BRITISH COLUMBIA

THE UNIVERSITY OF

TN R (//Am,/A\\\

Lecture 23:

STANY: SN STANY: AN -
() . ()
V 7 \\v‘l:, \\ v l, \\ N\ :,A
k'l;/c\\‘%, ‘“\ 0/'};// \\\},f o\\\‘,{{ \\'I;/O\‘m' :.‘ w w,.‘.\ R ¢"/0\:\$// ;/o‘ 7 :.‘\\“73,, \}‘\ g/ ot\‘,{
S 9;>~e,/.\\‘xzz«»::'3\w~'m NVEs SCA s e ‘«’C""»"‘.‘r \x‘:"« W,. R ViR
X0 \»t,m;z: S *'*,' ,,,m.« «;\,,«,y D ~ S SO OOGCR il s W S
RS e P KA e, .,‘:tu ":; ::: zr:’\.z X009 LR '«"‘\ »":0::“. 7".« s 7‘:&:‘,‘\ m‘%"
SRAX v,,«“\'/xm »A» '//‘lm’&.’r'*”«'&\ //}0‘» .,,:U '//,' «\'/mr»" "'«‘ KR\ A A\v\\'/w w\\' PR &'#’«%’\\
o %O\ /,/"moe',,my A0 .v,:x‘\\\'/,,o 0’/,,,‘\%\\‘ 0 \'//«o‘s ‘ic\‘ e it e i WS
\‘ , Y ‘v‘ S
.//"\{‘o,,;t \\ /,',“\.\\'/, ‘}Ov' ~\\. //,\v'o,,z' '//il,“\l\\' /4 ‘}\\Ov'l X\ 7>
\ ’ '””““‘ ’lll,‘\\\
v/ V// 5 \\V/ N \V//-

'\(//A\\\',,,,A\\‘

Detection, Segmentation

Menu for Today

Topics:

— Classification, Detection, Segmentation
— Attention, Transformers

— Today’s Lecture: N/A
— Next Lecture: N/A

Reminders:

— Assignment 6: Deep Learning is out and due Thursday

— Material for Final Prep will be on Canvas tonight

— Quiz 6 is due Thursday

Computer Vision Problems

Categorization

Multi-class: Horse
Church

Toothbrush
Person

IMAGENET

Multi-label: Horse
Church

Toothbrush
Person

Computer Vision Problems

Categorization Detection

Horse (X, y, w, h)
Horse (X, y, w, h)
Person (X, y, w, h)
Person (X, y, w, h)

Multi-class: Horse
Church

Toothbrush
Person

IMAGENET

Common Objects in Context

Multi-label: Horse
Church

Toothbrush
Person

Computer Vision Problems

Categorization Detection Segmentation

TR

o v Ny A
St AL ALY B

Multi-class: Horse Horse (x, y, w, hy Horse
Horse (x, vy, w, h) Person
Church
Toothbrush Person (x, vy, w, h)
Person Common Objects in Context
IMAGENET

Common Objects in Context

Multi-label: Horse
Church

Toothbrush
Person

Computer Vision Problems

Categorization Detection Segmentation Instance Segmentation

TR

-'. -~
y

o v Ny A
St AL ALY B

‘ ;"l.‘l‘.“ \ Ky
1. "
~ " - .
L3¢ o] o
4 A \L\ y !

Multi-class: Horse Horse (x, y, w, h) Horse1
Horse (X, y, w, h) Horse?2
Church
Toothbrush Person (x, vy, w, h) PersonT
OOtbIUS Person (x, vy, w, h) - Person?
Person Common Objects in Context
IMAGENET

Common Objects in Context

Multi-label: Horse
Church

Toothbrush
Person

Object Classification

Category Prediction

H Dog B

| Cat o
— Couch g
Flowers B

Leopard m—

0
Probability

Problem: For each image predict which category it belongs to out of a fixed set

ImageNet Competition (ILSVRC)

Annual competition of image classification at scale

Focuses on a subset of 1K synset categories

Scoring: need to predict true label within top K (K=5)

ILSVRC winner 2012

SVM + Fisher Vectors
(like Bag-of-Words but better)

25.8
E 152 layers]
A
\
\
\
\
\
\
\
22 Iayers 19 Iayers
\ 6.7
3 57 l_ . I Iayers 8 layers shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

ILSVRC winner 2012

28.2
25.8
E 152 layers]
A
\
\
\
. 16.4
\
\
\
22 Iayers 19 Iayers
\ 6.7
3 57 I_ . l Iayers 8 layers shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

ILSVRC winner 2012

28.2
25.8
E 152 layers]
A
\
\
\
. 16.4
\
\
\
22 Iayers 19 Iayers
\ 6.7
3 57 I_ . l Iayers 8 layers shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

ILSVRC winner 2012

E 152 layers]
A
\
\
\
\
\
\
\ 11.7
22 Iayers 19 Iayers
\ 6.7
3 57 I_ . l Iayers 8 layers shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

ILSVRC winner 2012

E 152 layers]
A
\
\
\
\
\
\
\
22 Iayers 19 Iayers
\ 6.7
3 57 I_ . l Iayers 8 layers shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

ILSVRC winner 2012

E 152 layers]
A
\
\
\
\
\
\
\
22 Iayers 19 Iayers
\ 6.7
3 57 I_ . l Iayers 8 layers shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

ResNet

even deeper — 152 layers!

using residual connections T relu
F(x) + X

conyv
F(X)] relu

COonv

X
Residual block

A
| He et al., 2015]

X
iIdentity

o ®
X B ®
a
o ®
X o *
o
X 3 .
i ®
O

e —
';glal n !'. 0‘ -
‘;Elal i !" 0‘ -

——

) A —
‘f?la! n !" 0‘ -
‘;glal i !" 0‘ -

———

e —
. 3x3conv. 64
- 3x3conv.64

o—"
| Pool |

[x7cony, 64 /2

[Dhout]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

ResNet: Motivation [He et al., 2015

What happens when we continue to stacking deeper layers on a “plain” CNN

56-layer

20-layer

est error

lterations

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

ResNet: Motivation [He et al., 2015

What happens when we continue to stacking deeper layers on a “plain” CNN

56-layer

20-layer

est error

lterations

Whats the problem?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

ResNet: Motivation [He et al., 2015

What happens when we continue to stacking deeper layers on a “plain” CNN

56-layer
b56-layer

20-layer

raining error
est error

20-layer

lterations lterations

Whats the problem?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Optimizing Deep Neural Networks

