THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 19: Classification (part?)



Menu for Today
Topics:
— Scene Classification — Decision Tree
— Bag of Words Representation — Boosting

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 16.1.3, 16.1.4, 16.1.9
— Next Lecture: Forsyth & Ponce (2nd ed.) 17.1-17.2

Reminders:




Lecture 18: Re-cap (Image Classification)

Classify images containing single objects, the same techniques can be applied
to classify natural scenes (e.g. beach, forest, harbour, library).

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}
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Lecture 18: Image Classification

Representation of Images

— Image pixels directly
— Bag of Words

Classification Algorithms

— Bayes’ Classifier

— Nearest Neighbor Classifier
— SVM Classifier




Lecture 18: Re-cap (Vector Space Model)

Many algorithms for image classification accumulate evidence on the basis of
visual words.

To classify a text document (e.g. as an article on sports, entertainment,
business, politics) we might find patterns in the occurrences of certain words.



Standard Bag-of-Words Pipe\ine (for image classification) — Training

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each Image

Classify:
Train data using BOWs

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Standard Bag-of-Words Pipe\ine (for image classification) — Training

— o Dictionary Learning:
nput: large collection of images 5, . , ,
(they don’t even need to be training images) | earn Visual \Words uSIing C‘USterlﬂg

Output: dictionary of visual words

ULTIMATE -.

Encode. <k A
puild Bags-of-Words (BOW) vectors a ‘ RS
for each image ;
DICTIONAR

Classify:
Train data using BOWs

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Standard Bag-of-Words Pipe\ine (for image classification) — Training

- o Dictionary Learning:
nput: large collection of images — . , ,
(they don’t even need to be training images) Learﬂ \/|Sua‘ WOrdS USIHQ C‘USterlﬂg

Output: dictionary of visual words

Encode: S -
_ . CL : Utput: nistogram representation
Input: training images, dictionary = puild Bags-of-\Words (BOW) vectors = or each trainir?g imagz

for each Image

% v.: - . -
R Classify: -

- gggggg Train data using BOWSs -
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Standard Bag-of-Words PIpeling (for image classification) — Training

- o Dictionary Learning:
nput: large collection of images — . , ,
(they don’t even need to be training images) Learﬂ V|Sua‘ WOrdS USIHQ C‘USterlﬂg

Output: dictionary of visual words

Encode: Summ o
_ . CL : Utput: nistogram representation
Input: training images, dictionary = puild Bags-of-\Words (BOW) vectors = or each trainir?g imagg

for each Image

Input: histogram representation for _— ClaSSify:

L —)  Output: parameters if the classifier
each training image + labels . .
Train data using BOWs

airplane

= Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Standard Bag-of-Words Pipeline (for image classification) — Testing

Encode:
Input: test image, dictionary —> puild Bags-of-Words (BOW) vectors —>_
\ for each image ’ ’
Classify:

Test data using BOWs

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Standard Bag-of-Words Pipeline (for image classification) — Testing

Encode:
Input: test image, dictionary —> puild Bags-of-Words (BOW) vectors —>_
for each image ) ’

Input: histogram representation for Classi :
test image, trained classifier — Test data usiﬂfg BOWs —
! 4

airplane

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Standard Bag-of-Words Pipe\ine (for image classification) — Training

— o Dictionary Learning:
nput: large collection of images 5, . , ,
(they don’t even need to be training images) | earn Visual \Words uSIing C‘USterlﬂg

Output: dictionary of visual words
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Hind wing \
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Extracting SIFT Patches

Compute SIFT  Normalize patch
descriptor

[Lowe’99]

Detect patches
Mikojaczyk and Schmid 02}
Mata, Chum, Urban & Pajdla, '02]
Sivic & Zisserman, 03]

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Extracting SIFT Patches

N | |

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Creating Dictionary
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loannis (Yannis) Gkioulekas (CMU)

Slide Credi
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Clustering

Slide Credit: loannis (Yannis) Gkioulekas (CMU
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Clustering

Slide Credit: loannis (Yannis) Gkioulekas (CMU



Example Visual Dictionary

SEL <= aahSFC =g CwikEa
a0 COCanEEYY —QnET
5 g e Bl
=N Eaa BHEUENS SO
TS T TS e -
G B Sy Ty, B S
T [ bl ki bl ¥ o [+
aubEsN= =g (Sn SN0
“ENEEN ASSCEAANDSaxD
S SRS ERE P

‘.

el gl

o |
U ANEREER

TANOIel | ol s
A NER hF

VIS

l
x

YA |

sl 4 ERIFEIE
Vil ANER HEE

-
L
=
%
[
=<
<
E |

L
,

A

Source: B. Leibe



Example Visual Dictionary
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Appearance codebook

Source: B. Leibe



Standard Bag-of-Words Pipeline (for image classification) — Testing

Encode:
Input: test image, dictionary —> puild Bags-of-Words (BOW) vectors —>_
\ for each image ’ ’
Classify:

