

THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 18: Visual Classification 1, Bag of Words

CPSC 425: Computer Vision

Menu for Today

Topics:

— Visual **Classification**

Readings:

— **Today's** Lecture: Szeliski 11.4, 12.3-12.4, 9.3, 5.1-5.2

Reminders:

- **Quiz 4** will be available tonight (Topics: SIFT, Image Warping, Stereo)
- **Quiz 5** will be next Monday (Topics: Optical Flow, Classification)
-

— Issue with **Assignment 5** (see Piazza, instructions have been updated)

— **Bag of Words** Representations

CVPR 2025

The IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR) is the premier annual computer vision event comprising the main conference and several colocated workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry researchers.

Important Dates

3

00 weeks 00 days 10:27:52

01 weeks 00 days 10:27:52

Submitting 8 papers

CVPR 2025

The IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR) is the premier annual computer vision event comprising the main conference and several colocated workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry researchers.

Important Dates

3

00 weeks 00 days 10:27:52

01 weeks 00 days 10:27:52

Submitting 8 papers

Training of Vision-Language Models

A big tan stuffed bear sitting in front of the store where there are many sale items on display; the door appears to be closed with no people in sight.

Jiayun Luo Rayat Hossain

Training of Vision-Language Models

Jiayun Luo Rayat Hossain

Segmentation ...

lady in the back

black bag

GT **ALBEF SelfEQ HIST** Kid in red sweatshirt Pink pouch Man in the mirror **Blurry** pie The further meter and and and and

food nearest to us the mans head

and nearest meter

Few-shot Segmentation

I TASK DEFINITION: In this task, you are given a prompt and two images. In I the first image, there is only one point labeled with a red circle and REF tag. In I the second image, there are four points labeled with red circle and a letter tag of A, B, C, and D. You have to ... the second image corresponds to the point in the first image. You may have to know where these points are to answer the question. Here are three examples of the user task.

EXAMPLES from the task:

EXAMPLE 0

TASK REQUEST PROMPT #: \leq img src='...'> \leq img src='...'> ... Which point on \dots (A) Point A (B) Point B (C) Point C \dots

EXAMPLE 1

TASK REQUEST PROMPT #: <lmage> <lmage> ... Which point ... (D) Point.

The correct answer is: (D)

(OPTIONAL) USER CONSTRAINTS: For example, execution time need to be less than 5 sec per sample, or models with fewer than 3B parameters...

Wan-Cyuan (Chris) Fan

```
The correct answer is: (C)
```


I TASK DEFINITION: In this task, you are given a prompt and two images. In I the first image, there is only one point labeled with a red circle and REF tag. In I the second image, there are four points labeled with red circle and a letter tag of A, B, C, and D. You have to ... the second image corresponds to the point in the first image. You may have to know where these points are to answer the question. Here are three examples of the user task.

EXAMPLES from the task:

EXAMPLE 0

EXAMPLE 1

TASK REQUEST PROMPT #: <lmage> <lmage> ... Which point ... (D) Point.

TASK REQUEST PROMPT #:

The correct answer is: (D)

The correct answer is: (C)

(OPTIONAL) USER CONSTRAINTS: For example, execution time need to be less than 5 sec per sample, or models with fewer than 3B parameters...

def sol_0(prompt, image_1):

Step 1: Parse the prompt objects $info = \text{Ilama}(f''\text{Identity}$ the two objects and their spatial relationship in the following prompt: {prompt}. Please return the objects and the relationship clearly.")

Step 2: Construct the enhanced prompt enhanced prompt = f'' {prompt} Here are the objects and their spatial relationship: {objects_info}. The image's origin is at the upper-left corner (0, 0), and all coordinates are normalized within the range [0, 1]."

Step 3: Use the VLM to analyze the image response = LLaVA_13B(enhanced_prompt, $image_1)$

return response

Examples from the task

person?\nSelect from the following choices.\n(A) yes\n(B) no. Answer: (A)

def sol_4(prompt, image_1): # Step 1: Parse the objects of interest objects of interest = Ilama ... objects_list = [obj.strip() for obj in objects of interest.split(",") if obj.strip()]

Step 2: Use sliding window detection all possible boxes = $[]$ for obj in objects_list: possible_patches, possible_boxes = sliding_window_detection(image_1, [obj]) all_possible_boxes.append(possible_boxes[0])

Step 3: Prepare the prompt prompt $+=$ $(...)$

Step 4: Verify the spatial relationship using VLM response = $InternVL(prompt, image_1)$ return response

Wan-Cyuan (Chris) Fan

- Only use open source models - Less than 10 sec per sample **MMFactory**

User constraints

Step 1: Parse the objects from the prompt object names = llama(f"Identify the two objects mentioned in the following prompt: {prompt}. Please return only the object names separated by a

Step 2: Detect the objects in the image objects = [name.strip() for name in object names.split(",")] img, image boxes = detection(image 1, objects)

Step 3: Prepare the prompt for the VLM prompt += " Here are the bounding boxes of the objects for reference: " + str(image boxes) prompt $+=$ "The image's origin is ... range $[0, 1]$. Bounding boxes follow the format [x, y, w, h] ... width and height, respectively."