:))Zl = g'(z1) X W2 X' (22) X W3 X 0 (23) X W1 X0 (24) X (‘)’54
O—C)r—()—L)——()
b1 bo ba o
< 7 < 3
aC e N TN o oC
55, — 0 (21) w20 (22) w30 (23) wao (24)
l ()(1.4
— —
ThIS IS CaHed VaniShing gradient prOb‘em common terms
— makes deep networks hard to train —
— later layers learn faster than earlier ones 9C _ o/ (23) wao'(24) ())(
o a4

Source: http://neuralnetworksanddeeplearning.com/chaps.htmi

ResNet: Motivation [He et al., 2015

Hypothesis: deeper models are harder to optimize (optimization problem)

ResNet: Motivation [He et al., 2015

Hypothesis: deeper models are harder to optimize (optimization problem)

Observation: the deeper model should (conceptually) perform just as well
(e.q., take shallower model and use identity for all remaining layers)

ResNet: Motivation [He et al., 2015

Hypothesis: deeper models are harder to optimize (optimization problem)

Observation: the deeper model should (conceptually) perform just as well
(e.q., take shallower model and use identity for all remaining layers)

How do we implement this idea In practice

ResNet e ot al, 20151

Solution: use network to fit residual mapping instead of directly trying to fit a
desired underlying mapping

B Use layers to fit residual
H(X) = F(x) + X F(x) = H(X) - X instead of H(x) directly
T relu
H(x) F(x) + X
X

‘ relu F() |relu iIdentity

!

X X

“Plain” layers Residual block

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

AR
| He et al., 2015]

—TTT—
)
__3x3 COI
3x3 conv, 512
. 330
FU” deta”S 3x300v 512
T relu — 535 ‘
— Stacked residual blocks F(x) + X B —
— Every residual block consists of two 3x3 filters —"
3X3 conv <3 con
— Periodically double # of filters and downsample spatially \ X T
. . relu . : Goor
using stride of 2 identity :
L_3x3¢co
. . . o 3X3 conv G con. 128,72
— Additional convolutional layer in the beginning —
‘;gl'lM‘-

— No FC layers at the end (only FC to output 1000 classes)

X
Residual block

v

\ *
O HO
=

k=

|

100
aa
iy

| Po |

/x7 cony. 64, /2

[oyt 1]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

ILSVRC winner 2012

E 152 layers]
A
\
\
\
\
\
\
\
22 Iayers 19 Iayers
\ 6.7
3 57 I_ . l Iayers 8 layers shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

ILSVRC winner 2012

MSRA @ [LSVRC & COCO 2015 Competitions 28

* 1st places in all five main tracks 25 8

{ 1 52 I ay e r s] * ImageNet Classification: “Ultra-deep” (quote vann) 152-layer nets

* ImageNet Detection: 16% better than 2nd

A * ImageNet Localization: 27% better than 2nd
\ * COCO Detection: 11% better than 2nd
\ * COCO Segmentation: 12% better than 2nd
\
\ ——
\
\
\

[22 layers } 19 Iayers

357

8 layers H 8 layers shallow

— — — — .
— — —

ILSVRC'1S ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Regularization: Stochastic Depth (Huang et al. ECCV 2016

Effectively “dropout” but for layers

Stochastically with some probability turn off
some layer (for each batch)

Effectively trains a collection of neural networks

Residual Block

E

-1
[Input]—
4

fe(He—1)

RelLU

id(H-1)

N
Hy
RelLU —>[Output]
/

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

ResNet: A little theory

One can view a seqguence of outputs from residual layers as a Dynamical

System
y Stage 1 Stage 2 Stage 3
) DTS | s
o LS block1 block 2 block1 block2 block 1 block 2

Ty

[Cheng et al., ICLR 2018 |

ResNet: A little theory

One can view a seqguence of outputs from residual layers as a Dynamical

SyStem Stage 1 Stage 2 Stage 3
3 g"‘ ||-‘ﬁk
xS0 block1 block 2 block1 block2 block 1 block 2
T() T5 T6
Time
Y;
|dentity
G(Y,) Yj

[Cheng et al., ICLR 2018 |

ResNet: A little theory

One can view a seqguence of outputs from residual layers as a Dynamical

SyStem Stage 1 Stage 2 Stage 3

""‘""*" z H %
block 1 block 2 block 1 block 2 block 1 block 2

Cat

What happens if you take more layers and take smaller steps®

| Chen et al., NIPS 2018 best paper |

ResNet: A little theory

One can view a seqguence of outputs from residual layers as a Dynamical

System
y Stage 1 Stage 2 Stage 3
0l I I I I I 14 I '
= S block1 block 2 block1 block2 block 1 block 2
_ TO T5

What happens if you take more layers and take smaller steps®

dh(t)

| Chen et al., NIPS 2018 best paper |

You can actually treat a neural network as an ODE:

An Aside: Neural Network Cascades

Cascade

” Model O

| |
i

/

Prediction
confident
enough?

Yes

Prediction
of model O

No |)
'—’{ Model 1

Y

Early exit

(easy examples)

Averaged
Prediction

Use more models
(hard examples)

[Wang et al., ICLR 2022]

R

B3+B4+85+B7.”

B3+B4+B4 ..