Test data using BOWs

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



2. Encode: build Bag-of-Words (BOW) vectors for each image

1. Quantization: image features gets associated
to a visual word (nearest cluster center)

) (¢

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



2. Encode: build Bag-of-Words (BOW) vectors for each image

2. Histogram: count the number of visual word occurrences
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



2. Encode: build Bag-of-Words (BOW) vectors for each image

frequency

TLUNENL, e

codewords

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Standard Bag-of-Words Pipe\ine (for image classification) — Training

Input: histogram representation for — CIaSSify: —)  Output: parameters if the classifier
each training image + labels . . |
Train data using BOWs —
Vi ®
Y d e @

automobile
bird
.
cat
deer
dog
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” Slide Credit: loannis (Yannis) Gkioulekas (CMU)




3. Classify: Train and text classifier using BOWs

Support
K nearest Vector
neighbors Machine

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Standard Bag-of-Words Pipeline (for image classification) — Testing

Encode:
Input: test image, dictionary —> puild Bags-of-Words (BOW) vectors —>_
for each image ) ’

Input: histogram representation for Classi :
test image, trained classifier — Test data usiﬂfg BOWs —
! 4

airplane

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



INnference Bag-of-Words Representation

Algorithm:

Initialize an empty K-bin histogram, where K is the number of codewords

Extract local descriptors (e.g. SIFT) from the image
For each local descriptor x

Map (Quantize) x to its closest codeword — ¢(x)
Increment the histogram bin for ¢(x)
Return histogram

We can then classify the histogram using a trained classifier, e.g. a support
vector machine or k-Nearest Neighbor classifier



Spatial Pyramid

The bag of words representation does not preserve any spatial information

The spatial pyramid is one way to incorporate spatial information into the
image descriptor.

A spatial pyramid partitions the image and counts codewords within each grid
box; this Is performed at multiple levels



Spatial Pyramid

Compute Bag-of-Words histograms for each quadrant and then concatenate them
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Fig. 16.8 In Forsyth & Ponce (2nd ed.).
Original credit: Lazebnik et al., 2006



VLAD (Vector of Locally Aggregated Descriptors)

There are more advanced ways to ‘count’ visual words than incrementing Its
histogram bin

For example, it might be useful to describe how local descriptors are quantized
to thelr visual words

In the VLLAD representation, instead of incrementing the histogram bin by one,
we increment it by the residual vector x — ¢(x)



Example: VLAD




Example: VLAD
Bag of Word




Example: VLAD
Bag of Word




Example: VLAD
Bag of Word




Example: VLAD

Bag of Word

VLAD




Example: VLAD

Bag of Word
‘ I 6. 3. O]
VLAD

/7 N\



VLAD (Vector of Locally Aggregated Descriptors)

The dimensionality of a VLAD descriptor Is Kd
— K : number of codewords
— d : dimensionality of the local descriptor

VLAD characterizes the distribution of local descriptors with respect to the
codewords



Recognition Overview: Early —> 2024



Recognition Overview: Early

Rule Based Classifier:
Distance + Threshold
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Recognition Overview: Early

Local Features:
Edges

Rule Based Classifier:
Distance + Threshold

—_

nere is nothing rea

JU

y to “learn” (no need for training data),

st measure similari

ty using favorite distance and choose

threshold based on validation set

Rule Based Classifier:
Distance + Threshold

More robust, to lighting, but
basically same



Recognition Overview: Early

nere is nothing really to “learn” (no need for training data),

Rule Based Classifier: . T . . .
Distance + Threshold just measure similarity using favorite distance and choose

threshold based on validation set

Local Features: ) Rule Based Classifier:
Edges Distance + Threshold

Bank of Local Features: Rule Based Classifier: More expressive, but basically
Edges, Blobs, etc. — Distance + Threshold same




Recognition Overview: Early

Rule Based Classifier:
Distance + Threshold

Local Features: ) Rule Based Classifier:
Edges Distance + Threshold

Bank of Local Features: Rule Based Classifier:
Edges, Blobs, etc. — Distance + Threshold

> Local Features: Summary Statistics: 3 Rule Based Classifier:
3 Edges > Histogram Size of inlier set

B SiFT/ HoG g

— No real learning, mostly parameter/design tuning using validation set

— Empirically engineered features with desired properties

— Pragmatically defined models (classifiers) that either defined by hand or require test time optimization



Recognition Overview: Learning

Learned Classifier:
Bayes, kNN, Linear SVM

N Learned Classifier:
Bayes, kNN, Linear SVM

Local Features:
Edges

Bank of Local Features: Learned Classifier:
Edges, Blobs, etc. > Bayes, kNN, Linear SVM

> Local Features: Summary Statistics: N Learned Classifier:
3 Edges > Histogram Bayes, kNN, Linear SVM

