
Lecture 23: Detection, Segmentation

CPSC 425: Computer Vision

Menu for Today
Topics:

— Classification, Detection, Segmentation
— Attention, Transformers

Redings:
— Today’s Lecture: N/A

— Next Lecture: N/A

Reminders:
— Assignment 6: Deep Learning is out and due Thursday

— Material for Final Prep will be on Canvas tonight
— Quiz 6 is due Thursday

Multi-class: Horse
Church
Toothbrush
Person

Multi-label: Horse
Church
Toothbrush
Person

Categorization

Computer Vision Problems

Detection

Horse (x, y, w, h)
Horse (x, y, w, h)
Person (x, y, w, h)
Person (x, y, w, h)

Multi-class:

Multi-label:

Horse
Church
Toothbrush
Person

Horse
Church
Toothbrush
Person

Categorization

Computer Vision Problems

Detection

Horse (x, y, w, h)
Horse (x, y, w, h)
Person (x, y, w, h)
Person (x, y, w, h)

Segmentation

Multi-class:

Multi-label:

Horse
Church
Toothbrush
Person

Horse
Church
Toothbrush
Person

Categorization

Horse
Person

Computer Vision Problems

Detection

Horse (x, y, w, h)
Horse (x, y, w, h)
Person (x, y, w, h)
Person (x, y, w, h)

Segmentation Instance Segmentation

Multi-class:

Multi-label:

Horse
Church
Toothbrush
Person

Horse
Church
Toothbrush
Person

Categorization

Horse
Person

Horse1
Horse2
Person1
Person2

Computer Vision Problems

Object Classification

Dog
Cat
Couch
Flowers
Leopard
…

Category Prediction

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

0 1
Probability

Problem: For each image predict which category it belongs to out of a fixed set

ImageNet Competition (ILSVRC)

Annual competition of image classification at scale

Focuses on a subset of 1K synset categories

Scoring: need to predict true label within top K (K=5)

ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

SVM + Fisher Vectors
 (like Bag-of-Words but better)

ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

ResNet [He et al., 2015]

even deeper — 152 layers!

using residual connections

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

ResNet: Motivation [He et al., 2015]

What happens when we continue to stacking deeper layers on a “plain” CNN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

ResNet: Motivation [He et al., 2015]

What happens when we continue to stacking deeper layers on a “plain” CNN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Whats the problem?

ResNet: Motivation [He et al., 2015]

What happens when we continue to stacking deeper layers on a “plain” CNN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Whats the problem?

Optimizing Deep Neural Networks

Source: http://neuralnetworksanddeeplearning.com/chap5.html

This is called vanishing gradient problem
— makes deep networks hard to train
— later layers learn faster than earlier ones

ResNet: Motivation [He et al., 2015]

Hypothesis: deeper models are harder to optimize (optimization problem)

ResNet: Motivation [He et al., 2015]

Hypothesis: deeper models are harder to optimize (optimization problem)

Observation: the deeper model should (conceptually) perform just as well
(e.g., take shallower model and use identity for all remaining layers)

ResNet: Motivation [He et al., 2015]

Hypothesis: deeper models are harder to optimize (optimization problem)

Observation: the deeper model should (conceptually) perform just as well
(e.g., take shallower model and use identity for all remaining layers)

How do we implement this idea in practice

ResNet [He et al., 2015]

Solution: use network to fit residual mapping instead of directly trying to fit a
desired underlying mapping

H(x) = F(x) + X Use layers to fit residual
F(x) = H(x) - X instead of H(x) directly

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

ResNet [He et al., 2015]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Full details
— Stacked residual blocks

— Every residual block consists of two 3x3 filters

— Periodically double # of filters and downsample spatially
using stride of 2

— Additional convolutional layer in the beginning

— No FC layers at the end (only FC to output 1000 classes)

ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Regularization: Stochastic Depth

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Huang et al., ECCV 2016]

Effectively “dropout” but for layers

Stochastically with some probability turn off
some layer (for each batch)

Effectively trains a collection of neural networks

ResNet: A little theory
One can view a sequence of outputs from residual layers as a Dynamical
System

[Cheng et al., ICLR 2018]

ResNet: A little theory
One can view a sequence of outputs from residual layers as a Dynamical
System

[Cheng et al., ICLR 2018]

ResNet: A little theory
One can view a sequence of outputs from residual layers as a Dynamical
System

What happens if you take more layers and take smaller steps?