84
B6

.
AmoebaNet-A

R200+R200

R |
80 ¥ B S -
| - Incep-vdm g5 0.R152

ImageNet Top-1 Accuracy (%)

ResNet-200
” ResNet-152

B4+B6+B7+B7
Y

" B5+B5+B5
U

EfficientNet-B7

AmoebaNet-C

®ResNeXt-101

R101+200 .-*"" e ~R200+R200

78 ° —e— Single Models
DenseNet/ ResNet-101 -%- ResNet Cascades
® ResNet Ensembles
BO -~ EfficientNet Cascades
ResNet-50 m EfficientNet Ensembles
0 5 10 15 20 25 30 35 40 45

Average FLOPS (Billions)

Comparing Complexity

J Inception-v4
80 S 80 1 | : |
Inception-v3 ‘ ResNet-152
ResNet- 50‘ | VGG-16 VGG-19
A N B B | R — <A ResNet-101 N Ny
. ResNet-34
= 70 = 70 ﬂ ResNet-18
o § GoogLeNet
o > ENet
O 65 1 S 65 1
"g_‘ 'é‘ © BN-NIN
" 60 { " 60 5M 35M - 65M - 95M - 125M - 155M
BN-AlexNet
551 55 AlexNet
50 & $ < < o 6 5 » S « ~ > ~ 50 + - - - - v - .
et aet o\ e e :\ A0 _AD 2% oV QY .HL 42 N D 10 15 29 25 30 35 40
Ne{:\;\e $%$$ $gye$$ \‘66 \166 W\ ‘;"V\e; §\e'ﬁ.';:\'\\e'i,’e‘; (\ogq.(\o“ Operations [G-Ops]
o RE™ Qe o O\

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

COmpUter ViSiOn PrOblemS (no language for now)

Categorization Detection

Horse (X, y, w, h)
Horse (X, y, w, h)
Person (X, y, w, h)
Person (X, y, w, h)

Multi-class: Horse
Church

Toothbrush
Person

IMAGENET

Common Objects in Context

Multi-label: Horse
Church

Toothbrush
Person

Object Detection as Regression Problem

IIH::\._ ol - —) CAT (X, y, W ,h)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Object Detection as Regression Problem

— CAT (X, Y, W ,h)

D)

Xy, w,
Xy, w,
Xy, w,
Xy, w,
Xy, w,
Xy, w,
Xy, w,

DD

D)

D)

AANAANANAANA

O
OOO0000O0
2222222

D)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Object Detection as Regression Problem

IIH::\._ ol - —) CAT (X, y, W ,h)

XX
< <
z z
05

X
<
=
=

x
<
=
=

x
<
=
=

=:7'=
O
0000000
ONONORORORORS
B
<
=
TzT=====

x
<
=
=

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Object Detection as Classification Problem

Category Prediction

Dog No

Cat No

rr-l— Sl ... —_—) Couch NoO
j Flowers No

Background Yes

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Object Detection as Classification Problem

Category Prediction
Dog No

y I_ Cat NoO

! B || = Couch No

i - Flowers No
Background Yes

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Object Detection as Classification Problem

Category Prediction

Dog Yes
Cat No
rr-l— Sl ... —_—) Couch NoO
J Flowers No
Background No

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Object Detection as Classification Problem

Category Prediction
Dog Yes

y I_ Cat No

! | | || = Couch No
i - Flowers No
Background No

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Object Detection as Classification Problem

Category Prediction

Dog No

Cat Yes
rr-l— Sl ... —_—) Couch NoO
J Flowers No
Background No

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Object Detection as Classification Problem

Problem: Need to apply CNN to many patches in each image

Category Prediction

Dog No

Cat Yes
rr-l— Sl ... —_—) Couch NoO
J Flowers No
Background No

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

A—..
[Alexe et al, TPAMI 2012

Region Proposa\s (older idea in vision) [Uilkings et al, IJCV 2013

[Cheng et al, CVPR 2014
| Zitnick and Dollar, ECCV 2014

Find image regions that are likely contain objects (any object at all)

B~ B WN

- typically works by looking at histogram distributions, region aspect ratio, closed contours, coherent color

Re\ative\y fast to run (Selective Search gives 1000 region proposals in a few seconds on a CPU)

Goal: Get “true” object regions to be in as few top K proposals as possible

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

| Girshick et al, CVPR 2014 |

Input Image

* image from Ross Girshick

| Girshick et al, CVPR 2014 |

Regions of Interest from
a proposal method (~2k)

Input Image

* image from Ross Girshick

| Girshick et al, CVPR 2014 |

Regions of Interest from
a proposal method (~2k)

Input Image

* image from Ross Girshick

ConvN

ConvN
et

4

[Girshick et al, CVPR 2014 |

Forward each region
through a CNN

4 g /" Warped image regions

Regions of Interest from

a proposal method (~2k)

Input Image

* image from Ross Girshick

SVMs

SVMs

SVMs

ConvN

ConvN

et

4

[Girshick et al, CVPR 2014 |

Classify regions with SVM

Forward each region
through a CNN

4 g /" Warped image regions

Regions of Interest from
a proposal method (~2k)

Input Image

* image from Ross Girshick

R-CNN

Linear Regression for bounding box offsets

Bbox reg

SVMs

Bbox reg

Bbox reg

SVMs

ConvN

ConvN

et

4

[Girshick et al, CVPR 2014 |

Classify regions with SVM

Forward each region
through a CNN

4 g /" Warped image regions

Regions of Interest from
a proposal method (~2k)

* image from Ross Girshick

R-CNN

R-CNN (Regions with CNN features) algorithm:
— Extract promising candidate regions using an object proposals algorithm

— Resize each proposal window to the size of the input layer of a trainead
convolutional neural network

— Input each resized image patch to the convolutional neural network

Implementation detail: Instead of using the classification scores of the
network directly, the output of the final fully-connected layer can be used as an
input feature to a trained support vector machine (SVM)

Fast R-CNN

| Girshick et al, ICCV 2015 |

* image from Ross Girshick

Fast R-CNN

| Girshick et al, ICCV 2015 |

/ /”convS” feat
/ Forward wi

* image from Ross Girshick

Fast R-CNN

[Girshick et al, ICCV 2015 |

/ ‘convd” feature map

T

ANAN

Forward prop the whole image through CNN

ConvNet

* image from Ross Girshick

Fast R-CNN

Regions of
Interest
from the
poroposal
method

ﬁ/ Vi /47/ “convs” feature map
T

Forward prop the whole image through CNN

ConvNet

[Girshick et al, ICCV 2015 |

* image from Ross Girshick

Fast R-CNN
[Girshick et al, ICCV 2015 |
Regions of /7 ,~ ,— RolPooling” layer
Interest 7@/) 7/ “convb” feature map
from the /
proposal Forward prop the whole image through CNN
method *