B SiFT/ HoG g




Recognition Overview: Learning

Learned Classifier:
Bayes, kNN, Linear SVM

N Learned Classifier:
Bayes, kNN, Linear SVM

Local Features:
Edges

Bank of Local Features: Learned Classifier:
Edges, Blobs, etc. > Bayes, kNN, Linear SVM

> Local Features: Summary Statistics: N Learned Classifier:
> Edges > Histogram Bayes, kNN, Linear SVM

B SiFT/ HoG g

Bayes — estimate parametric form of distribution (requires training data) for each class




Recognition Overview: Learning

Learned Classifier:
Bayes, kNN, Linear SVM

N Learned Classifier:
Bayes, kNN, Linear SVM

Local Features:
Edges

Bank of Local Features: Learned Classifier:
Edges, Blobs, etc. > Bayes, kNN, Linear SVM

> Local Features: Summary Statistics: N Learned Classifier:
> Edges > Histogram Bayes, kNN, Linear SVM

B SiFT/ HoG g

Bayes — estimate parametric form of distribution (requires training data) for each class

> More expressive
KNN — non-parametric form of distribution (requires training data) for each class




Recognition Overview: Learning

Learned Classifier:
Bayes, kNN, Linear SVM

N Learned Classifier:
Bayes, kNN, Linear SVM

Local Features:
Edges

Bank of Local Features: Learned Classifier:
Edges, Blobs, etc. > Bayes, kNN, Linear SVM

> Local Features: Summary Statistics: N Learned Classifier:
> Edges > Histogram Bayes, kNN, Linear SVM

B SiFT/ HoG g

Bayes — estimate parametric form of distribution (requires training data) for each class

> More expressive
KNN — non-parametric form of distribution (requires training data) for each class

Linear SVM — parametric form of classifier (requires training data) with implicit feature selection / weighting




Recognition Overview

e 5 Learned Classifier:
55 .|r » B
e

- é‘ 5 ayes, KNN, Linear SVM

N Learned Classifier:
Bayes, kNN, Linear SVM

Local Features:
Edges

Bank of Local Features: Learned Classifier:
Edges, Blobs, etc. > Bayes, kNN, Linear SVM

Local Features: Summary Statistics: Learned Classifier:
§ —> Edges > Histogram —> Bayes, kNN, Linear SVM
Local Features: Summary Statistics: K-means coding: > Learned Classifier:
5 —> Fdges -> Histogram -> Bag of Words, VLAD Bayes, kNN, Linear SVM

B SiFT/ HoG g



Recognition Overview

e 5 Learned Classifier:
55 .|r » B
e

- é‘ 5 ayes, KNN, Linear SVM

N Learned Classifier:
Bayes, kNN, Linear SVM

Local Features:
Edges

Bank of Local Features: Learned Classifier:
Edges, Blobs, etc. > Bayes, kNN, Linear SVM

> Local Features: Summary Statistics: N Learned Classifier:
> Edges > Histogram Bayes, kNN, Linear SVM
Local Features: Summary Statistics: K-means coding: Learned Classifier:
: —> Edges > Histogram > Bag of Words, VLAD —> Bayes, kNN, Linear SVM

m/ 1. Now there is some unsupervised “learning” in feature extraction



Recognition Overview

e 5 Learned Classifier:
55 .|r » B
e

- é‘ 5 ayes, KNN, Linear SVM

N Learned Classifier:
Bayes, kNN, Linear SVM

Local Features:
Edges

Bank of Local Features: Learned Classifier:
Edges, Blobs, etc. > Bayes, kNN, Linear SVM

> Local Features: Summary Statistics: N Learned Classifier:
> Edges > Histogram Bayes, kNN, Linear SVM
Local Features: Summary Statistics: K-means coding: Learned Classifier:
: —> Edges > Histogram > Bag of Words, VLAD —> Bayes, kNN, Linear SVM

m/ 1. Now there is some unsupervised “learning” in feature extraction

2. Histogram of histograms of gradients (i.e., simple hierarchical aggregation)



Recognition Overview

“ﬁi’" Learned Classifier: 3. Features are still not tuned for any specific task (features for object vs.
: %',!( > Bayes, kNN, Linear SVM scene classification are exactly same) only classifier can be tuned

N Learned Classifier:

Local Features: ,
Bayes, kNN, Linear SVM

Edges

Bank of Local Features: Learned Classifier:
Edges, Blobs, etc. > Bayes, kNN, Linear SVM

Summary Statistics: N Learned Classifier:
Histogram Bayes, kNN, Linear SVM

~ Local Features: Summary Statistics: K-means coding: Learned Classifier:
: —> Edges > Histogram > Bag of Words, VLAD —> Bayes, kNN, Linear SVM

m/ 1. Now there is some unsupervised “learning” in feature extraction

2. Histogram of histograms of gradients (i.e., simple hierarchical aggregation)




Recognition Overview: Convolutional Neural Nets (next week)