Step 4: Verify the spatial relationship using VLM response = $LLaVA$ 7B(prompt, image 1)

Task definition

In this task, you are given a prompt and an image. The prompt will mention two objects of interest and describe a spatial relation ... verify whether the prompt accurately reflects the spatial relationship ...

Execution results:

>>> print(object_names)

laptop, person

>>> print(objects)

["laptop", "person"]

>>> display(img)

>>> print(image_boxes) [[0.6208, 0.5451, 0.7514, 0.7983], $[0.7446, 0.8226, 0.3865, 0.3487]$ >>> print(prompt) Is the laptop touching the person? Select from the following choices. (A) yes (B) no Here are the bounding boxes of the objects for reference: $[0.6208, 0.5451, 0.7514, 0.7983],$

 $[0.7446, 0.8226, 0.3865, 0.3487]$ The image's origin is Bounding boxes follow the format [x, y, w, h] ... width and height, respectively.

>>> print(response)

 (A)

Wan-Cyuan (Chris) Fan

CVPR 2025

The IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR) is the premier annual computer vision event comprising the main conference and several colocated workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry researchers.

Important Dates

00 weeks 00 days 10:27:52

01 weeks 00 days 10:27:52

Object Recognition / Detection

Template matching ...

 \ast

Object **Recognition / Detection**

What is present? Where? What orientation? What is present? layed with the models following recognition. The models $\bigcap_{i=1}^n A_i A_i$ keys that are displayed are the ones used for recognition and Figure 3: Top row shows model in a show shows Γ affinition ℓ $s = s$ \pm and \pm matching.

Object recognition with SIFT features and RANSAC [Lowe 1999]

Object Recognition / Detection

PASCAL Visual Object Classes Challenges [2005-2012]

What is present? Where? What orientation?

Object **Classification** and **Detection**

Detection: Label per region, e.g., PASCAL VOC i. Lawci pi 256-d

Figure 3: Interestance 1: International INETA Region Proposals III Ren et al 2016 1: VOC 2007 test. Our method detects objects in a wide range of scales and aspect ratios.

Object **Classification** and **Detection**

Classification: Label per image, e.g., ImageNet

Detection: Label per region, e.g., PASCAL VOC i. Lawci pi 256-d

dog : 0.997

IKrizhevsky et al 2011II Ren et al 2016 1 VOC 2007 test. Our method detects objects in a wide range of scales and aspect ratios. The correction value \sim and the probability assigned to the probability assigned to the correct label is also shown \sim Kv et al 2011 l μ Ren et al 2016 l

Segmentation

Segmentation: Label per pixel, e.g., MS COCO

[Hu et al 2017] where a learned **predicts** how because

Structured Image Understanding

"Girl feeding large elephant" "A man taking a picture behind girl"

visualgenome.org [Krishna et al 2017]

Object **Classification**

Classification: Label per image, e.g., ImageNet

IKrizhevskv et al 2011II Ren et al 2016 l The correction value \sim and the probability assigned to the probability assigned to the correct label is also shown \sim

Classification: **Instance** vs. **Category**

Instance of Aeroplane (Wright Flyer)

Category of Aeroplane [Caltech 101]

Classification: Instance vs. Category

Instance of a cat

Category of domestic cats

Taxonomy of Cats

- \rightarrow Mammals (Class Mammalia)
	- Therians (Subclass Theria) \mapsto
		- \rightarrow Placental Mammals (Infraclass Placentalia)
			- \mapsto Ungulates, Carnivorans, and Allies (Superorder Laurasiatheria)
				- \rightarrow Carnivorans (Order Carnivora)
					- \rightarrow Felines (Family Felidae)
						- \rightarrow Small Cats (Subfamily Felinae)
							- \mapsto Genus Felis
								- \mapsto Chinese Mountain Cat (Felis bieti)
								- \rightarrow Domestic Cat (Felis catus)
								- \rightarrow Jungle Cat (Felis chaus)
								- \rightarrow African Wildcat (Felis lybica)
								- \rightarrow Sand Cat (Felis margarita)
								- Black-footed Cat (Felis nigripes)
								- \mapsto European Wildcat (Felis silvestris)

Ocelot [Jitze Couperus]

European Wildcat [the wasp factory]

[inaturalist.org]

WordNet

We can use **language** to organize **visual categories**

This is the approach taken in **ImageNet** [Deng et al 2009], which uses the WordNet

lexical database [[wordnet.princeton.edu\]](http://wordnet.princeton.edu)