Input Image

Girshick, “Fast R-C
Figure copyright Ri

* image from Ross Girshick

Rol Align

15 x 15 pixel Region of Interest
in the original image

I e Lo e A o

1 o I sl BT TR Wi A s T s s 7 . o -~ B
iginal Image: 128 x 128
NS " o A LO A 1 L0

CNN

Corresponding region in the
Feature Map (2.93 x 2.93)

P

Feature Map: 25 x 25

vaf{riablqlasiz Rol

Fast R-CNN
Log loss + Smooth L1 loss | Multi-task |oss [Girshick et al, ICCV 2015]
Object
L : Linear +
Classification | .~ Bounding box regression

FCs

N
,— "Rol Pooling” layer

Regions of |

Interest = /5/ “conv5” feature map

from the

proposal Forward prop the whole image through CNN
method

ConvNet

* image from Ross Girshick

Fast R-CNN: Training

Object

Log loss + Smooth L1 loss | Multi-task loss

'L . *

classification | “near+

softmax

Linear | Bounding box regression

Regions of

FCS%

i \®

— ,—7 Rol Pooling” layer

Interest

from the

ﬁ /—tbﬁf—“conva” feature map
 §

poroposal
method

ConvNet

[Girshick et al, ICCV 2015 |

Forward prop the whole image through CNN

* image from Ross Girshick

R-CNN vs. SPP vs. Fast R-CNN Girehiok ot ol OVPR 20141

[Girshick et al, ICCV 2015]
| He et al, ECCV 2014 |

e 3 Test time (seconds)
Tl'al ni ng tl me (HOU rS) B Including Region propos...

B Excluding Region Propo...

R-CNN R-CNN

SPP-Net

SPP-Net

Fast R-CNN 8.75

Fast R-CNN
0 25 50 75 100

60

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

R-CNN vs. SPP vs. Fast R-CNN Girehiok ot ol OVPR 20141

[Girshick et al, ICCV 2015 |
| He et al, ECCV 2014 |

e 3 Test time (seconds)
Tl'al ni ng t' me (HOU rS) B Including Region propos...

B Excluding Region Propo...

R-CNN R-CNN

SPP-Net

SPP-Net

Fast R-CNN 8.75

Fast R-CNN
0 25 50 75 100

60

Observation: Performance dominated by the region proposals at this point!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Faster R-CNN

Make CNN do proposals!

Insert Region Proposal
Network (RPN) to predict

proposals from features

D proposeV /
Jointly train with 4 losses:

/ Rol pooling

1. RPN classify object / not object Region Proposal Network '

2. RPN regress box coordinates ﬁ

3. Final classification score (object TaRir e
classes) l

4. Final box coordinates

CNN

y 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

4

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 P L A 7=
Figure copyright 2015, Ross Girshick; reproduced with permission

YOLO: You Only Look Once

| Redmon et al, CVPR 2016 |

Within each grid cell:

- Regress from each of the B
base boxes to a final box with
S numbers:
(dx, dy, dh, dw, confidence)

- Predict scores for each of C
classes (including
background as a class)

Input image Divide image into grid Output:
3XHXW 7x7 Ix7x(5*B+C)

Image a set of base boxes
centered at each grid cell
Here B =3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

11th - 30th
Class Probabilities

(- p/
_IIIIIII *

zllllllla
g
_lllllll+,
_llllllla

6th - 10th
Box #2

| Redmon et al, CVPR 2016 |

.
H
H
N
H
H
.
‘p
Ist - 5th

Box #1

=
© X &
- O
g g5o
= © 5 I
o 9 F
O x % o0
© O 0
D EN BT g
O @ Do T
C T S8
= Q2
O O S &
= O
A'd —
O
O
_|
=
mnu
O
S 52
O E X
VT = T
3 X
. . 2 o

YOLO

http://pureddie.com/yolo

http://pureddie.com/yolo

11th - 30th
Class Probabilities

(- p/
_IIIIIII *

zllllllla
g
_lllllll+,
_llllllla

6th - 10th
Box #2

| Redmon et al, CVPR 2016 |

.
H
H
N
H
H
.
‘p
Ist - 5th

Box #1

=
© X &
- O
g g5o
= © 5 I
o 9 F
O x % o0
© O 0
D EN BT g
O @ Do T
C T S8
= Q2
O O S &
= O
A'd —
O
O
_|
=
mnu
O
S 52
O E X
VT = T
3 X
. . 2 o

YOLO

COmpUter ViSiOn PrOblemS (no language for now)

Segmentation

Common Objects in Context

emantic Segmentation

Label every pixel with a

category label (without
differentiating instances

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Semantic Segmentation: Sliding Window Farabet et al, TPAMI 2013

| Pinheiro et al, ICML 2014 |

Extract patches Classify center pixel with CNN

7’ S
alll - j—) Cow
3 GD— con
ol - :ﬂ—» Grass

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

emantic Segmentation: Sliding Window Farabet et al, TPAMI 2013

| Pinheiro et al, ICML 2014 |

Extract patches Classify center pixel with CNN

7’

ol .. || gy G OW

ﬁl j—) Cow

olll - j]—) Grass

VERY inefficient, no reuse of computations for overlapping patches

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Semantic Segmentation: Fully Convolutional CNNs

Design a network as a number of convolutional layers to make
oredictions for all pixels at once!

4

* 3 "6"& \‘ } =
o S B A
w 5 § s s
&2 S W [SEEET
oF R *«w

S

oy

N oy o

o %3
T TR T "
3 o SO *3
H f o PRt R
/ - AR EERA
\
o 4
5
v
%
=)
o \
Elegiy |
B St
*\
X
b I AN O VA

Input Image Class Scores Predicted Labels
3xHxW ' _ CxXHxW Hx W
Convolutions
DxHxW

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Semantic Segmentation: Fully Convolutional CNNs

Design a network as a number of convolutional layers to make
oredictions for all pixels at once!