Deeper hierarchies of features (obtained by learned filters) learned together with the classifier
for a specific task (classification, detection, segmentation)

Learned Learned Learned Learned Learned CLI:::i}?edr'
¢ —3p Features: =9 Features: =9 Features: =9 Features: =» Features: =—> |
: . . . . . Bayes, kNN,
Filters Filters Filters Filters Filters .
Linear SVM
Local Features: Summary Statistics: K-means coding: > Learned Classifier:
s —> Fdges -> Histogram > Bag of Words, VLAD Bayes, KNN, Linear SVM

m/ 1. Now there is some unsupervised “learning” in feature extraction

2. Histogram of histograms of gradients (i.e., simple hierarchical aggregation)



Recognition Overview: Foundational Models

1. “Pre-training” (optimizing) in an unsupervised / self-supervised manner (to get good feature extractors)

Learned Learned Learned Learned Learned Pre-text Tasks
(¥ —p Features: =9 Features: =9 Features: =9 Features: =» Features: =% we don’treally
Filters Filters Filters Filters Filters care about

Learned  Leaned  Learned  Learned Learned Classifior

¢ —) Features: =» Features: =» Features: =9 Features: =) Features: =—> |
- . . . . . Bayes, kNN,
Filters Filters Filters Filters Filters Linear SVM

. Local Features: Summary Statistics: K-means coding: Learned Classifier:
5 —> Fdges -> Histogram > Bag of Words, VLAD —> Bayes, KNN, Linear SVM

m/ 1. Now there is some unsupervised “learning” in feature extraction

2. Histogram of histograms of gradients (i.e., simple hierarchical aggregation)




Let’s do a bit of a case study ...

L5 ; Learned Classifier:
B S
o

- —
.

- a‘ Z ayes, kNN, Linear SVM

N Learned Classifier:
Bayes, kNN, Linear SVM

Local Features:
Edges

Bank of Local Features: Learned Classifier:
Edges, Blobs, etc. > Bayes, kNN, Linear SVM

> Local Features: Summary Statistics: N Learned Classifier:
> Edges > Histogram Bayes, kNN, Linear SVM

B SiFT/ HoG g

Local Features: Summary Statistics: K-means coding: > Learned Classifier:
T —> Fdges -> Histogram -> Bag of Words, VLAD Bayes, kNN, Linear SVM

B SiFT/ HoG g




CIFAR10 Dataset

— Hand labelled set of 10 categories from Tiny Images dataset
— 060,000 32x32 images in 10 classes (50k train, 10k test)
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Good test set for visual recognition problems




CIFAR10 Classification

Let’s build an image classifier

3 =3 I S S ) T Y

airplane automobile bird deer horse ship truck

Start by vectorizing the data x = 3072 element vector of 0-255

32 x 32 x RGB (8 bit) image —
=65 102 3357 54 ... ]

X = 3072 element vector of 0-255



Nearest Mean Classifier

Compute a single “average” template per class

plane




Nearest Mean Classifier

FINnd the nearest mean and assign class:

Cq = argmin X, —

CIFAR10 class means:

airplane automobile bird deer horse ship truck




Nearest Mean Classifier

FINnd the nearest mean and assign class:

Cq = argmin X, —

CIFAR10 class means:

airplane automobile bird deer horse ship truck

Performance:

Chance performance: 10%
Uuman performance: ~94%
Nearest Mean Classifier (pixels): 37 %




Nearest Neighbor Classifier

We can view each image as a point in a high dimensional space




Nearest Neighbor Classifier

FINd nearest neighbour In training set:

iNN = argmin |x, — X;]|
(/

AssIign class to class of the nearest neighbour:

Calculate |x, — x;|
for all training data



Nearest Neighbor Classifier

FINd nearest neighbour In training set:

iNN = argmin |x, — X;]|
(/

AssIign class to class of the nearest neighbour:
Q(Xq) — y(XiNN)

Performance:

Chance performance: 10%
uman performance: ~94%
Nearest Neighbor (pixels): 40.8%
Nearest Neighbor (HoG): 58.3%

Source: https://cran.r-project.org/web/packages/KernelkKnn/vignettes/image_classification_using_MNIST_CIFAR_data.html|
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790,000






A
Ti ny Image RGCOQ [ ItIOﬂ [ Torralba, Fergus, Freeman ‘08]

Insect Fish Plant life Flower Artifact Vehicle
(335) (58) (187) (20)

Geological Organism Animal
formation (32) (658) (97) (29)

o o o
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o
N

false alarm rate

o
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= 7900, red = 790,000, blue = 79,000,000

Nearest neighbour becomes increasingly accurate as N increases, but do we
need to store a dataset of 80 million images”



1-vs-All Linear SVM




1-vs-All Linear SVM




1-vs-All Linear SVM




1-vs-All Linear SVM




1-vs-All Linear SVM




1-vs-All Linear SVM




1-vs-All Linear SVM

bird
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Ir
Ir

Hard voting: fx(z) = {

1 if k = argmin; ||c\Y) — z||2
0 otherwise.