[Chen et al., NIPS 2018 best paper]

ResNet: A little theory
One can view a sequence of outputs from residual layers as a Dynamical
System

What happens if you take more layers and take smaller steps?

You can actually treat a neural network as an ODE:

[Chen et al., NIPS 2018 best paper]

An Aside: Neural Network Cascades [Wang et al., ICLR 2022]

Comparing Complexity

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Computer Vision Problems (no language for now)

Detection

Horse (x, y, w, h)
Horse (x, y, w, h)
Person (x, y, w, h)
Person (x, y, w, h)

Multi-class:

Multi-label:

Horse
Church
Toothbrush
Person

Horse
Church
Toothbrush
Person

Categorization

Object Detection as Regression Problem

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

CAT (x, y, w ,h)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Object Detection as Regression Problem

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

CAT (x, y, w ,h)

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

DUCK (x, y, w ,h)
DUCK (x, y, w ,h)
DUCK (x, y, w ,h)
DUCK (x, y, w ,h)
DUCK (x, y, w ,h)
DUCK (x, y, w ,h)
DUCK (x, y, w ,h)
…

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Object Detection as Regression Problem

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

CAT (x, y, w ,h)

Problem: each image needs a different number of outputs

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

DUCK (x, y, w ,h)
DUCK (x, y, w ,h)
DUCK (x, y, w ,h)
DUCK (x, y, w ,h)
DUCK (x, y, w ,h)
DUCK (x, y, w ,h)
DUCK (x, y, w ,h)
…

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Object Detection as Classification Problem

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Dog
Cat
Couch
Flowers
Background
…

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

No
No
No
No
Yes
…

Category Prediction

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

Object Detection as Classification Problem

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Dog
Cat
Couch
Flowers
Background
…

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

No
No
No
No
Yes
…

Category Prediction

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

Object Detection as Classification Problem

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Dog
Cat
Couch
Flowers
Background
…

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Yes
No
No
No
No
…

Category Prediction

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

Object Detection as Classification Problem

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Dog
Cat
Couch
Flowers
Background
…

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Yes
No
No
No
No
…

Category Prediction

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

Object Detection as Classification Problem

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Dog
Cat
Couch
Flowers
Background
…

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

No
Yes
No
No
No
…

Category Prediction

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

Object Detection as Classification Problem

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Dog
Cat
Couch
Flowers
Background
…

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

No
Yes
No
No
No
…

Category Prediction

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

Problem: Need to apply CNN to many patches in each image

Region Proposals (older idea in vision)

Find image regions that are likely contain objects (any object at all)
- typically works by looking at histogram distributions, region aspect ratio, closed contours, coherent color

Relatively fast to run (Selective Search gives 1000 region proposals in a few seconds on a CPU)

[Alexe et al, TPAMI 2012]
[Uijkings et al, IJCV 2013]
[Cheng et al, CVPR 2014]

[Zitnick and Dollar, ECCV 2014]

Goal: Get “true” object regions to be in as few top K proposals as possible

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

R-CNN
[Girshick et al, CVPR 2014]

* image from Ross Girshick

Input Image

R-CNN
[Girshick et al, CVPR 2014]

* image from Ross Girshick

Input Image

Regions of Interest from
a proposal method (~2k)

R-CNN
[Girshick et al, CVPR 2014]

* image from Ross Girshick

Input Image

Regions of Interest from
a proposal method (~2k)

Warped image regions

R-CNN
[Girshick et al, CVPR 2014]

* image from Ross Girshick

Input Image

Regions of Interest from
a proposal method (~2k)

Warped image regions

Forward each region
through a CNN

R-CNN
[Girshick et al, CVPR 2014]

* image from Ross Girshick

Input Image

Regions of Interest from
a proposal method (~2k)

Warped image regions

Forward each region
through a CNN

Classify regions with SVM

R-CNN
[Girshick et al, CVPR 2014]