-

Input Image

3XHxW '

Convolutions

DxHxW

4

-

Class Scores Predicted Labels

CxHxW Hx W

Problem: Convolutions at the original image scale will be very expensive

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Semantic Segmentation: Fully Convolutional CNNs

Design a network as a number of convolutional layers with
downsampling and upsampling inside the network!

Med-res: Med-res:
D, x H/4 x W/4 Do x H/4 x W/4

Low-res:
Input Image Dsx H/4 x W/4 Predicted Labels

3w Hx W High-res: High-res: H x W
Dy x H/2 x W/2 Dy x H/2 x W/2

| Long et al, CVPR 2015 |
| Noh et al, ICCV 2015 |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Semantic Segmentation: Fully Convolutional CNNs

Design a network as a number of convolutional layers with
downsampling and upsampling inside the network!

Med-res: Med-res:
D, x H/4 x W/4 Do x H/4 x W/4

Low-res:
Input Image 1 Dsx H/4 x W/4 Predicted Labels
3w Hx W High-res: High-res: H x W
Dy x H/2 x W/2 Dy x H/2 x W/2
Downsampling = Pooling Upsampling = 777

| Long et al, CVPR 2015 |
| Noh et al, ICCV 2015 |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

INn-network Up Sampling (a.k.a “Unpooling”)

Nearest Neighbor

1T 112 2
1 2 T 112 2
—
3 4 3 3|4 4
3 3|4 4
Input: 2 x 2 Output: 4 x 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

INn-network Up Sampling (a.k.a “Unpooling”)

Nearest Neighbor “Bed of Nails”
T 112 2 1T 012 O
1 2 T 112 2 1 2 O 0|10 O
3 4 — 3 314 4 3 4 — 3 014 O
3 3|14 4 O 0|10 O
Input: 2 x 2 Output: 4 x 4 Input: 2 x 2 Output: 4 x 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

INn-network Up Sampling: Max Unpooling

Max Pooling Max Unpooling
Remember which element was max! Use positions from pooling layer

1T 210 3 O 02 O
3 o2 5 B 1 2 O 110 O
1T 212 1 /8 Rest of the network 3 4 O 010 0
[3|4 38 3 0|0 4

Output: 2 x 2 Input: 2 x 2
Input: 4 x 4 Output: 4 x 4

A —

Corresponding pairs of downsampling and upsampling layers

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

INn-network Up Sampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

—_—

Dot product between
filter and input

Input: 4 x 4 Output: 4 x 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

INn-network Up Sampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

—_—

Dot product between
filter and input

Input: 4 x 4 Output: 4 x 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

INn-network Up Sampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

—_—

Dot product between
filter and input

Output: 2 x 2

Input: 4 x 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

INn-network Up Sampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

—_—

Dot product between
filter and input

Output: 2 x 2

Filter moves 2 pixels in the input for every one
Input: 4 x 4 pixel in the output

Stride gives ratio in movement in input vs output

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

INn-network Up Sampling: Transpose Convolution

3 X 3 transpose convolution, stride 2 pad 1

Output: 4 x 4
Input: 2 x 2

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

INn-network Up Sampling: Transpose Convolution

3 X 3 transpose convolution, stride 2 pad 1

——
Input gives
weight for

filter

Output: 4 x 4
Input: 2 x 2

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

INn-network Up Sampling: Transpose Convolution

3 X 3 transpose convolution, stride 2 pad 1
Sum where

output overlaps

——
Input gives
weight for

filter

Output: 4 x 4
Input: 2 x 2

Filter moves 2 pixels in the output for every one
pixel in the Input

Stride gives ratio in movement in output vs input

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Transpose Convolution: 1-D Example

Output
d
Yy az H| DX
o
k / / by

Output contains copies of the filter weighted multiplied by the input, summing
at overlaps In the output

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

U-Net Architecture

input
image
tile

572 x 572

ResNet-like Fully convolutional CNN

| 64 64
128 64 64 2
. olele output
N . segmentation
& % map
O = -
N K S g
XN X
O @
~f ©
N
'128 128 I
256 128
o~ o
% % % & t&’ a
¥ oo 256 512 256
N s o
gIN 1 §D?8IEI =» conv 3x3, RelLU
3 0 f S S = copy and crop
512

512 512 1024
& ¥ max pool 2x2

4 up-conv 2x2
=» CONV 1x1

| Ronneberger et al, CVPR 2015 |

COmpUter ViSiOn PrOblemS (no language for now)

Instance Segmentation

HorseT

Horse?
Person
Person?

Mask R-CNN

r o
—
Q|
o
P
Q
-
n
y)
(1.

Instance

seamentation

[He et al, 2017]

Mask R-CNN

i

traffic Sght.95

traffic bght 92

rock1.00
persom! 00

| He et al, 2017 |

Summary

Common types of layers:

1. Convolutional Layer
— Parameters define a set of learnable filters

2. Pooling Layer
— Performs a downsampling along the spatial dimensions

3. Fully-Connected Layer
— As In a regular neural network

Each layer accepts an input 3D volume and transforms it to an output 3D
volume through a differentiable function

Summary

The parameters of a neural network are learned using backpropagation,
which computes gradients via recursive application of the chain rule

A convolutional neural network assumes Iinputs are images, and constrains
the network architecture to reduce the number of parameters

A convolutional layer applies a set of learnable filters
A pooling layer performs spatial downsampling
A fully-connected layer Is the same as in a regular neural network

Convolutional neural networks can be seen as learning a hierarchy of filters

Attention Layer

Inputs:

Query vectors: O (Shape: Ny x Dg)
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W, (Shape: Dy, x D)

Computation: X4
Key vectors: [{ = X (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: Ny x D) X,