Soft voting:  fx(x) = max {0, u(z) — 2}

nance performance:

Uman performance:

ea
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r SV
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r SV
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, 4000 words, soft voting): 79.6% [2;

| 2 distance to centroid k

10%
~94%

37.3% [2] / 39.5% 1)

65.69% 1]

, 1600 words, hard voting): 68.6% [2]
, 1600 words, soft voting): 77.9% [2

| https://proceedings.neurips.cc/paper files/paper/2010/file/4558dbb6f6f8bb2e16d03b85bde/6e2¢c-Paper.pdf

| https://cs.stanford.edu/~acoates/papers/coatesleeng aistats 2011 .pdf



https://proceedings.neurips.cc/paper_files/paper/2010/file/4558dbb6f6f8bb2e16d03b85bde76e2c-Paper.pdf
https://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf

Deep Learning

C
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_Inear SVM

ear
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(
SVM |
SVM |
SVM |

*Convolution

[3] https://arxiv.org/pdf/2203.12054.pdf

*DINO [Caron et al.,
*RandSAC [Hua et al.,

Performance:

nance performance:
uman performance:
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96.9% [3]



https://arxiv.org/pdf/2203.12054.pdf

lake home messages ...

— Both classification and feature representation play significant role
— (Classifiers need to be expressive to do well, but so do the features
— Parametric classifiers are much easier to work with (they are faster)

— Which i1s more significant, in part, depends on the amount of available data



More complex classifiers ...

Lets look at more expressive classifiers that, for example, explicitly do feature selection

Local Features: Summary Statistics: K-means coding: Learned Classifier:
: —> Edges > Histogram > Bag of Words, VLAD —> Bayes, kNN, Linear SVM

B SiFT/ HoG g




Back to Classification



Decision Iree

A decision tree is a simple non-linear parametric classifier

Consists of a tree in which each internal node Is associated with a feature test

A data point starts at the root and recursively proceeds to the child node
determined by the feature test, until it reaches a leaf node

The leaf node stores a class label or a probabllity distribution over class labels



Decision Iree




Decision Iree

Learning a decision tree from a training set involves selecting an efficient

sequence of feature tests
Example: \Waiting for a restaurant table

Example Attributes Target
Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | Type | FEst | WillWait

X, T | F | F T | Some| $$% F T | French | 0-10 T ®
X9 r| F | F T | Full $ F F | Thai | 30-60 F @
X3 F . T | F F | Some| § F F | Burger| 0-10 I @
X4 r{ F | T | T | Ful $ F F | Thai | 10-30 I ®
X5 r F | T | F | Full | $%% F T | French| >60 F @
Xg F | T | F T | Some| $% T T | Italian | 0-10 T @
X7 F| T | F| F | None|l § T F | Burger| 0-10 F @
X3 F| F | F T | Some| $% T T | Thai | 0-10 T @
X F| T | T | F | Ful $ T F | Burger| >60 F @
Xq0 T, T | T | T | Full | $%% F T | Italian | 10-30 F @
X11 F| F | F F | None| § F F | Thai | 0-10 F @
X9 T T | T T | Full $ F F | Burger 30-60 T @




Decision Iree

Learning a decision tree from a training set involves selecting an efficient

sequence of feature tests
Example: \Waiting for a restaurant table

s there an alternative restaurant near by

Example 1 Attributes Target
Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | Type | FEst | WillWait

X, T | F | F T | Some| $$% F T | French | 0-10 T ®
X9 r| F | F T | Full $ F F | Thai | 30-60 F @
X3 F . T | F F | Some| § F F | Burger| 0-10 I @
X4 r{ F | T | T | Ful $ F F | Thai | 10-30 I ®
X5 r F | T | F | Full | $%% F T | French| >60 F @
Xg F | T | F T | Some| $% T T | Italian | 0-10 T @
X7 F| T | F| F | None|l § T F | Burger| 0-10 F @
X3 F| F | F T | Some| $% T T | Thai | 0-10 T @
X F| T | T | F | Ful $ T F | Burger| >60 F @
Xq0 T, T | T | T | Full | $%% F T | Italian | 10-30 F @
X11 F| F | F F | None| § F F | Thai | 0-10 F @
X9 T T | T T | Full $ F F | Burger 30-60 T @




Decision Iree

Learning a decision tree from a training set involves selecting an efficient

sequence of feature tests
Example: \Waiting for a restaurant table

IS there a bar at the restaurant?

|
!