As in **language**, visual categories have **complex relationships**

• S_i (n) sailboat, sailing boat (a small sailing vessel; usually with a single mast) o direct hyponym / full hyponym

-
-
- Atlantic coast of the United States)
-
- o *part meronym*
- o direct hypernym / inherited hypernym / sister term
	- wind; often having several masts)

e.g., a "sail" is part of a "sailboat" which is a "watercraft"

 \bullet \underline{S} : (n) catboat (a sailboat with a single mast set far forward) • $S_i(n)$ sharpie (a shallow-draft sailboat with a sharp prow, flat bottom, and triangular sail; formerly used along the northern

• S: (n) trimaran (a fast sailboat with 3 parallel hulls)

• S_i (n) sailing vessel, sailing ship (a vessel that is powered by the

WordNet

We can use **language** to organize **visual categories**

This is the approach taken in **ImageNet** [Deng et al 2009], which uses the WordNet

lexical database [[wordnet.princeton.edu\]](http://wordnet.princeton.edu)

As in **language**, visual categories have **complex relationships**

• S_i (n) sailboat, sailing boat (a small sailing vessel; usually with a single mast) o direct hyponym / full hyponym

-
-
- Atlantic coast of the United States)
- S: (n) trimaran (a fast sailboat with 3 parallel hulls)
- o *part meronym*
- o direct hypernym / inherited hypernym / sister term
	- wind; often having several masts)

e.g., a "sail" is part of a "sailboat" which is a "watercraft"

 \bullet \underline{S} : (n) catboat (a sailboat with a single mast set far forward) • $S_i(n)$ sharpie (a shallow-draft sailboat with a sharp prow, flat bottom, and triangular sail; formerly used along the northern

• S_i (n) sailing vessel, sailing ship (a vessel that is powered by the

If we call a "**sailboat**" a **watercraft**, is this wrong? What if we call it a "**sail**"?

Tiny Image Dataset

Precursor to ImageNet and CIFAR10/100

- **80 million images** collected via image search circa 2008 using 75,062 noun synsets from WordNet (labels are noisy)
- Very small images (32x32xRGB) used to minimise storage
- Note human performance is still quite good at this scale!

False positive rate a) Scene recognition [Torralba Freeman Fergus 2008]

CIFAR10 Dataset

Hand labelled set of 10 categories from Tiny Images dataset 60,000 32x32 images in 10 classes (50k train, 10k test)

Good test set for visual recognition problems

Problem:

Assign new observations into one of a fixed set of categories (classes)

Key Idea(s):

Build a model of data in a given category based on observations of instances in that category

Classification

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

cat

A **classifier** is a procedure that accepts as input a set of features and outputs a

class **label** (probability over class labels)

A **classifier** is a procedure that accepts as input a set of features and outputs a class **label** (probability over class labels)

Classifiers can be **binary** (face vs. not-face) or **multi-class** (cat, dog, horse, ...).

Binary: $[0]/[1]$ **Multi-class**: $[1, 0, 0, 0, ...)$ (one-hot) [9] (label)

A **classifier** is a procedure that accepts as input a set of features and outputs a class **label** (probability over class labels)

Classifiers can be **binary** (face vs. not-face) or **multi-class** (cat, dog, horse, ...).

We build a classifier using a **training set** of labelled examples $\{(\mathbf{x}_i, y_i)\}$, where each x_i is a feature vector and each y_i is a class label.

Binary: $[0]/[1]$ **Multi-class**: $[1, 0, 0, 0, ...)$ (one-hot) [9] (label)

A **classifier** is a procedure that accepts as input a set of features and outputs a class **label** (probability over class labels)

Classifiers can be **binary** (face vs. not-face) or **multi-class** (cat, dog, horse, ...).

We build a classifier using a **training set** of labelled examples $\{(\mathbf{x}_i, y_i)\}$, where each x_i is a feature vector and each y_i is a class label.

Given a previously unseen observation, we use the classifier to predict its class label.

$$
\text{Binary: } [0]/[1]
$$

Multi-class: $[1, 0, 0, 0, ...)$ (one-hot) [9] (label)

— Collect a database of images with labels

- Use ML to train an image classifier
- Evaluate the classifier on test images

Example training set
Example 1: A Toy Classification Problem

Categorize images of fish — "Atlantic salmon" vs "Pacific salmon"

Use **features** such as length, width, lightness, fin shape & number, mouth position, etc.