Similarities: E = /\/ Do (Shape: Nq x Ny) E;; = (Q, - K;) /{/ Do
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ng x Dy) Y; = AV,

| slide from Justin Johnson, U Michigan |

Attention Layer

Inputs:

Query vectors: O (Shape: Ny x D)
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x D)

Computation: X; — K,
Key vectors: K = X (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: Ny x D) X, ™ K,

Similarities: E = /\/ Do (Shape: Ng x Ny) E;; = (Q; - K;) /{/ Do
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny)
Output vectors: Y = AV (Shape: Ng x Dy) Y; = 3A;;V,

| slide from Justin Johnson, U Michigan |

Attention Layer

Inputs:

Query vectors:

Key matrix:

Computation:
Key vectors:

(Shape: Nq x Dg)
Input vectors: X (Shape: N, x Dy)
(Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x D)

=X

(Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x D)
Similarities: E =
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny)

Output vectors: Y = AV (Shape: Ng x Dy) Y; = 3A;;V,

/\/ Do (Shape: Ng x Ny) E;; =

)/\/Dg

Kl El,l

KZ E1,2

K3 E1,3

| slide from Justin Johnson, U Michigan |

Attention Layer

Inputs:
Query vectors:

Key matrix:

Computation:
Key vectors:

(Shape: Nq x Dg)
Input vectors: X (Shape: N, x Dy)
(Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x D)

=X

(Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x D)
Similarities: E =

/\/ Do (Shape: Ng x Ny) E;; =
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny)
Output vectors: Y = AV (Shape: Ng x Dy) Y; = 3A;;V,

)/

| slide from Justin Johnson, U Michigan |

Attention Layer

Inputs:
Query vectors:

Key matrix:

Computation:
Key vectors:

(Shape: Nq x Dg)
Input vectors: X (Shape: Ny x Dy)
(Shape: Dy x Dg)
Value matrix: W,, (Shape: Dy x Dy)

=X

(Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x D)
Similarities: E =

/\/ Do (Shape: Ng x Ny) E;; =
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)

Output vectors: Y = AV (Shape: Ng x Dy) Y; = >:A;V;

)/

Y1

T

Y, Y, Y,

| T |

Product(—), Sum(t) |

| slide from Justin Johnson, U Michigan |

AZ 1 A3,1 A4 1
A Asp Agp
AZ 3 A3,3 A4 3
Softmax(|)
E2 1 E3,1 E4 1
E2 2 E3,2 E4 2
E2 3 E3,3 E4 3
| f T

Q, Q; Q,

Self-attention Layer

One per input vector

Inputs:

Query vectors: O (Shape: Ny x D)
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x D)

Computation:

Key vectors: K = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x D)

Similarities: E = /\/Dq (Shape: Nq x Ny) E;; = (Q; - K) /\/Dg
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny)
Output vectors: Y = AV (Shape: Ng x Dy) Y; = 3A;;V,

| slide from Justin Johnson, U Michigan |

Self-attention Layer

One per input vector

Inputs:

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x D)
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X

Key vectors: K = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x D)

Similarities: E = QK" /,/Dy (Shape: Ny x Ny) E;; = (Q; - K;) //Dg
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = >A;:V;

| slide from Justin Johnson, U Michigan |

Q,

Q,

Q;

Self-attention Layer

One per input vector

Inputs:

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x D)
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X

Key vectors: K = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x D)

Similarities: E = QK" /,/Dy (Shape: Ny x Ny) E;; = (Q; - K;) //Dg
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = >A;:V;

| slide from Justin Johnson, U Michigan |

Ky
Ky
Ky
Q,
t
X1

Q,

Q;

Self-attention Layer

One per input vector

Inputs:

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dq)
Value matrix: W,, (Shape: Dy x Dy)
Query matrix: (Shape: Dy x Dq)

Computation:

Query vectors: O =X

Key vectors: K = X (Shape: Ny x D)

Value Vectors: V = XW,, (Shape: Ny x D)

Similarities: E = QK /,/Dg (Shape: Ny x Ny) E;; = () //Do
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = AV

| slide from Justin Johnson, U Michigan |

Self-attention Layer

One per input vector

Inputs:

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x D)
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X

Key vectors: K = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x D)

Similarities: E = QK /,/Dg (Shape: Ny x Ny) E;; = () //Do
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = >A;:V;

| slide from Justin Johnson, U Michigan |

Ais A3 As 3
A, A, A,
Ajq A, 4 As 1

t

Softmax(1T)

t
— | Ep3 E, 3 Es 3
— k5 E, Es
— Ejp1 E, 4 Es 4
) ¢)
Q, Q, Q;
t t t
X1 X, X3

Self-attention Layer

One query per input vector

Inputs:

Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W, (Shape: Dy x D)
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: O = XWg

Key vectors: [= X\W, (Shape: Ny x D)

Value Vectors: V = XW,, (Shape: Ny x D)

Similarities: E = QK" /,/Dy (Shape: Ny x Ny) E;; = (Q; - K;) //Dg
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = >A;:V;

| slide from Justin Johnson, U Michigan |

A1,3 A2,3 A3,3
A1,2 A2,2 A3,2
Al,l A2,1 A3,1
1
Softmax(1T)
t
E1,3 E2,3 E3,3
E1,2 E2,2 E3,2
El,l E2,1 E3,1
t t t
Q Q, Qs
t t t
Xy X, X3

Self-attention Layer LYY,

t ¢ t

Product(-), Sum(1T)

One query per input vector |

Inputs:
Input vectors: X (Shape: N, x Dy)
Key matrix: (Shape: Dy x Dg)

Value matrix: W, (Shape: Dy x D)

Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: O = XWg

Key vectors: K = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x D)