Example Attributes Target
Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | Type | FEst | WillWait

X, T | F | F T | Some| $$% F T | French | 0-10 T ®
X9 r| F | F T | Full $ F F | Thai | 30-60 F @
X3 F . T | F F | Some| § F F | Burger| 0-10 I @
X4 r{ F | T | T | Ful $ F F | Thai | 10-30 I ®
X5 r F | T | F | Full | $%% F T | French| >60 F @
Xg F | T | F T | Some| $% T T | Italian | 0-10 T @
X7 F| T | F| F | None|l § T F | Burger| 0-10 F @
X3 F| F | F T | Some| $% T T | Thai | 0-10 T @
X F| T | T | F | Ful $ T F | Burger| >60 F @
Xq0 T, T | T | T | Full | $%% F T | Italian | 10-30 F @
X11 F| F | F F | None| § F F | Thai | 0-10 F @
X9 T T | T T | Full $ F F | Burger 30-60 T @




Decision Iree

Learning a decision tree from a training set involves selecting an efficient

sequence of feature tests

Example: \Waiting for a restaurant table
s it Friday night?

Example ! Attributes Target
Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | Type | FEst | WillWait

X, T | F | F T | Some| $$% F T | French | 0-10 T ®
X9 r| F | F T | Full $ F F | Thai | 30-60 F @
X3 F . T | F F | Some| § F F | Burger| 0-10 I @
X4 r{ F | T | T | Ful $ F F | Thai | 10-30 I ®
X5 r F | T | F | Full | $%% F T | French| >60 F @
Xg F | T | F T | Some| $% T T | Italian | 0-10 T @
X7 F| T | F| F | None|l § T F | Burger| 0-10 F @
X3 F| F | F T | Some| $% T T | Thai | 0-10 T @
X F| T | T | F | Ful $ T F | Burger| >60 F @
Xq0 T, T | T | T | Full | $%% F T | Italian | 10-30 F @
X11 F| F | F F | None| § F F | Thai | 0-10 F @
X9 T T | T T | Full $ F F | Burger 30-60 T @




Decision Iree

Learning a decision tree from a training set involves selecting an efficient

sequence of feature tests
Example: \Waiting for a restaurant table

How many people in the restaurant?

Example i Attributes Target
Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | Type | FEst | WillWait

X, T | F | F T | Some| $$% F T | French | 0-10 T ®
X9 r| F | F T | Full $ F F | Thai | 30-60 F @
X3 F . T | F F | Some| § F F | Burger| 0-10 I @
X4 r{ F | T | T | Ful $ F F | Thai | 10-30 I ®
X5 r F | T | F | Full | $%% F T | French| >60 F @
Xg F | T | F T | Some| $% T T | Italian | 0-10 T @
X7 F| T | F| F | None|l § T F | Burger| 0-10 F @
X3 F| F | F T | Some| $% T T | Thai | 0-10 T @
X F| T | T | F | Ful $ T F | Burger| >60 F @
Xq0 T, T | T | T | Full | $%% F T | Italian | 10-30 F @
X11 F| F | F F | None| § F F | Thai | 0-10 F @
X9 T T | T T | Full $ F F | Burger 30-60 T @




Decision Iree

Which test is more helpful?

Patrons?

Nor%\ull Frencm
0000 00 O

Figure credit: Russell and Norvig (3rd ed.)



Decision Iree

The entropy of a set S of data samples is defined as

Zp ) log(p

ceC

where C is the set of classes represented in S, and p(c) is the empirical
distribution of class ¢ In S

Entropy Is highest when data samples are spread equally across all classes,
and zero when all data samples are from the same class.



Entropy at each node ...

Which test is more helpful?

0.510g5(0.5) + 0.510g45(0.5) 0.510g5(0.5) + 0.510g4(0.5)
000000 000000
000000 000000
Patrons? Type?
Nor%\lﬂl Frencm@er
0000 00 O © 00 00
@® 1log,(1)+0log,(0) OO O @ O @ 00 0

0 log, (0 1log,(1 - - _ _
g2(0) gs(1) 0.310g45(0.3) + 0.6 log,(0.6) 0.51og,(0.5) + 0.5 log,(0.5)

Figure credit: Russell and Norvig (3rd ed.)



Decision Iree

In general we try to select the feature test that maximizes the information gain:

S ;
I=H(S)— ) “S“H(S)
i€{children}

In the previous example, the information gains of the two candidate tests are:

Ipatrons = 0.041 IType = U

So we choose the ‘Patrons’ test.



Decision Iree

In general we try to select the feature test that maximizes the information gain:

S’ ,L.
I=H(S)— ) “S“H(S)
ic{children}

In the previous example, the information gains of the two candidate tests are:

Ipatrons = 0.041 IType = U

So we choose the ‘Patrons’ test.

Build a tree In a greedy recursive manner by maximizing

iInformation gain at each node



Decision Iree

Following this construction procedure we obtain the final decision tree;:

| Patrons? |
None ome Full
| Hungry? |
Yes No
Type?

French Italia Tha Burger

| Fri/Sat? |
No Yes

Figure credit: Russell and Norvig (3rd ed.)