Given a previously unobserved image of a salmon, use the learned classifier to guess whether it is an Atlantic or Pacific salmon

-
-
-

Figure credit: Duda & Hart

Example 2: Real Classification Problem

SUN Dataset

- 131K images
- 908 scene categories

Example 3: Real Classification Problem

An object occurring naturally; not made by man

Numbers in brackets: (the number of synsets in the subtree). **Treemap Visualization Images of the Synset Downloads** ImageNet 2011 Fall Release > Natural object $\frac{1}{2}$ ImageNet 2011 Fall Release (32326) plant, flora, plant life (4486) **Plant Covering VERSION The State of the State of the State** Ses. \mathcal{A} , and \mathcal{A} geological formation, formation (1) aquifer (0) beach (1) $\overline{\mathbf{z}}$ cave (3) \overline{AB} \bullet cliff, drop, drop-off (2) delta (0) diapir (0) $A_{\rm eff}$ folium (0) **Extraterre Body Sample** foreshore (0) ice mass (10) lakefront (0) 20 $massif(0)$ monocline (0) <u>Asterism</u> $x = 1$ Mechanism Celestia mouth (0) natural depression, depression ۰ natural elevation, elevation (41) × oceanfront (0) чŧ. 42 range, mountain range, range of **Radiator** $\frac{Body}{\hat{N}}$ relict (0) **ANGEL** ridge, ridgeline (2) $\boldsymbol{\pi}$ ridge (0) **Rock** $\mathcal{F} \rightarrow \mathcal{F}$ shore (7) ッパー slope, incline, side (17) **Fangle** <u>Nest</u> Stati spring, fountain, outflow, outpo 63 talus, scree (0) vein, mineral vein (1) おりの記載をこと volcanic crater, crater (2)

wall (0)

ImageNet Dataset

- 14 Million images
- 21K object categories

Natural object

 \overline{O}

water table, water level, ground

Example 3: Real Classification Problem

An object occurring naturally; not made by man

Numbers in brackets: (the number of synsets in the subtree). **Treemap Visualization Images of the Synset Downloads** ImageNet 2011 Fall Release > Natural object $\frac{1}{2}$ ImageNet 2011 Fall Release (32326) plant, flora, plant life (4486) **Plant Covering VERSION The State of the State of the State** Ses. \mathcal{A} , and \mathcal{A} geological formation, formation (1) aquifer (0) beach (1) $\overline{\mathbf{z}}$ cave (3) \overline{AB} \bullet cliff, drop, drop-off (2) delta (0) diapir (0) $A_{\rm eff}$ folium (0) **Extraterre Body Sample** foreshore (0) ice mass (10) lakefront (0) 20 $massif(0)$ monocline (0) <u>Asterism</u> $x = 1$ Mechanism Celestia mouth (0) natural depression, depression ۰ natural elevation, elevation (41) × oceanfront (0) чŧ. 42 range, mountain range, range of **Radiator** $\frac{Body}{\hat{N}}$ relict (0) **ANGEL** ridge, ridgeline (2) $\boldsymbol{\pi}$ ridge (0) **Rock** $\mathcal{F} \rightarrow \mathcal{F}$ shore (7) ッパー slope, incline, side (17) **Fangle** <u>Nest</u> Stati spring, fountain, outflow, outpo 63 talus, scree (0) vein, mineral vein (1) おりの記載をこと volcanic crater, crater (2)

wall (0)

ImageNet Dataset

- 14 Million images
- 21K object categories

Natural object

 \overline{O}

water table, water level, ground

Closed-world problem

Issue: Classification assumes that incoming image belongs to one of k classes. However, in practice it is impossible to enumerate all relevant classes in the world, nor would doing so be useful. So how do we deal with images which don't belong?

Solution: Create an "unknown" or "irrelevant" class.

Traditional Image Classification Pipeline

Traditional Image Classification Pipeline

Image Classification

- **Representation** of Images
- Image pixels directly
- Bag of Words

- **Classification** Algorithms
- Bayes' Classifier
- Nearest Neighbor Classifier
- SVM Classifier

Visual Words

Many algorithms for image classification accumulate evidence on the basis of visual words.

To classify a text document (e.g. as an article on sports, entertainment, business, politics) we might find patterns in the occurrences of certain words.

Vector Space Model

G. Salton. 'Mathematics and Information Retrieval' Journal of Documentation,1979

Tartan Tim Monday, January 20, 2014 **Bio-Inspired Robotic Device** PITTSBURGH-A soft, BioSensics, developed an Ren wearable device that active orthotic device following the muscles vision and device following mimics the muscles, using soft plastics and imp tendons and ligaments of composite materials,
the lower leg could aid in instead the lower leg could aid in instead of a rigid The

the rehabilitation of exoskeleton. The soft that
patients with ankle-foot material. patients with ankle-foot materials, combined with rela disorders such as drop pneumatic combined with relation disorders such as drop pneumatic artificial the foot, said Yong-Lae and Word prieumatic artificial the
an assistant professor at the same (PAMs), beh an assistant professor of lightweight sensors and of a
robotics at Camegie advanced robotics at Camegie advanced control exp.
Mellon University Park and media Mellon University. Park, software, made it possible in li
working with collaborators, for the software in the working with collaborators for the robotic device to its
at Harvard University the sobiece of the robotic device to its at Harvard University, the achieve natural motions in beh
University of Southern the splde. University of Southern the ankle. con

http://www.fodey.com/generators/newspaper/snippet.asp

California, MIT and

What is the similarity between two documents?