* image from Ross Girshick

Input Image

Regions of Interest from
a proposal method (~2k)

Warped image regions

Forward each region
through a CNN

Classify regions with SVM

Linear Regression for bounding box offsets

R-CNN (Regions with CNN features) algorithm:
— Extract promising candidate regions using an object proposals algorithm
— Resize each proposal window to the size of the input layer of a trained
convolutional neural network
— Input each resized image patch to the convolutional neural network

Implementation detail: Instead of using the classification scores of the
network directly, the output of the final fully-connected layer can be used as an
input feature to a trained support vector machine (SVM)

R-CNN

Fast R-CNN
[Girshick et al, ICCV 2015]

* image from Ross Girshick

Input Image

Fast R-CNN
[Girshick et al, ICCV 2015]

* image from Ross Girshick

Input Image

Fast R-CNN
[Girshick et al, ICCV 2015]

* image from Ross Girshick

Input Image

Forward prop the whole image through CNN

“conv5” feature map

Fast R-CNN
[Girshick et al, ICCV 2015]

* image from Ross Girshick

Input Image

Forward prop the whole image through CNN

“conv5” feature map
Regions of
Interest
from the
proposal
method

Fast R-CNN
[Girshick et al, ICCV 2015]

* image from Ross Girshick

Input Image

Forward prop the whole image through CNN

“conv5” feature map
Regions of
Interest
from the
proposal
method

“RoI Pooling” layer

RoI Align

[Girshick et al, ICCV 2015]

* image from Ross Girshick

Input Image

Forward prop the whole image through CNN

“conv5” feature map
Regions of
Interest
from the
proposal
method

“RoI Pooling” layer

Bounding box regression
Object
classification

 Fast R-CNN
Multi-task loss

[Girshick et al, ICCV 2015]

* image from Ross Girshick

Input Image

Forward prop the whole image through CNN

“conv5” feature map
Regions of
Interest
from the
proposal
method

“RoI Pooling” layer

Bounding box regression
Object
classification

 Fast R-CNN: Training
Multi-task loss

R-CNN vs. SPP vs. Fast R-CNN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Girshick et al, ICCV 2015]
[He et al, ECCV 2014]

[Girshick et al, CVPR 2014]

R-CNN vs. SPP vs. Fast R-CNN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Girshick et al, ICCV 2015]
[He et al, ECCV 2014]

[Girshick et al, CVPR 2014]

Observation: Performance dominated by the region proposals at this point!

Faster R-CNN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

YOLO: You Only Look Once

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Redmon et al, CVPR 2016]

YOLO: You Only Look Once
[Redmon et al, CVPR 2016]

Optional subtitle

Optional subtitle

YOLO: You Only Look Once
[Redmon et al, CVPR 2016]

Computer Vision Problems (no language for now)

Segmentation

Horse
Person

Semantic Segmentation

Cow

Grass

Sky
Tre

es

Grass

Cat

Sky Trees

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Label every pixel with a
category label (without
differentiating instances)

Semantic Segmentation: Sliding Window

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Classify center pixel with CNNExtract patches

Cow

Cow

Grass

[Farabet et al, TPAMI 2013]
[Pinheiro et al, ICML 2014]

Semantic Segmentation: Sliding Window

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Classify center pixel with CNNExtract patches

Cow

Cow

Grass

[Farabet et al, TPAMI 2013]
[Pinheiro et al, ICML 2014]

Problem: VERY inefficient, no reuse of computations for overlapping patches

Semantic Segmentation: Fully Convolutional CNNs

CONV,
ReLU

CONV,
ReLU

CONV,
ReLU

Argmax

Input Image

Convolutions

Class Scores Predicted Labels

C x H x W H x W

D x H x W

3 x H x W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Design a network as a number of convolutional layers to make
predictions for all pixels at once!

Semantic Segmentation: Fully Convolutional CNNs

CONV,
ReLU

CONV,
ReLU

CONV,
ReLU

Argmax

Input Image

Convolutions

Class Scores Predicted Labels

C x H x W H x W

D x H x W

3 x H x W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Design a network as a number of convolutional layers to make
predictions for all pixels at once!

