THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 4:

mage Filtering (continued)

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )



Menu for [oday (September 16, 2024)

Topics:
— Box, Gaussian, Pillbox filters — The Convolution Theorem
— Separability — Fourier Space Representations

— Today’s Lecture: none
— Next Lecture: Forsyth & Ponce (2nd ed.) 4.4

Reminders:

— Assignment 1 (graded) is due Wednsday, September 26



Today’s “fun” Example: Rolling Shutter
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Lecture 3: Re-cap Correlation

— The correlation of F'( X ,‘Y) and I(X,Y)is

I'(X,Y) = Z ZFZ (X +4,Y +7)

1=—k1=—k

output filter image (signal)

— Visual interpretation: Superimpose the filter F' on the image I at (X,Y),
perform an element-wise multiply, and sum up the values

— Convolution is like correlation except filter rotated 180°

f F(X,Y)=F(—X,—-Y) then correlation = convolution.



Lecture 3: Re-cap Correlation vs. Convolution

Definition: Correlation

k k
I'X,Y)= Y » F(i,j))I(X+i,Y +j)
1=—k 1=—
Definition: Convolution
k k
I'X,Y)y= > > F@i,j)I(X—4iY —j)
j=—ki=—Fk
Kk k
=) Y F(—i,—j)I(X +i,Y + )
j=—ki=—Fk

Note: if FI(X,Y) = F(—X,-Y) then correlation = convolution.



Lecture 3: Re-cap Correlation vs. Convolution
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Note: if FI(X,Y) = F(—X,-Y) then correlation = convolution.



Lecture 3: Re-cap Correlation vs. Convolution

1
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F(X,Y)

filter
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180 degree symmetric => when applied as correlation
or convolution it will yield same result

Note: if FI(X,Y) = F(—X,-Y) then correlation = convolution.



Lecture 3: Re-cap Correlation vs. Convolution

F(X,Y)

filter

1 180 degree symmetric => when applied as correlation
J or convolution it will yield same result

6]7]1 -
2]0] 2 ... SO is this one
1] 7] 6

Note: if FI(X,Y) = F(—X,-Y) then correlation = convolution.



Lecture 3: Re-cap

Ways to handle boundaries
— Ignore/ discard. Make the computation undefined for top/bottom k rows and left/right-most k columns
— Pad with zeros. Resturn zero whenever a value of | is required beyond the image bounds

— Assume periodicity. Top row wraps around to the bottom row; leftmost column wraps around to
rightmost column.

Simple examples of filtering:
— COopy, shift, smoothing, sharpening



Preview: \Why convolutions are important”?

Who has heard of Convolutional Neural Networks (CNNs)?
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Preview: \Why convolutions are important”?

Who has heard of Convolutional Neural Networks (CNNs)?

What about Deep Learning?

. FULLY
L“/, INPUT (ONVOLUTION + RELV POOLING CONVOLUTION + RELV POOLING j \FlAﬂ'EN CONNECTED SOFTMAX /
HIDDEN LAYERS CLASSIFICATION

Basic operations in CNNs are convolutions (with learned linear filters) followed
oy non-linear functions.

Note: This results in non-linear filters.
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| Inear Filters: Matrix Form
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Linear Filters: Properties

Let ® denote convolution. Let I(X,Y) be a digital image

Superposition: Let F; and F5 be digital filters

(Fl+ )@ I(X,Y)=F QI(X,Y)+ Ko I(X,Y)
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Linear Filters: Properties

Let ® denote convolution. Let I(X,Y) be a digital image

Superposition: Let I} and F5 be digital filters
(Fil+ )X, Y)=FRIX,Y)+ b I(X,Y)
Scaling: Let F be digital filter and let £ be a scalar
(kF)QI[(X,Y)=F® (kI(X,Y)) = k(F® I(X,Y))

Shift Invariance: Output is local (i.e., no dependence on absolute position)



Linear Filters: Shift Invariance

Output does not depend on absolute position




Linear Filters: Shift Invariance

I'X,Y)=7f (F,](X— L%J : X + L%J,Y— {%J Y + {;J))




Linear Filters: Shift Variant

I'X,Y)={ (F,](X— LSJ - X + L%J,Y— L%J Y + LSJ) ,X,Y)
Y
Y




Linear Filters: Shift Variant

rOCY) = (Ferd (X = 151X+ 151 = 15157 +15)))




Linear Filters: Properties

Let ® denote convolution. Let I(X,Y) be a digital image

Superposition: Let F; and F5 be digital filters

(Fl+ )@ I(X,Y)=F QI(X,Y)+ Ko I(X,Y)

Scaling: Let F be digital filter and let £ be a scalar
(kF) @ I[(X,)Y)=F® (kI(X,Y)) = k(F Q I(X,Y))
Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation Is linear If it satisfies both superposition and scaling



Linear Systems: Characterization Theorem

Any linear, shift invariant operation can be expressed as convolution



Up until now...

