distance 



Task: Compute depth from two images acquired from (slightly) different 
viewpoints 


Approach: “Match” locations in one image to those in another 


Sub-tasks: 

— Calibrate cameras and camera positions

— Find all corresponding points (the hardest part) 

— Compute depth and surfaces 


Stereo Vision



Stereo Vision

Slide credit: Trevor DarrellMatching Point

Image Plane 2Image Plane 1

Ray through pinhole Ray through pinhole



Point Grey Research Digiclops

Image credit: Point Grey Research



2-view Geometry

(u1, v1) (u2, v2)?

How do we find dense correspondences between two views?
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Planar case: the mapping can be obtained by a homography
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2-view Geometry
How do we find dense correspondences between two views?

Non-planar case: depends on the depth of the 3D point
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Epipolar Line

(u1, v1) (u2, v2)?

X?
X?

X?

How do we find dense correspondences between two views?

A point in Image 1 must lie along the line in Image 2



The Epipolar Constraint 

Matching points lie along corresponding epipolar lines 

Reduces correspondence problem to 1D search along conjugate epipolar lines 

Greatly reduces cost and ambiguity of matching 

Slide credit: Steve Seitz
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2-view Stereo
Search over matches constrained to (epipolar) line

(reduces to 1d search)



2-view Stereo
Search over matches constrained to (epipolar) line

(reduces to 1d search)



2-view Stereo
Search over matches constrained to (epipolar) line

(reduces to 1d search)



2-view Stereo
Search over matches constrained to (epipolar) line

(reduces to 1d search)



2-view Stereo
Search over matches constrained to (epipolar) line

(reduces to 1d search)



2-view Stereo
Search over matches constrained to (epipolar) line

(reduces to 1d search)



2-view Stereo
Search over matches constrained to (epipolar) line

(reduces to 1d search)



2-view Stereo
Search over matches constrained to (epipolar) line

(reduces to 1d search)



2-view Stereo
Search over matches constrained to (epipolar) line

(reduces to 1d search)



2-view Stereo
Search over matches constrained to (epipolar) line

(reduces to 1d search)



Visualization of Epipolar Lines
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Visualization of Epipolar Lines
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Improving RANSAC + Alignment with Epipolar Geometry 



Improving RANSAC + Alignment with Epipolar Geometry 
Raw SIFT features and their matches
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Instead of matching purely based on SIFT descriptor, leverage geometry

to obtain matches close to epipolar lines

(gives more consistent geometrically valid matches)
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Improving RANSAC + Alignment with Epipolar Geometry 

(gives more consistent geometrically valid matches)

Better matches lead to fewer iterations of RANSAC



The Epipolar Constraint 

Matching points lie along corresponding epipolar lines 

Reduces correspondence problem to 1D search along conjugate epipolar lines 

Greatly reduces cost and ambiguity of matching 
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Simplest Case: Rectified Images

Image planes of cameras are parallel 


Focal points are at same height 


Focal lengths same 


Then, epipolar lines fall along the horizontal scan lines of the images 


We assume images have been rectified so that epipolar lines correspond to 
scan lines

— Simplifies algorithms

— Improves efficiency 




Stereo Matching in Rectified Images 

— In a standard stereo setup, where cameras are related by translation in the x 
direction, epipolar lines are horizontal


— Stereo algorithms search along scanlines for match

— Distance along the scanline (difference in x coordinate) for a corresponding 
feature is called disparity

534 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 11.1 Stereo reconstruction techniques can convert (a–b) a pair of images into (c)
a depth map (http://vision.middlebury.edu/stereo/data/scenes2003/) or (d–e) a sequence of
images into (f) a 3D model (http://vision.middlebury.edu/mview/data/). (g) An analytical
stereo plotter, courtesy of Kenney Aerial Mapping, Inc., can generate (h) contour plots.
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— In a standard stereo setup, where cameras are related by translation in the x 
direction, epipolar lines are horizontal


— Stereo algorithms search along scanlines for match

— Distance along the scanline (difference in x coordinate) for a corresponding 
feature is called disparity
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Stereo Matching in Rectified Images (Left)
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[ D. Scharstein ] 