Problem: Convolutions at the original image scale will be very expensive

Semantic Segmentation: Fully Convolutional CNNs

Input Image Predicted Labels

H x W3 x H x W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Design a network as a number of convolutional layers with
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

[Long et al, CVPR 2015]
[Noh et al, ICCV 2015]

Semantic Segmentation: Fully Convolutional CNNs

Input Image Predicted Labels

H x W3 x H x W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Design a network as a number of convolutional layers with
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

[Long et al, CVPR 2015]
[Noh et al, ICCV 2015]

Downsampling = Pooling Upsampling = ???

In-network Up Sampling (a.k.a “Unpooling”)

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

Nearest Neighbor

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

In-network Up Sampling (a.k.a “Unpooling”)

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

Nearest Neighbor

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 0 2 0
0 0 0 0
3 0 4 0
0 0 0 0

“Bed of Nails”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

In-network Up Sampling: Max Unpooling

Input: 4 x 4

1 2 6 3
3 5 2 1
1 2 2 1
7 3 4 8

1 2
3 4

Input: 2 x 2
Output: 4 x 4

0 0 2 0
0 1 0 0
0 0 0 0
3 0 0 4

Max Unpooling
Use positions from pooling layer

5 6
7 8

Max Pooling
Remember which element was max!

…

Rest of the network

Output: 2 x 2

Corresponding pairs of downsampling and upsampling layers

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

In-network Up Sampling: Transpose Convolution

Input: 4 x 4 Output: 4 x 4

Dot product between
filter and input

Recall: Normal 3 x 3 convolution, stride 1 pad 1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

In-network Up Sampling: Transpose Convolution

Input: 4 x 4 Output: 4 x 4

Dot product between
filter and input

Recall: Normal 3 x 3 convolution, stride 1 pad 1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

In-network Up Sampling: Transpose Convolution

Input: 4 x 4

Dot product between
filter and input

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Output: 2 x 2

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

In-network Up Sampling: Transpose Convolution

Input: 4 x 4

Output: 2 x 2

Dot product between
filter and input

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Filter moves 2 pixels in the input for every one
pixel in the output

Stride gives ratio in movement in input vs output

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

In-network Up Sampling: Transpose Convolution

Input: 2 x 2
Output: 4 x 4

3 x 3 transpose convolution, stride 2 pad 1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

In-network Up Sampling: Transpose Convolution

Input gives
weight for
filter

Input: 2 x 2
Output: 4 x 4

3 x 3 transpose convolution, stride 2 pad 1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

In-network Up Sampling: Transpose Convolution

Input gives
weight for
filter

Sum where
output overlaps

Input: 2 x 2
Output: 4 x 4

3 x 3 transpose convolution, stride 2 pad 1

Filter moves 2 pixels in the output for every one
pixel in the input

Stride gives ratio in movement in output vs input

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Transpose Convolution: 1-D Example

a

b

x

y

z

 ax

 ay

az + bx

 by

bz

Input Filter

Output

Output contains copies of the filter weighted multiplied by the input, summing
at overlaps in the output

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

U-Net Architecture

[Ronneberger et al, CVPR 2015]

ResNet-like Fully convolutional CNN

Computer Vision Problems (no language for now)

Instance Segmentation

Horse1
Horse2
Person1
Person2

Mask R-CNN

[He et al, 2017]

[He et al, 2017]

Mask R-CNN

Summary
Common types of layers:

	 1. Convolutional Layer
— Parameters define a set of learnable filters

	 2. Pooling Layer
— Performs a downsampling along the spatial dimensions

	 3. Fully-Connected Layer
— As in a regular neural network

Each layer accepts an input 3D volume and transforms it to an output 3D
volume through a differentiable function

Summary

The parameters of a neural network are learned using backpropagation,
which computes gradients via recursive application of the chain rule

A convolutional neural network assumes inputs are images, and constrains
the network architecture to reduce the number of parameters