 $\bm{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$

Vector Space Model

A document (datapoint) is a vector of counts over each word (feature)

 $n(\cdot)$ counts the number of occurrences just a histogram over words

A document (datapoint) is a vector of counts over each word (feature)

 $n(\cdot)$ counts the number of occurrences just a histogram over words

What is the similarity between two documents?

Use any distance you want but the cosine distance is fast and well designed for high-dimensional vector spaces:

$$
d(\boldsymbol{v}_i, \boldsymbol{v}_j) = \cos \theta
$$

=
$$
\frac{\boldsymbol{v}_i}{\|\boldsymbol{v}_i\|}
$$

 $\bm{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$

 \bm{v}_j $\bm{v}_i\| \| \bm{v}_j \|$

Vector Space Model

In images, the equivalent of a **word** is a **local image patch**. The local image

patch is described using a descriptor such as SIFT.

We construct a **vocabulary** or **codebook** of local descriptors, containing representative local descriptors.

Visual **Words**

What **Objects** do These Parts Belong To?

An object as

Some local feature are very informative

- deals well with occlusion
- scale invariant
- rotation invariant

(**not so**) Crazy Assumption

spatial information of local features can be ignored for object recognition (i.e., verification)

Recall: Texture Representation

Standard **Bag-of-Words** Pipeline (for image classification)

Dictionary Learning: Learn Visual Words using clustering

Encode: build Bags-of-Words (BOW) vectors for each image

Classify: Train and test data using BOWs

Standard **Bag-of-Words** Pipeline (for image classification)

Dictionary Learning: Learn Visual Words using clustering

Encode: build Bags-of-Words (BOW) vectors for each image

Classify: Train and test data using BOWs

1. **Dictionary Learning**: Learn Visual Words using Clustering

1. **Extract features** (e.g., SIFT) from images

1. **Dictionary Learning**: Learn Visual Words using Clustering

2. **Learn visual dictionary** (e.g., K-means clustering)

What **Features** Should We Extract?

- Regular grid Vogel & Schiele, 2003 Fei-Fei & Perona, 2005
- Interest point detector Csurka et al. 2004 Fei-Fei & Perona, 2005 Sivic et al. 2005
- Other methods Random sampling (Vidal-Naquet & Ullman, 2002) Segmentation-based patches (Barnard et al. 2003)

Extracting **SIFT** Patches

Normalize patch

Detect patches

[Mikojaczyk and Schmid '02] [Mata, Chum, Urban & Pajdla, '02] [Sivic & Zisserman, '03]

Compute SIFT descriptor

[Lowe'99]

Extracting **SIFT** Patches

Creating **Dictionary**

Creating **Dictionary**

Creating **Dictionary**

K-means clustering

K-Means Clustering

Assume we **know** how many clusters there are in the data - denote by K

Each **cluster** is represented by a **cluster center**, or mean

Our objective is to **minimize the representation error** (or quantization error)

in letting each data point be represented by some cluster center

Minimize

$$
\sum_{j \in i^{th} \; cluster} ||x_j - \mu_i||^2
$$

K-means clustering alternates between two steps:

Compute the best center for each cluster, as the mean of the points assigned

- **1**. Assume the cluster centers are known (fixed). Assign each point to the closest cluster center.
- **2**. Assume the assignment of points to clusters is known (fixed). to the cluster.
- The algorithm is initialized by choosing K random cluster centers
- K-means converges to a local minimum of the objective function — Results are initialization dependent

K-Means Clustering

True Clusters

Clusters at iteration $\mathbf 1$

Clusters at iteration $\overline{2}$

Clusters at iteration $\mathbf{3}$

Clusters at iteration 13

Example Visual Dictionary

Source: B. Leibe

Example **Visual Dictionary**

Source: B. Leibe

Standard **Bag-of-Words** Pipeline (for image classification)

Dictionary Learning: Learn Visual Words using clustering

Encode: build Bags-of-Words (BOW) vectors for each image

Classify: Train and test data using BOWs

2. **Encode:** build Bag-of-Words (BOW) vectors for each image

1. **Quantization**: image features gets associated to a visual word (nearest cluster center)

2. **Histogram**: count the number of visual word occurrences

2. **Encode:** build Bag-of-Words (BOW) vectors for each image

frequency

codewords

2. **Encode:** build Bag-of-Words (BOW) vectors for each image

Standard **Bag-of-Words** Pipeline (for image classification)