Decision Iree

A random forest is an ensemble of decision trees.

Randomness is incorporated via training set sampling and/or generation of the
candidate binary tests

The prediction of the random forest is obtained by averaging over all decision trees.

(I,x) (I,x)

tree 1 tree T’

[I Pr(c)
P;(c) ! II-II.

Forsyth & Ponce (2nd ed.) Figure 14.19. Original credit: J. Shotton et al., 2011



Microsoft Kinect

IR Emitter Color Sensor

IR Depth Sensor

Tilt Motor

—d

Microphc;ne Array




Example 1: Kinect

Kinect allows users of Microsoft’s Xbox 360 console to interact with games
using natural body motions instead of a traditional handheld controller. The
pose (joint positions) of the user is predicted using a random forest trained on
depth features.

) P
depth image == bodyparts =% 3D joint proposals

Figure credit: J. Shotton et al., 2011



Example 1: Kinect

Kinect allows users of Microsoft’s Xbox 360 console to interact with games
using natural body motions instead of a traditional handheld controller. The
pose (joint positions) of the user is predicted using a random forest trained on
depth features.

depth image == body parts

-

3D joint pr;|56§éls

Figure credit: J. Shotton et al., 2011
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Example 1: Kinect

Simple test: threshold on the difference of two depth values at an offset from a target pixel ...

(a) (b)

o

61

fo(l,x) = dj <x+ dIl(lx)> —d (X+ dI\(,X))

Figure credit: J. Shotton et al., 2011



Example 1: Kinect

What are the parameters of this test?
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fQ(L X) >.
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Example 1: Kinect

What are the parameters of this test?

How many such tests can we have?

(# pIX) X (# pix) X (# threshold)

Learning is slow (weeks)!

Inference is fast (real-time)!



Example 1: Kinect
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Example 1: Kinect
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Example 1: Kinect

u u @ j information gain . l

d[(XI < )—d[(X—|— T )>—0.7 ) d]X—|-T < —0.7
o 05 0.3 / \
/ — 0.4 0.4
/ — -0.2 0.7
au 0.7 0.2

— 1 -0.7 0.8
—— U 045 0.1 fg([,x) = a1 (X | d[ X ) & (X X )



Example 1: Kinect

Figure credit: J. Shotton et al., 2011



Combining Classifiers

One common strategy to obtain a better classifier is to combine multiple
classifiers.

A simple approach is to train an ensemble of iIndependent classifiers, and
average their predictions.

Boosting is another approach.
— [rain an ensemble of classifiers sequentially.

— Blas sulbsequent classifiers to correctly predict training examples that
previous classifiers got wrong,.

— The final boosted classifier Is a weighted combination of the individual
classitiers.



Combining Classifiers: Boosting

Weak

Classifier1 \‘

Figure credit: Paul Viola



Combining Classifiers: Boosting

Weights
Increased

Figure credit: Paul Viola



Combining Classifiers: Boosting
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Figure credit: Paul Viola
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Figure credit: Paul Viola



Combining Classifiers: Boosting

Weak
Classifier3

Figure credit: Paul Viola



Combining Classifiers: Boosting

Final classifieris
a combination of weak
classifiers

Figure credit: Paul Viola



Object Detection: Introduction

We have been discussing image classification, where we pass a whole
image Into a classifier and obtain a class label as output

We assumed the image contained a single, central object

The task of object detection is to detect and localize all instances of a target
object class in an image
— Localization typically means putting a tight bounding box around the object



Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark
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Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
Wl ﬂdOW- Is there a car?

Image credit: KITTI Vision Benchmark
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Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
Wi ﬂdOW. Is there a car?

Image credit: KITTI Vision Benchmark



Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark

This IS a search over location
— We have to search over scale as well
— We may also have to search over aspect ratios



What data we train a classifier on?

Image Classifiers

Image classifiers can be applied
to regions/windows, but do not
work so well in practice ...




What data we train a classifier on?

Image Classifiers




What data we train a classifier on?

Image Classifiers Object Classifiers




| et’s assume we have object labeled data ...
Object Classifiers

Object classifiers work a lot
petter ... but require expensive
bounding box annotations ...



AR
| et’s assume we have object labeled data ...
Object Classifiers

(for convenience we will normalize patches
to 64x64 ... or 128x128)

Object classifiers work a lot
petter ... but require expensive
bounding box annotations ...