A convolutional layer applies a set of learnable filters

A pooling layer performs spatial downsampling

A fully-connected layer is the same as in a regular neural network

Convolutional neural networks can be seen as learning a hierarchy of filters

Attention Layer

Jus6n Johnson March 21, 2022Lecture 17 -

A>en?on Layer
Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

ComputaGon:
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
SimilariGes: E = QKT / !! (Shape: NQ x NX) Ei,j = (Qi · Kj) / !!
AKenGon weights: A = soXmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

50[slide from Justin Johnson, U Michigan]

Justin Johnson March 21, 2022Lecture 17 -

A>en?on Layer

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

ComputaGon:
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
SimilariGes: E = QKT / !! (Shape: NQ x NX) Ei,j = (Qi · Kj) / !!
AKenGon weights: A = soXmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

51[slide from Justin Johnson, U Michigan]

Attention Layer

Justin Johnson March 21, 2022Lecture 17 -

A>en?on Layer

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

ComputaGon:
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
SimilariGes: E = QKT / !! (Shape: NQ x NX) Ei,j = (Qi · Kj) / !!
AKenGon weights: A = soXmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

52[slide from Justin Johnson, U Michigan]

Attention Layer

Jus6n Johnson March 21, 2022Lecture 17 -

Attention Layer

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1

SoDmax()

V1

V2

V3

Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

ComputaGon:
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
SimilariGes: E = QKT / !! (Shape: NQ x NX) Ei,j = (Qi · Kj) / !!
AKenGon weights: A = soXmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

54[slide from Justin Johnson, U Michigan]

Attention Layer

Optional subtitle

Jus6n Johnson March 21, 2022Lecture 17 -

A>en?on Layer

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1

SoDmax()

V1

V2

V3

Y1 Y2 Y3 Y4

Product(), Sum()

Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT / !! (Shape: NQ x NX) Ei,j = (Qi · Kj) / !!
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

55[slide from Justin Johnson, U Michigan]

Attention Layer

Optional subtitle

Jus6n Johnson March 21, 2022Lecture 17 -

Self-A>en?on Layer
One query per input vector

X1 X2 X3

Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

ComputaGon:
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
SimilariGes: E = QKT / !! (Shape: NQ x NX) Ei,j = (Qi · Kj) / !!
AKenGon weights: A = soXmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

56

Self-attention Layer

[slide from Justin Johnson, U Michigan]

Optional subtitle

Jus6n Johnson March 21, 2022Lecture 17 -

Self-A>en?on Layer
One query per input vector

Q1 Q2 Q3

X1 X2 X3

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

ComputaGon:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
SimilariGes: E = QKT / !! (Shape: NX x NX) Ei,j = (Qi · Kj) / !!
AKenGon weights: A = soXmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

57

Self-attention Layer

[slide from Justin Johnson, U Michigan]

Optional subtitle

Jus6n Johnson March 21, 2022Lecture 17 -

Self-A>en?on Layer
One query per input vector

Q1 Q2 Q3

K3

K2

K1

X1 X2 X3

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

ComputaGon:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
SimilariGes: E = QKT / !! (Shape: NX x NX) Ei,j = (Qi · Kj) / !!
AKenGon weights: A = soXmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

58

Self-attention Layer

[slide from Justin Johnson, U Michigan]

Optional subtitle

Jus6n Johnson March 21, 2022Lecture 17 -

Self-A>en?on Layer
One query per input vector

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

X1 X2 X3

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT / !! (Shape: NX x NX) Ei,j = (Qi · Kj) / !!
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

59

Self-attention Layer

[slide from Justin Johnson, U Michigan]

Optional subtitle

Jus6n Johnson March 21, 2022Lecture 17 -

Self-A>en?on Layer
One query per input vector

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

So#max(↑)

X1 X2 X3

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

ComputaGon:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
SimilariGes: E = QKT / !! (Shape: NX x NX) Ei,j = (Qi · Kj) / !!
AKenGon weights: A = soXmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

60

Self-attention Layer

[slide from Justin Johnson, U Michigan]

Optional subtitle

Jus6n Johnson March 21, 2022Lecture 17 -

Self-Attention Layer
One query per input vector

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

So#max(↑)

X1 X2 X3

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

ComputaGon:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
SimilariGes: E = QKT / !! (Shape: NX x NX) Ei,j = (Qi · Kj) / !!
AKenGon weights: A = soXmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