Similarities: E = QK" /,/Dy (Shape: Ny x Ny) E;; = (Q; - K;) //Dg
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = >A;:V;

| slide from Justin Johnson, U Michigan |

Self-attention Layer oY,

Product(-), Sum(1T)

t
Consider permuting —
the input vectors: V2 As2 Az ak
Inputs: Vi |7 A, A Ay
Input vectors: X (Shape: Ny x D) Outputs will be the Vo |— [A A A
Key matrix: W, (Shape: Dy x D) same, but permuted ; 33 ;’3 &3
Value matrix: W,, (Shape: Dy x D) el attention | | Softmax()
Query matrix: W, (Shape: Dy x Dg) el en,tlon ay?r 'S. f
Permutation Equivariant K, — E,, E, E,,
. f(s(x)) = s(f(x))
Computation: Ky |[— E3,1 E1,1 E2,1
Query vectors: O = XW, Self-Attention layer works K. |— | E E E
Key vectors: K = XW, (Shape: Ny x Dgy) on sets of vectors 3 3,3 1,3 2,3
Value Vectors: V = XW, (Shape: Ny x D) t t t
Similarities: E = QK" /,/D, (Shape: Ny x Ny) E.. =(Q, - K.) //D Q Q Q,
. Q PE. Ny X X))] (QI j) / Q 1 % 4
Attention weights: A = s(oftmax(E, dim=)1) (Shape: Ny x Ny) X, X, X,
Output vectors: Y = AV (Shape: Ny x Dy) Y, = 3 A; |V, .

| slide from Justin Johnson, U Michigan |

Multi-head Self-attention Layer

Inputs:

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x D)
Query matrix: (Shape: Dy x Dg)

Use H independent
“Attention Heads” in
parallel

Computation:
Query vectors: () =
Key vectors: K = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x D)
Similarities: E = QK /,/Dg (Shape: Ny x Ny) E;; = (
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = >A;:V;

X

)/\/% Spli

| slide from Justin Johnson, U Michigan |

N

Y, Y, Y,
‘ Linear I T
projection
Y11 Y;1 Y31
Y1,2 Y2,2 Y3,2
Yi3 Yy3 Y33
Concat />d\\
\ \
Yi1 Yo1 | Y31 Yio Yo Y3 Yi3 Y3 @ Y33
Y, Y, Y3 Y Y, Y, Y Y, Y
t t t t t t t t t
[Product(>), sum(?) | | t(%t), m1t) | [Product (»1), sum(?) |
'' Az Az Ass _'_' A Az Ass _'_' A Az Ass
’’ A, A, _’_' A A, A _’_> A A, As,
— Vs |~ [Au] [Au — Ve [~ (A] (A [A — Ve = (A] [A] [As
| oftm:x(’]‘) | | ftm}x(’]‘) | | ftm}x(’l\) |
Ky = Eis Ess Ess Ky = | E Ess Ess Ks = Eis Ess Ess
Ky =™ | Ei Ez2 Esp K, = E Ez2 Esp Ky = Ei, Ez2 Esn
Ki = Eia Eoq Esq Ky — E Esq Esq Ki = Eia Eoq Esq
t t t t t t t t
Q Q Q; Q Q, Q; Q Q Q;
t t t t t t t t t
%] X [x] %]] [x] %] %] [x]
X11 || X21 || X31 X12 || X22 || X3 X13 || X3 || X33

X2,1 X3,1
X2,2 X3,2
X2,3 X3,3

CNN with Self-attention

Input Image

/

CNN

\

' e Features:
Cat image is free to use under the Pixabay License C X H X W

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018

| slide from Justin Johnson, U Michigan |

CNN with Self-attention

Queries:
C'xHxW

Input Image 1x1 Conv

/

Keys:

CNN C'xXHxW

Features: 1x1 Conv

\

e U e

Cat image is free to use under the Pixabay License C X H X W

Values:
CxHxW

1x1 Conv

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018

| slide from Justin Johnson, U Michigan |

CNN with Self-attention

Queries:
C'xHxW

1x1 Conv

Input Image

/

Keys:
C'xHxW

1x1 Conv

CNN

Features:
CxXHxXxW

,\

Cat image is free to use under the Pixabay License

Values:
C'xHxW

1x1 Conv

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018

Transpose

Attention Weights
(Hx W) x (HxW)

softmax

| slide from Justin Johnson, U Michigan |

CNN with Self-attention

Queries:
C'xHxW

1x1 Conv

Input Image

/

Keys:
C'XHxW

1x1 Conv

CNN

Features:
CxHxW

\

Cat image is free to use under the Pixabay License

Values:
C'xHxW

1x1 Conv

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018

Transpose

Attention Weights
(Hx W) x (Hx W)

softmax

CxHxW

| slide from Justin Johnson, U Michigan |

CNN with Self-attention

Queries:
C'xHxW

1x1 Conv

Input Image

/

Keys:
C'XHxW

1x1 Conv

CNN

Features:
CxHxW

\

Cat image is free to use under the Pixabay License

Values:
C'xHxW

1x1 Conv

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018

Transpose

Attention Weights
(Hx W) x (Hx W)

softmax

CxHxH

C'xHxW

| slide from Justin Johnson, U Michigan |

1x1 Conv

CNN with Self-attention

Queries:
C'xHxW

Input Image 1x1 Conv

/

Keys:
C'xHxW

1x1 Conv

CNN

Features:
CxHxW

\

Cat image is free to use under the Pixabay License

Values:
C'xHxW

1x1 Conv

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018

Transpose

Attention Weights
(Hx W) x (Hx W)

softmax

Residual Connection

CXHxW

CxHxW

Self-Attention Module

| slide from Justin Johnson, U Michigan |

1x1 Conv

th Existing CNNs

on Wi

Attent

Softmax _

FC 1000 |

Pool _

?