Example: Face Detection

The Viola-dones face detector Is a classic sliding window detector that learns
both efficient features and a classifier

A Key strategy Is to use features that are fast to evaluate to reject most
windows early

The Viola-dones detector computes ‘rectangular’ features within each window



Example: Face Detection Summary

Train cascade of
classifiers with

AdaBoost

Selected features,
thresholds, and weights

Non-faces

Figure credit: K. Grauman



Example: Face Detection Summary

Train cascade of
classifiers with

AdaBoost

Main Issue: Efficiency

Selected features,
thresholds, and weights

Non-faces

Figure credit: K. Grauman



Example: Face Detection

Observations:

— On average only 0.01% of all sub-windows are positive (faces)

— Equal computation time is spent on all sub-window

— Shouldn’t we spend most time only on potentially positive sub-windows"?
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A simple 2-feature classifier can achieve almost 100% detection

rate (0% false negatives) with 50% false positive rate



Example: Face Detection

Observations:

— On average only 0.01% of all sub-windows are positive (faces)

— Equal computation time is spent on all sub-window

— Shouldn’t we spend most time only on potentially positive sub-windows"?

A simple 2-feature classifier can achieve almost 100% detection

rate (0% false negatives) with 50% false positive rate

Solution:

— A simple 2-feature classifier can act as a 1st layer of a series to filter out
most negative (clearly non-face) windows

— 2nd layer with 10 features can tackle "harder” negative-windows which
survived the 1st layer, and so on...



Cascading Classifiers

T I T
IMAGE . ,
SUB-WINDOW @ * FACE
lp lF F

NON-FACE NON-FACE NON-FACE Figure credit: P. Viola

To make detection faster, features can be reordered by increasing complexity

of evaluation and the thresholds adjusted so that the early (simpler) tests have
few or no false negatives

Any window that Is rejected by early tests can be discarded quickly without
computing the other features

This Is referred 10 as a cascade architecture



Cascading Classifiers

50% 20% 2%
IMAGE » - »| 20 Features - FACE
SUB-WINDOW

¥ N N

NON-FACE NON-FACE NON-FACE

Figure credit: P. Viola

A classifier in the cascade Is not necessarily restricted to a single feature



Example: Face Detection Summary

Train cascade of
classifiers with

AdaBoost

Selected features,
thresholds, and weights

Non-faces

Figure credit: K. Grauman



Hard Negative Mining

Randomly Select M; (K M™) A MINIBATCH

draw M~ samples with , N
samples highest f* scores ! |
Pool of
Negative -
Samples
| Training
CNN

Pool of

Positive
Samples

=)

Randomly
draw Mt
samples

Image From: Jamie Kang



Recall: Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark



Recall: Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark

This is a lot of possible windows! And most will not contain the object we are
looking for.



Object Proposals

Object proposal algorithms generate a short list of regions that have generic
object-like properties

— [hese regions are likely to contain some kind of foreground object instead of
background texture

The object detector then considers these candidate regions only, instead of
exhaustive sliding window search



Object Proposals

First introduced by Alexe et al., who asked ‘what is an object?’ and defined an
‘Objectness’ score based on several visual cues

Figure credit: Alexe et al., 2012



Object Proposals

First introduced by Alexe et al., who asked ‘what is an object?’ and defined an
‘Objectness’ score based on several visual cues

Figure credit: Alexe et al., 2012
This work argued that objects typically

— are unique within the image and stand out as salient
— have a contrasting appearance from surroundings and/or
— have a well-defined closed boundary in space



Object Proposals

Multiscale Saliency
— Favors regions with a unique appearance within the image

High scale Low scale

Successful Case

Failure Case

Figure credit: Alexe et al., 2012



Object Proposals

Colour Contrast
— Favors regions with a contrasting colour appearance from immediate
surroundings

Successful Cases Failure Case

Figure credit: Alexe et al., 2012



Object Proposals

Superpixels Straddling

— Favors regions with a well-defined closed boundary

— Measures the extent to which superpixels (obtained by image segmentation)
contain pixels both inside and outside of the window

Figure credit: Alexe et al., 2012



Object Proposals

Superpixels Straddling

— Favors regions with a well-defined closed boundary

— Measures the extent to which superpixels (obtained by image segmentation)
contain pixels both inside and outside of the window

Successful Cases Failure Case

Figure credit: Alexe et al., 2012



Object Proposals

TABLE 2: For each detector [11. 18, 33| we report 1ts performance
(left column) and that of our algorithm 1 using the same window
scoring function (right column). We show the average number of
windows evaluated per image #win and the detection performance
as the mean average precision (mAP) over all 20 classes.

[11] OBJ-[11] [ 18] OBJ- [I8] | ESS-BOW|[33] OBJ-BOW
mAP | 0.186 0.162 | 0.268 0.225 0.127 0.125
#win | 79945 = 1349 | 18562 —m 1358 183501 —% 2997

Table credit: Alexe et al., 2012

Speeding up [11] HOG pedestrian detector [18] Deformable part model detector
[33] Bag of words detector



Summary

Detection scores In the deformable part model are based on both appearance
and location

The deformable part model is trained iteratively by alternating the steps

1. Assume components and part locations given; compute appearance and
offset models

2. Assume appearance and offset models given; compute components and
part locations

An object proposal algorithm generates a short list of regions with generic
object-like properties that can be evaluated by an object detector In place of an
exhaustive sliding window search