61

Self-attention Layer

[slide from Justin Johnson, U Michigan]

Optional subtitle

Jus6n Johnson March 21, 2022Lecture 17 -

Self-A>en?on Layer
One query per input vector

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

So#max(↑)

Y1 Y2 Y3

X1 X2 X3

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

ComputaGon:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)

SimilariGes: E = QKT / !! (Shape: NX x NX) Ei,j = (Qi · Kj) / !!
AKenGon weights: A = soXmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

62

Self-attention Layer

[slide from Justin Johnson, U Michigan]

Optional subtitle

Jus6n Johnson March 21, 2022Lecture 17 -

Self-A>en?on Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

V2

V1

V3

Product(→), Sum(↑)

So#max(↑)

Y3 Y1 Y2

X3 X1 X2

Consider permu+ng
the input vectors:

Outputs will be the
same, but permuted

Self-aRen5on layer is
Permuta+on Equivariant
f(s(x)) = s(f(x))

Self-ARen5on layer works
on sets of vectors

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

ComputaGon:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
SimilariGes: E = QKT / !! (Shape: NX x NX) Ei,j = (Qi · Kj) / !!
AKenGon weights: A = soXmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

69

Self-attention Layer

[slide from Justin Johnson, U Michigan]

Optional subtitle

Jus6n Johnson March 21, 2022Lecture 17 -

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

ComputaGon:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
SimilariGes: E = QKT / !! (Shape: NX x NX) Ei,j = (Qi · Kj) / !!
AKenGon weights: A = soXmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

81

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

X1,1 X2,1 X3,1

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

X1,2 X2,2 X3,2

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

X1,3 X2,3 X3,3

Y1,1 Y2,1 Y3,1 Y1,2 Y2,2 Y3,2 Y1,3 Y2,3 Y3,3

X1,1
X1,2
X1,3

X2,1
X2,2
X2,3

X3,1
X3,2
X3,3

Y1,1
Y1,2
Y1,3

Y2,1
Y2,2
Y2,3

Y3,1
Y3,2
Y3,3

Y1 Y2 Y3

Split

Concat

Linear
projec5onMultihead Self-Attention

Use H independent
“AUen6on Heads” in
parallel

Multi-head Self-attention Layer

[slide from Justin Johnson, U Michigan]

Jus6n Johnson March 21, 2022Lecture 17 -

Example: CNN with Self-A>en?on

Cat image is free to use under the Pixabay License

Input Image

CNN

Features:
C x H x W

Zhang et al, “Self-AKenAon GeneraAve Adversarial Networks”, ICML 2018

82

CNN with Self-attention

[slide from Justin Johnson, U Michigan]

Jus6n Johnson March 21, 2022Lecture 17 -

Example: CNN with Self-A>en?on

Cat image is free to use under the Pixabay License

Input Image

CNN

Features:
C x H x W

Queries:
C’ x H x W

Keys:
C’ x H x W

Values:
C’ x H x W

1x1 Conv

1x1 Conv

1x1 Conv

Zhang et al, “Self-AKenAon GeneraAve Adversarial Networks”, ICML 2018

83

CNN with Self-attention

[slide from Justin Johnson, U Michigan]

Jus6n Johnson March 21, 2022Lecture 17 -

Example: CNN with Self-A>en?on

Cat image is free to use under the Pixabay License

Input Image

CNN

Features:
C x H x W

Queries:
C’ x H x W

Keys:
C’ x H x W

Values:
C’ x H x W

1x1 Conv

1x1 Conv

1x1 Conv

x

Transpose

soDmax

A)en+on Weights
(H x W) x (H x W)

Zhang et al, “Self-AKenAon GeneraAve Adversarial Networks”, ICML 2018

84

CNN with Self-attention

[slide from Justin Johnson, U Michigan]

Justin Johnson March 21, 2022Lecture 17 -

Example: CNN with Self-A>en?on

Cat image is free to use under the Pixabay License

Input Image

CNN

Features:
C x H x W

Queries:
C’ x H x W

Keys:
C’ x H x W

Values:
C’ x H x W

1x1 Conv

1x1 Conv

1x1 Conv

x

Transpose

softmax

A)en+on Weights
(H x W) x (H x W)

x

C’ x H x W

Zhang et al, “Self-AKenAon GeneraAve Adversarial Networks”, ICML 2018

85

CNN with Self-attention

[slide from Justin Johnson, U Michigan]