Stereo Matching in Rectified Images (Right)

[ D. Scharstein ] 
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Stereo Matching in Rectified Images (Right)

[ D. Scharstein ] 
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Anaglyph

Stereo pair with images encoded in different color channels



Stereo Displays

Field sequential (shutter) glasses transmit alternate left/right image at 120Hz

Lenticular lenses send 

different images directly to each 
eye, without the need for glasses 



Stereo Displays

VR headsets send L/R images directly to each eye

[ Google Cardboard ]



Rectified Stereo Pair

Any two camera views that overlap can be rectified so that epipolar lines 
correspond to scan lines (no special conditions must hold)



Reproject image planes onto 
a common plane parallel to 
the line between camera 
centers

Need two homographies 
(3x3 transform), one for each 
input image reprojection

C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision.Computer Vision and Pattern Recognition, 1999.

Rectified Stereo Pair

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Example

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Before Rectification

After Rectification



image plane

camera center camera center

3D point

Rectified Stereo Pair: Depth Estimate

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



image plane

camera center camera center

3D point

Rectified Stereo Pair: Depth Estimate

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Left camera axis Right camera axis



image plane

Rectified Stereo Pair: Depth Estimate

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Rectified Stereo Pair: Depth Estimate
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Rectified Stereo Pair: Depth Estimate

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Rectified Stereo Pair: Depth Estimate

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Rectified Stereo Pair: Depth Estimate

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Disparity
(wrt to camera origin of image plane)



Rectified Stereo Pair: Depth Estimate

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

(baseline)

Disparity
(wrt to camera origin of image plane) inversely proportional to depth



Rectified Stereo Pair: Depth Estimate

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

(baseline)

Disparity
(wrt to camera origin of image plane) inversely proportional to depth

Disparity will always be 
positive



(simple) Stereo Algorithm

1.Rectify images  
(make epipolar lines horizontal)


2.For each pixel

a.Find epipolar line

b.Scan line for best match

c.Compute depth from disparity

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



(simple) Stereo Algorithm

1.Rectify images  
(make epipolar lines horizontal)


2.For each pixel

a.Find epipolar line

b.Scan line for best match

c.Compute depth from disparity

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Random Dot Stereograms

Julesz (1960) showed that recognition is not needed for stereo 

"When viewed monocularly, the images appear completely random. But when 

viewed stereoscopically, the image pair gives the impression of a square 
markedly in front of (or behind) the surround." 



Method: Pixel Matching

For each epipolar line

    For each pixel in the left image 

        — compare with every pixel on same epipolar line in right image 

        — pick pixel with minimum match cost 


This leaves too much ambiguity! 
Slide credit: Steve Seitz



Block Matching: Sum of Squared (Pixel) Differences 

and        are corresponding             windows of pixels 

Define the window function,               , by 


SSD measures intensity difference as a function of disparity: 


wL wR m⇥m

Wm(x, y)

Wm(x, y) =
n
(u, v) | x� m

2
 u  x+

m

2
, y � m

2
 v  y +

m

2

o

CR(x, y, d) =
X

(u,v)2Wm(x,y)

[IL(u, v)� IR(u� d, v)]2



Image Normalization

Ī =
1

|Wm(x, y)|
X

(u,v)2Wm(x,y)

I(u, v)

||I||Wm(x,y) =
s X

(u,v)2Wm(x,y)

[I(u, v)]2

Î(x, y) =
I(x, y)� Ī

||I � Ī||Wm(x,y)

Average Pixel

Window Magnitude

Normalized Pixel: subtract the 
mean, normalize to unit length



Image Metrics



Assume       and            are normalized to unit length (Normalized) 


Sum of Squared Differences: 


(Normalized) Correlation: 

Image Metrics

wL wR(d)

CSSD(d) =
X

(u,v)2Wm(x,y)

h
ÎL(u, v)� ÎR(u� d, v)

i2

= ||wL �wR(d)||2

= wL ·wR(d) = cos ✓

CNC(d) =
X

(u,v)2Wm(x,y)