Dictionary Learning: Learn Visual Words using clustering

Encode: build Bags-of-Words (BOW) vectors for each image

Classify: Train and test data using BOWs

Classify Visual Word Histograms

e.g., bird vs plane classifier as linear classifier in space of histograms Histograms of visual word frequencies = vector **x**, linear classifier **w**

-
-

 $P(c|x) = \frac{P(x|c)p(c)}{P(r)}$ *P*(*x*)

posterior probability

Let c be the **class label** and let x be the **measurement** (i.e., evidence)

(a.k.a. likelihood)

Let c be the **class label** and let x be the **measurement** (i.e., evidence)

 $P(c|x) = \frac{P(x|c)p(c)}{P(r)}$ *P*(*x*)

Let c be the **class label** and let x be the **measurement** (i.e., evidence)

Simple case:

- $-$ binary classification; i.e., $c \in \{1, 2\}$
- features are $1D$; i.e., $x \in \mathbb{R}$

 $P(c|x) = \frac{P(x|c)p(c)}{P(r)}$ *P*(*x*)

Let c be the **class label** and let x be the **measurement** (i.e., evidence)

Simple case:

- $-$ binary classification; i.e., $c \in \{1, 2\}$
- features are $1D$; i.e., $x \in \mathbb{R}$

Classify *x* as

1 if $p(1|x) > p(2|x)$ 2 if $p(1|x) < p(2|x)$

 $P(c|x) = \frac{P(x|c)p(c)}{P(r)}$ *P*(*x*)

Let c be the **class label** and let x be the **measurement** (i.e., evidence)

Simple case:

- $-$ binary classification; i.e., $c \in \{1, 2\}$
- features are $1D$; i.e., $x \in \mathbb{R}$

General case:

- $-$ multi-class; i.e., $c \in \{1, ..., 1000\}$
- $-$ features are high-dimensional; i.e., $x \in \mathbb{R}^{2,000+}$

Assume we have two classes: $c_1 = \textbf{male}$ $c_2 = \textbf{female}$ We have a person who's gender we don't know, who's name is *drew*

Example: Discrete Bayes Classifier

Assume we have two classes: $c_1 = \textbf{male}$ $c_2 = \textbf{female}$ We have a person who's gender we don't know, who's name is *drew*

Drew Carey

Drew Barrymore

Example: Discrete Bayes Classifier

Assume we have two classes:

Classifying drew as being male or female is equivalent to asking is it more probable that *drew* is male or female, i.e. which is greater $p(\textbf{male}|draw)$ $p(\mathbf{female}|draw)$

Drew Carey

c_1 = male c_2 = female

Drew Barrymore

We have a person who's gender we don't know, who's name is *drew*

Example: Discrete Bayes Classifier

Assume we have two classes:

Classifying drew as being male or female is equivalent to asking is it more probable that *drew* is male or female, i.e. which is greater $p(\textbf{male}|draw)$ $p(\mathbf{female}|drew)$

c_1 = male c_2 = female

We have a person who's gender we don't know, who's name is *drew*

 $p(\textbf{male}|draw) = \frac{p(drew|\textbf{male})p(\textbf{male})}{p(drew)}$ *p*(*drew*)

Example: Discrete Bayes Classifier

 $p(\textbf{male}|draw) = \frac{p(drew|\textbf{male})p(\textbf{male})}{p(drew)}$ *p*(*drew*)

 $p(\text{male}) =$

 $p(drew|$ **male**) =

 $p(drew) =$

 $p(\textbf{male}|draw) = \frac{p(drew|\textbf{male})p(\textbf{male})}{p(drew)}$ *p*(*drew*)

 $p(\textbf{male})=\frac{3}{2}$ 8 $p(drew|male) =$

 $p(drew) =$

 $p(\textbf{male}|draw) = \frac{p(drew|\textbf{male})p(\textbf{male})}{p(drew)}$ *p*(*drew*)

 $p(\textbf{male}|draw) = \frac{p(drew|\textbf{male})p(\textbf{male})}{p(drew)}$ *p*(*drew*)

$$
p(\text{male}) = \frac{3}{8}
$$

$$
p(drew|\text{male}) = \frac{1}{3}
$$

 $p(drew) =$

 $p(\textbf{male}|draw) = \frac{p(drew|\textbf{male})p(\textbf{male})}{p(drew)}$ *p*(*drew*)

 $p(drew) = \frac{3}{2}$ 8

$$
p(\text{male}) = \frac{3}{8}
$$

$$
p(drew|\text{male}) = \frac{1}{3}
$$

 $p(\textbf{male}|draw) = \frac{p(drew|\textbf{male})p(\textbf{male})}{p(droot)}$ *p*(*drew*) $= 0.125$

$$
p(\text{male}) = \frac{3}{8}
$$

$$
p(drew|\text{male}) = \frac{1}{3}
$$

 $p(\mathbf{female}|draw) = \frac{p(drew|\mathbf{female})p(\mathbf{female})}{p(drem)}$ *p*(*drew*) $= 0.25$