Jus6n Johnson March 21, 2022Lecture 17 -

Example: CNN with Self-A>en?on

Cat image is free to use under the Pixabay License

Input Image

CNN

Features:
C x H x W

Queries:
C’ x H x W

Keys:
C’ x H x W

Values:
C’ x H x W

1x1 Conv

1x1 Conv

1x1 Conv

x

Transpose

soDmax

A)en+on Weights
(H x W) x (H x W)

x

C’ x H x W

1x1 Conv

C x H x H

Zhang et al, “Self-AKenAon GeneraAve Adversarial Networks”, ICML 2018

86

CNN with Self-attention

[slide from Justin Johnson, U Michigan]

CNN with Self-attention

Jus6n Johnson March 21, 2022Lecture 17 -

Example: CNN with Self-A>en?on

Cat image is free to use under the Pixabay License

Input Image

CNN

Features:
C x H x W

Queries:
C’ x H x W

Keys:
C’ x H x W

Values:
C’ x H x W

1x1 Conv

1x1 Conv

1x1 Conv

x

Transpose

soDmax

A)en+on Weights
(H x W) x (H x W)

x

C’ x H x W

1x1 Conv

+
C x H x W

Self-Acen^on Module
Zhang et al, “Self-AKenAon GeneraAve Adversarial Networks”, ICML 2018

Residual Connec+on

87[slide from Justin Johnson, U Michigan]

Attention with Existing CNNs

Justin Johnson March 23, 2022Lecture 18 -

Idea #1: Add attention to existing CNNs

39

Zhang et al, ”Self-Attention Generative Adversarial Networks”, ICML 2018
Wang et al, ”Non-local Neural Networks”, CVPR 2018

In
p

u
t

S
o

ftm
a
x

3
x3

 c
o

n
v, 6

4

7
x7

 c
o

n
v, 6

4
, / 2

F
C

 1
0

0
0

P
o

o
l

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 1

2
8

3
x3

 c
o

n
v, 1

2
8

, / 2

3
x3

 c
o

n
v, 1

2
8

3
x3

 c
o

n
v, 1

2
8

3
x3

 c
o

n
v, 1

2
8

3
x3

 c
o

n
v, 1

2
8

3
x3

 c
o

n
v, 5

1
2

3
x3

 c
o

n
v, 5

1
2

, /2

3
x3

 c
o

n
v, 5

1
2

3
x3

 c
o

n
v, 5

1
2

3
x3

 c
o

n
v, 5

1
2

3
x3

 c
o

n
v, 5

1
2

P
o

o
l

Start from standard CNN architecture (e.g. ResNet)

Add Self-Attention blocks between existing ResNet blocks

Self-Attention

Self-Attention

[slide from Justin Johnson, U Michigan]

Optional subtitle

Justin Johnson March 23, 2022Lecture 18 -

Last Time: Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

x1 x2 x3 x4

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

+
Layer Normalization

y1 y2 y3 y4

Transfomer block inputs a set of
vectors, outputs a set of vectors.

Vectors only communicate via
(multiheaded) self-attention

34

Transformer

[slide from Justin Johnson, U Michigan]

Optional subtitle

Justin Johnson March 23, 2022Lecture 18 -

Last Time: Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Hyperparameters:
- Number of blocks
- Number of heads per block
- Width (channels per head, FFN width)

35

Transformer

[slide from Justin Johnson, U Michigan]

Transformer on Image Patches

Justin Johnson March 23, 2022Lecture 18 -

Idea #4: Standard Transformer on Patches

53

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial

use under a Pixabay license

N input patches, each
of shape 3x16x16

[slide from Justin Johnson, U Michigan]

Justin Johnson March 23, 2022Lecture 18 -

Idea #4: Standard Transformer on Patches

54

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial

use under a Pixabay license

N input patches, each
of shape 3x16x16

Linear projection to
D-dimensional vector

Transformer on Image Patches

[slide from Justin Johnson, U Michigan]