3x3 conv,

3x3 conv,

:

3x3 conv, 512

3x3 conv, 512

nr*

3x3 conv, 512 _

3x3 conv, 512, /2 _

v -

T

3x3 conv, 128

3x3 conv,

3x3 conv,

3x3 conv, 128

mv*

3x3 conv, 128

3x3 conv, 128, /2

3x3 conv, 64 _

3x3 conv, 64 _

m_m*

3x3 conv, 64 _

3x3 conv, 64 _

mv*

3x3 conv, 64 _

3x3 conv, 64 _

AT

Pool _

/X7 conv, 64,/ 2

Input _

Zhang et al, ”Self-Attention Generative Adversarial Networks”, ICML 2018

Wang et al, “Non-local Neural Networks”, CVPR 2018

| slide from Justin Johnson, U Michigan |

Transformer

Y1 Y> Y3 Ya

I I I I

Layer Normalization

+
Transfomer block inputs a set of e | (el [me | [
vectors, outputs a set of vectors.
Layer Normalization
Vectors only communicate via
(multiheaded) self-attention
Self-Attention
f f f f
{ {
X, X, X5 X4

Vaswani et al, “Attention is all you need”, NeurIPS 2017

| slide from Justin Johnson, U Michigan |

Transformer o

MLP MLP MLP

Layer No:r/ﬁll-r;alizat
Transformer Block: | e
! ! ! !
Input: Set of vectors x e
Output: Set of vectors y —
Hyperparameters:] .
- Number of blocks A

Layer Normalization

- Number of heads per block 9

MLP MLP MLP

- Width (channels per head, FFN width) e

Layer Normalization

:
L Self-Attention
t

f t
! I I

Vaswani et al, “Attention is all you need”, NeurIPS 2017

| slide from Justin Johnson, U Michigan |

Transformer on Image Patches

N input patches, each
of shape 3x16x16 i
Cat image is free for commercial

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 use under a Pixabay license

| slide from Justin Johnson, U Michigan |

Transformer on Image Patches

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Cat image is free for commercial

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 use under a Pixabay license

| slide from Justin Johnson, U Michigan |

Transformer on Image Patches

Add positional
embedding: learned D-

dim vector per position T T T T T T T T T

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Cat image is free for commercial

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 use under a Pixabay license

| slide from Justin Johnson, U Michigan |

Transformer on Image Patches

Output vectors

~ N
Sxact same as Transformer
NLP Transformer!
N\ Y,
Add positional
embedding: learned D-
dim vector per position T T + + + + + + +

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Cat image is free for commercial

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 use under a Pixabay license

| slide from Justin Johnson, U Michigan |

Transformer on Image Patches

Output vectors

Exact same as
NLP Transformer!

Add positional
embedding: learned D-

dim vector per position

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

~
Transformer
Y,
Special extra input:
classification token
+ + + + + (D dims, learned)

| slide from Justin Johnson, U Michigan |

Cat image is free for commercial
use under a Pixabay license

Transformer on Image Patches

Output vectors

Exact same as
NLP Transformer!

Add positional
embedding: learned D-

dim vector per position

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Linear projection
to C-dim vector
of predicted
class scores

N
Transformer
Y,
Special extra input:
classification token
+ + + + + (D dims, learned)

| slide from Justin Johnson, U Michigan |

Cat image is free for commercial
use under a Pixabay license

Vision Transformer (ViT)

Computer vision model
with no convolutions!

Output vectors

Linear projection
to C-dim vector
of predicted
class scores

“ N
St same a2 Transformer
NLP Transformer!
- Y,
Add positional Special extra input:
embedding: learned D- classification token
dim vector per position + + + + + + + (D dims, learned)

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

| slide from Justin Johnson, U Michigan |

Cat image is free for commercial
use under a Pixabay license

Vision Transformer (ViT) vs. ResNet

\O
==

JFT-300M is an
internal Google
dataset with 300M
labeled images

o0
N
NI

| €L ~ B = Base
] 30 - L = Large
If you prgtram on _ - Huge
JFT and finetune on -
ImageNet, large 75 - ResNets ViT-L/32 | /32,/16,/14is patch
ViTs outperform ' ViT-B/32 ViT-L/16 size; smaller patch

size is a bigger model
(more patches)

ImageNet Topl Accuracy [%]

large ResNets ViT-B/16 ViT-H/14

70 -
ImageNet ImageNet-21k JET-300M
Pre-training dataset

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

| slide from Justin Johnson, U Michigan |

ResNet-ViT Hybrid

Vision Transformer

0000 nﬂn 0 00

Object Detection with Transformers: DETR Model

a"—
-~ L _J
- g

./ ,--~. No object (o) no object (9)

transformer =
—>| encoder- >
decoder B
L]
set of image features set of box predictions
““““““““ L oottt Ittt
. backbone | encoder decoder 1 prediction heads
|
' set of image features: 1 '
I~ :l(_T FFN —>
i ‘ S A 20X
|
|

no
>
FFN object

transformer
decoder

606

object queries

| S TS G G SIS SR GENER SN GENNR NN GENNS GENS GEN GESGES WW——— — S G SIS NN GENNS GENNR GENNS GENNS GENNS GENNS NN GENNS GE GGW—— —

transformer
encoder

FEN > class,
box

A A A A A

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020

| slide from Justin Johnson, U Michigan |

Masked Modeling with Transformers (BERT, GPT, etc.)

'

O N&
M /Q | /’\
Input ® .
Sentence K }

| e B

Training: Predict Masked Tokens

Output
Predictions

>

d' TN

‘CMLM(X; 0) = kK Z logp($i|$j€mask;9)

zrvX mask 1€Emask (mask 15% at a time)

Masked Self-Attention Layer Big cat [END]

1 4 %
Product(-), Sum(1T)
Don’t let vectors “look ahead” in the sequence t
Used for language modeling (predict next word) V3 =™ | 0 0 As 5
Inputs: V, =0 Ao Az,
Input vectors: X (Shape: Ny x D

Key matrix: (Shape: Dy x Dg)

Value matrix: W,, (Shape: Dy x D) Soﬁmfaxm
Query matrix: (Shape: Dy x Dg) f

Ks | = | - -0 E3 3
Computation: K, |— | -eo s s >
Query vectors: O =X
Key vectors: K =X (Shape: Ny x Dg) Ki =™ By E2,1 E3,1
Value Vectors: V = XW, (Shape: Ny x D) t t t
Similarities: E = QK" /,/Dy (Shape: Ny x Ny) E;; = (Q; - K;) //Dg Q Q] [Q

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = >A;:V;

| slide from Justin Johnson, U Michigan |

Please Till out
Student Evaluations
(on Canvas)