 $p(\textbf{male}|draw) = \frac{p(drew|\textbf{male})p(\textbf{male})}{p(droot)}$ *p*(*drew*) $= 0.125$

$$
p(\text{female}) = \frac{5}{8}
$$

$$
p(drew|\text{female}) = \frac{2}{5}
$$

Example: Discrete Bayes Classifier

- **0** 17 samples of grass
- **0** 15 samples of sky

Green color channel value \bigcirc $O^{\mathbf{O}}$ \bigcirc

These could be (g,b) pixel value of an image patch with grass

Example: 2D Bayes Classifier **Green** color channel value **0** 17 samples of grass 15 samples of sky \bullet Given a (g,b) pixel value from a new patch is it more likely to be be grass or sky? These could be (g,b) pixel value of an image patch with sky

0 17 samples of grass **0** 15 samples of sky

$$
p(blue) = \frac{17}{17+15}
$$

Green color channel value \bigcirc $O^{\mathbf{O}}$ \bigcirc

$$
p(green) = \frac{15}{17 + 15}
$$

0 17 samples of grass **0** 15 samples of sky

$$
p(blue) = \frac{17}{17+15}
$$

$$
p(green) = \frac{15}{17 + 15}
$$

0 17 samples of grass **0** 15 samples of sky

$$
p(blue) = \frac{17}{17 + 15}
$$

$$
p(green) = \frac{15}{17 + 15}
$$

 $P(c|x) = \frac{P(x|c)p(c)}{P(r)}$ *P*(*x*)

Let c be the **class label** and let x be the **measurement** (i.e., evidence)

Simple case:

- $-$ binary classification; i.e., $c \in \{1, 2\}$
- features are $1D$; i.e., $x \in \mathbb{R}$

General case:

- $-$ multi-class; i.e., $c \in \{1, ..., 1000\}$
- $-$ features are high-dimensional; i.e., $x \in \mathbb{R}^{2,000+}$

Bayes' Risk

Some errors may be inevitable: the minimum risk (shaded area) is called the **Bayes' risk**

Forsyth & Ponce (2nd ed.) Figure 15.1

Bayes' Risk

Some errors may be inevitable: the minimum risk (shaded area) is called the **Bayes' risk**

Forsyth & Ponce (2nd ed.) Figure 15.1

Loss Functions and Classifiers

- Some errors may be more expensive than others **Example**: A fatal disease that is easily cured by a cheap medicine with no side-effects. Here, false positives in diagnosis are better than false negatives
- We discuss two class classification: $L(1 \rightarrow 2)$ is the loss caused by calling 1 a 2

Loss

Total risk of using classifier *s* is

$$
R(s) = Pr\{1 \rightarrow 2 \mid using \ s\} \ L(1)
$$

Probability of Miss-classification

Loss (i.e. cost of miss-classification)

\rightarrow 2) + Pr{2 \rightarrow 1 | using **s**} L(2 \rightarrow 1)

Probability of Miss-classification

Loss (i.e. cost of miss-classification)

Bayes' Risk

Some errors may be inevitable: the minimum risk (shaded area) is called the **Bayes' risk**

Forsyth & Ponce (2nd ed.) Figure 15.1

Classification strategies fall under two broad types: **parametric** and **non-**

parametric.

Classifier Strategies

Classification strategies fall under two broad types: **parametric** and **nonparametric**.

Parametric classifiers are **model driven**. The parameters of the model are learned from training examples. New data points are classified by the learned model.

- fast, compact
- flexibility and accuracy depend on model assumptions

Classifier Strategies

Classification strategies fall under two broad types: **parametric** and **nonparametric**.

Parametric classifiers are **model driven**. The parameters of the model are learned from training examples. New data points are classified by the learned model.

- fast, compact
- flexibility and accuracy depend on model assumptions

Non-parametric classifiers are **data driven**. New data points are classified by comparing to the training examples directly. "The data is the model". — slow

— highly flexible decision boundaries

Classifier Strategies
Given a new data point, assign the label of nearest training example in feature

space.

 \bigcirc \bigcirc \bigcirc $\mathbf{O}^{\mathbf{C}}$ \bigcirc \bullet \bigcirc

Given a new data point, assign the label of nearest training example in feature

space.

 \bigcirc \bigcirc $\mathbf{O}^{\mathbf{C}}$ \bigcirc \bigcirc \bigcirc \bigcirc

Query x*^q*

Calculate $|\mathbf{x}_q - \mathbf{x}_i|$ for all training data

- $i_{NN} = \arg \min_{i} |\mathbf{x}_q \mathbf{x}_i|$
	-
	- $\hat{y}(\mathbf{x}_q) = y(\mathbf{x}_{i_{NN}})$

$Result = 3$ 2 3 4 5

Find nearest neighbour in training set

Assign class to class of the nearest neighbour

We can view each image as a point in a high dimensional space

What do nearest neighbours look like with 80 million images?