Justin Johnson March 23, 2022Lecture 18 -

Idea #4: Standard Transformer on Patches

55

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial

use under a Pixabay license

N input patches, each
of shape 3x16x16

Linear projection to
D-dimensional vector

+ + + + + + + + +

Add positional
embedding: learned D-
dim vector per position

Transformer on Image Patches

[slide from Justin Johnson, U Michigan]

Justin Johnson March 23, 2022Lecture 18 -

Idea #4: Standard Transformer on Patches

56

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial

use under a Pixabay license

N input patches, each
of shape 3x16x16

Linear projection to
D-dimensional vector

Transformer

Output vectors

Exact same as
NLP Transformer!

+ + + + + + + + +

Add positional
embedding: learned D-
dim vector per position

Transformer on Image Patches

[slide from Justin Johnson, U Michigan]

[slide from Justin Johnson, U Michigan] Justin Johnson March 23, 2022Lecture 18 -

Idea #4: Standard Transformer on Patches

57

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial

use under a Pixabay license

N input patches, each
of shape 3x16x16

Linear projection to
D-dimensional vector

Output vectors

Exact same as
NLP Transformer!

Special extra input:
classification token
(D dims, learned)+ + + + + + + + +

Add positional
embedding: learned D-
dim vector per position

Transformer

Transformer on Image Patches

Justin Johnson March 23, 2022Lecture 18 -

Idea #4: Standard Transformer on Patches

58

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial

use under a Pixabay license

N input patches, each
of shape 3x16x16

Linear projection to
D-dimensional vector

Output vectors

Exact same as
NLP Transformer!

Special extra input:
classification token
(D dims, learned)+ + + + + + + + +

Add positional
embedding: learned D-
dim vector per position

Linear projection
to C-dim vector
of predicted
class scores

Transformer

Transformer on Image Patches

[slide from Justin Johnson, U Michigan]

Vision Transformer (ViT)

Justin Johnson March 23, 2022Lecture 18 -

Vision Transformer (ViT)

59

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial

use under a Pixabay license

N input patches, each
of shape 3x16x16

Linear projection to
D-dimensional vector

Output vectors

Exact same as
NLP Transformer!

Special extra input:
classification token
(D dims, learned)+ + + + + + + + +

Add positional
embedding: learned D-
dim vector per position

Linear projection
to C-dim vector
of predicted
class scores

Transformer

Computer vision model
with no convolutions!

[slide from Justin Johnson, U Michigan]

Justin Johnson March 23, 2022Lecture 18 -

Vision Transformer (ViT) vs ResNets

68

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ResNets

JFT-300M is an
internal Google
dataset with 300M
labeled images

If you pretrain on
JFT and finetune on
ImageNet, large
ViTs outperform
large ResNets

B = Base
L = Large
H = Huge

/32, /16, /14 is patch
size; smaller patch
size is a bigger model
(more patches)

Vision Transformer (ViT) vs. ResNet

[slide from Justin Johnson, U Michigan]

ResNet-ViT Hybrid

Object Detection with Transformers: DETR Model

Justin Johnson March 23, 2022Lecture 18 -

Object Detection with Transformers: DETR

124

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020

[slide from Justin Johnson, U Michigan]

Masked Modeling with Transformers (BERT, GPT, etc.)

Jus6n Johnson March 21, 2022Lecture 17 -

Masked Self-A>en?on Layer
Don’t let vectors “look ahead” in the sequence
Used for language modeling (predict next word)

Q1 Q2 Q3

K3

K2

K1

-∞
-∞
E1,1

-∞
E2,2

E2,1

E3,3

E3,2

E3,1

0
0

A1,1

0
A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

So#max(↑)

[START] Big cat

Big cat [END]

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

ComputaGon:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
SimilariGes: E = QKT / !! (Shape: NX x NX) Ei,j = (Qi · Kj) / !!
AKenGon weights: A = soXmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

73[slide from Justin Johnson, U Michigan]

Masked Self-Attention Layer

Please fill out
Student Evaluations

(on Canvas)