ÎL(u, v)ÎR(u� d, v)



Let      be the value of     that minimizes 


Then      also is the value of     that maximizes


That is, 

Image Metrics

d⇤ d CSSD

CNC

d⇤ = argmin
d

||wL �wR(d)||2 = argmin
d

wL ·wR(d)

d⇤ d



Method: Correlation



Similarity Measure Formula
Sum of Absolute Differences (SAD)

Sum of Squared Differences (SSD)

Zero-mean SAD

Locally scaled SAD

Normalized Cross Correlation (NCC)

SAD SSD NCC Ground truth

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Effect of Window Size

W = 3 W = 20
Smaller window

+  More detail

-   More noise

Larger window

+   Smoother disparity maps

-    Less detail

-    Fails near boundaries

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Note: Some approaches use an adaptive window size 

— try multiple sizes and select best match

Effect of Window Size

W = 3 W = 20



Ordering Constraints
Ordering constraint …                                   

Forsyth & Ponce (2nd ed.) Figure 7.13



Ordering Constraints
Ordering constraint …                                     ….  and a failure case

Forsyth & Ponce (2nd ed.) Figure 7.13



Block Matching Techniques: Result 

Block matching Ground truth

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Block Matching Techniques: Result 

Block matching Ground truth

Too many discontinuities.

We expect disparity values to 

change slowly.


Let’s make an assumption: 

depth should change smoothly

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Stereo Matching as Energy Minimization 

{ {

(block matching result) (smoothness function)

Want each pixel to find a good match in 
the other image

Adjacent pixels should (usually) move 
about the same amount

data term smoothness term

energy function

(for one pixel)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



4-connected neighborhood 8-connected neighborhood

: set of neighboring pixels

SSD distance between windows centered at I(x, y) 
and J(x+ d(x,y), y)

smoothness term

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Stereo Matching as Energy Minimization 



“Potts model”

L1 distance

smoothness term

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Stereo Matching as Energy Minimization 



Can minimize this independently per scanline 
using dynamic programming (DP)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Stereo Matching as Energy Minimization: Solution



Match only Match & smoothness (via graph cut)

Ground Truth

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts,  PAMI 2001

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Stereo Matching as Energy Minimization 

http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf


Stereo Matching as Energy Minimization 

True disparities 19 – Belief propagation 11 – GC + occlusions 20 – Layered stereo

10 – Graph cuts *4 – Graph cuts 13 – Genetic algorithm 6 – Max flow

12 – Compact windows 9 – Cooperative alg. 15 – Stochastic diffusion *2 – Dynamic progr.

14 – Realtime SAD *3 – Scanline opt. 7 – Pixel-to-pixel stereo *1 – SSD+MF

*5 – Bayesian diffusion 8 – Multiway cut 17 – Disc.-pres. regul. 16 – Fast Correlation

Figure 17: Comparative results on the Tsukuba images. The results are shown in decreasing order of overall performance (BO). Algorithms
implemented by us are marked with a star.
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Ground
truth

Graph Cuts Dynamic
Programming

SSD 21px
aggregation[ Kolmogorov 

Zabih 2001]

[ Scharstein Szeliski 2002 ]



Idea: Use More Cameras

Forsyth & Ponce (2nd ed.) Figure 7.17

Adding a third camera reduces ambiguity in stereo matching



Point Grey Research Digiclops

Image credit: Point Grey Research



Structured Light Imaging: Structured Light and One Camera

I J

Projector acts like 
“reverse” camera

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Microsoft Kinect 



Microsoft Kinect 



With two eyes, we acquire images of the world from slightly different viewpoints


We perceive depth based on differences in the relative position of points 
in the left image and in the right image 


Stereo algorithms work by finding matches between points along 
corresponding lines in a second image, known as epipolar lines.


A point in one image projects to an epipolar line in a second image


In an axis-aligned / rectified stereo setup, matches are found along horizontal 
scanlines


Stereo Vision Summary