7900

 $\overline{}$

790,000

7900

790,000

111 b) Neighbors c) Neighbors c) Ground truth d) Wordnet voted branches voted branches voted branches voted branch
De voted branches vo

Query

 $\overline{}$

111

790,000

79,000,000

7900

790,000

Query

k-**Nearest Neighbor** (kNN) Classifier

- We can gain some robustness to noise by voting over **multiple** neighbours.
- Given a **new** data point, find the k nearest training examples. Assign the label

by **majority vote**.

Simple method that works well if the **distance measure** correctly weights the

various dimensions

For **large data sets**, as k increases kNN approaches optimality in terms of

minimizing probability of error

kNN decision boundaries respond to local clusters where one class dominates

Figure credit: Hastie, Tibshirani & Friedman (2nd ed.)

k-**Nearest Neighbor** (kNN) Classifier

1-Nearest Neighbor Classifier

15-Nearest Neighbor Classifier

Classification strategies fall under two broad types: **parametric** and **nonparametric**.

Parametric classifiers are **model driven**. The parameters of the model are learned from training examples. New data points are classified by the learned model.

- fast, compact
- flexibility and accuracy depend on model assumptions

Non-parametric classifiers are **data driven**. New data points are classified by comparing to the training examples directly. "The data is the model". — slow

— highly flexible decision boundaries

Classifier Strategies

Support Vector Machines (SVM)

- **Idea**: Try to obtain the decision boundary directly
- The decision boundary is parameterized as a **separating hyperplane** in feature space.
- e.g. a separating line in 2D
- We choose the hyperplane that is as far as possible from each class that maximizes the distance to the closest point from either class.

Linear Classifier

Defines a score function:

Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

stretch pixels into single column

input image

Support Vector Machines (SVM)

Support Vector Machines (SVM)

What's the best **w** ?

 \bullet \bullet $\left(\bigcirc \right)$ \bullet \bigcirc \bigcirc \bullet \bigcirc \bigcirc O $\mathbf{O}^{\mathbf{O}}$ \bullet \bullet \bullet \bullet \bullet \bullet \bullet

 \bullet

 \bullet

 \bullet

 \bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \bullet

Support Vector Machines (SVM)

Support Vector Machines (SVM)

Support Vector Machines (SVM)

Support Vector Machines (SVM)

from all interior points

What's the best **w** ?

Support Vector Machines (SVM)

Want a hyperplane that is far away from 'inner points'

What's the best **w** ?

Support Vector Machines (SVM)

Find hyperplane **w** such that …

Support Vector Machines (SVM)

Image Classification

- **Classification** Algorithms
- Bayes' Classifier
- Nearest Neighbor Classifier
- SVM Classifier

- **Representation** of Images
- Image pixels directly
- Bag of Words

3. **Classify**: Train and text classifier using BOWs

K nearest neighbors

Bag-**of**-**Words** Representation

Algorithm:

Initialize an empty K-bin histogram, where K is the number of codewords Extract local descriptors (e.g. SIFT) from the image For each local descriptor **x**

Map (Quantize) **x** to its closest codeword \rightarrow **c**(**x**) Increment the histogram bin for **c**(**x**) Return histogram

vector machine or k-Nearest Neighbor classifier

-
-

We can then classify the histogram using a trained classifier, e.g. a support

Spatial Pyramid

The bag of words representation does not preserve any spatial information

The **spatial pyramid** is one way to incorporate spatial information into the image descriptor.

A spatial pyramid partitions the image and counts codewords within each grid box; this is performed at multiple levels

Spatial Pyramid

Fig. 16.8 in Forsyth & Ponce (2nd ed.). Original credit: Lazebnik et al., 2006

VLAD (Vector of Locally Aggregated Descriptors)

histogram bin

- There are more advanced ways to 'count' visual words than incrementing its
- For example, it might be useful to describe how local descriptors are quantized

to their visual words

In the VLAD representation, instead of incrementing the histogram bin by one,

we increment it by the **residual** vector *x* **−** *c(x)*

Bag of Word

The dimensionality of a **VLAD** descriptor is *Kd*

- *K* : number of codewords
- *d* : dimensionality of the local descriptor

VLAD characterizes the distribution of local descriptors with respect to the

codewords

VLAD (Vector of Locally Aggregated Descriptors)
Summary

Factors that make image classification hard - intra-class variation, viewpoint, illumination, clutter, occlusion...

A codebook of **visual words** contains representative local patch descriptors - can be constructed by clustering local descriptors (e.g. SIFT) in training images

The **bag of words** model accumulates a histogram of occurrences of each visual word

The **spatial pyramid** partitions the image and counts visual words within each grid box; this is repeated at multiple levels