— The correlation of F'( X ,‘Y) and I(X,Y)is

I'(X,Y) = Z ZFZ (X +4,Y +7)

1=—k1=—k

output filter image (signal)

— Visual interpretation: Superimpose the filter F' on the image I at (X,Y),
perform an element-wise multiply, and sum up the values

— Convolution is like correlation except filter rotated 180°

f F(X,Y)=F(—X,—-Y) then correlation = convolution.



Up until now...

Ways to handle boundaries

— Ignore/ discard. Make the computation undefined for top/bottom k rows and left/right-most k columns

— Pad with zeros. Return zero whenever a value of | is required beyond the image bounds

— Assume periodicity. Top row wraps around to the bottom row; leftmost column wraps around to
rightmost column.

Simple examples of filtering:
— COpY, shift, smoothing, sharpening

Linear filter properties:
— superposition, scaling, shift invariance

Characterization Theorem: Any linear, shift-invariant operation can be
expressed as a convolution



Smoothing

Smoothing (or blurring) is an important operation in a lot of computer vision

— Captured images are naturally noisy, smoothing allows removal of noise

— It Is Important for re-scaling of images, to avoid sampling artifacts

— Fake image defocus (e.q., depth of field) for artistic effects

(many other uses as well)



Smoothing with a Box Filter

Image Credit: loannis (Yannis) Gkioulekas (CMU)

Filter has equal positive values that some up to 1

Replaces each pixel with the average of itself and its local neighlbborhood

— Box filter Is also referred to as average filter or mean filter



Smoothing with a Box Filter

Forsyth & Ponce (2nd ed.) Figure 4.1 (left and middle)



Smoothing with a Box Filter

What happens if we increase the width (size) of the box filter?



Smoothing with a Box Filter
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Gonzales & Woods (3rd ed.) Figure 3.3



Smoothing with a Box Filter

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point is 1 and every other point is O



Smoothing with a Box Filter

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image In which the center point is 1 and every other point is O
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Smoothing with a Box Filter

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction

— Image In which the center point is 1 and every other point is O
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Smoothing: Circular Kernel

* image credit: https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/circle-of-confusion/lens-camera.png



https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/circle-of-confusion/lens-camera.png

Smoothing

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point is 1 and every other point is O



Smoothing

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point is 1 and every other point is O

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)



PillboXx Filter

Let the radius (i.e., half diameter) of the filter be 7

In a contentious domain, a 2D (circular) pilloox filter, f (x, y), is defined as:

flx,y) =

1 1 if 2% 4+ y* < r?
0 otherwise

T2

1

Tre’

The scaling constant, ensures that the area of the filter is one



Pillbox Filter




PillboXx Filter
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PillboXx Filter
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PillboXx Filter
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Pillbox Filter

Hubble

Deep View

With Circular

Slur

Images: yehar.com



Smoothing

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point is 1 and every other point is O

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)
The Gaussian is a good general smoothing model

— for phenomena (that are the sum of other small effects)
— whenever the Central Limit Theorem applies



Smoothing with a Gaussian

Gaussian kernels are often used for smoothing and resizing images




Smoothing with a Gaussian

Idea: \Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

1 z?2 t+y?
GO‘ (337 y) — ) 2 exXp  20°

Forsyth & Ponce (2nd ed.)
Figure 4.2



Smoothing with a Gaussian

Idea: \Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

1 z?+y?
GO‘ (337 y) — ) 2 exXp  20°

Standard Deviation

Forsyth & Ponce (2nd ed.)
Figure 4.2



Smoothing with a Gaussian

Idea: \Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

1 z?2 t+y?
Ga (337 y) — ) 2 exXp - 20°

1. Define a continuous 2D function

2. Discretize 1t by evaluating this function on the Forsyth & Ponce (2nd ed.)
discrete pixel positions to obtain a filter Figure 4.2



Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

Gy(—1,1) G,(0,1) G,(1,1)
G,(—1,0) G4(0,0) G5 (1,0)
Gy(—1,—-1) G,(0,—1) G,(1,—1)




Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 __2_ 1 _ 1 1 __2_
G,(—1,1) = 53 €XP 202 G,(0,1) = 53 €XP 202 G,(1,1) = 53 €XP 207
Go(—1.0) = —— exp 52 G (0,0) = — OO0 = i
— p— 20 o ] — o , — 20
N omg? P 2702 (1,0) oo P
1 _ 2 1 __1_ 1 _ 2
Gy(—1,—1) = 53 XD 202 | G,(0,—1) = 53 eXP 202 | Gg(1,—1) = 53 XD 202




Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 2
G,(—1,1) = 53 €XP 202 G,(0,1) = 53 €XP 202 G,(1,1) = 53 €XP 207
G,(—1,0 : ~2,7 G,(0,0) = : G (1.0 L — 557
— — 20 o ] — o , p— 20
o(=1,0) ong? T 2702 (1,0) oo ¥
1 2 1 1 1 _ 2
Gy(—1,—1) = 53 XD 202 | G4(0,—1) = 53 eXP 202 | Gg(1,—1) = 53 XD 252
With o =1 : 0.059 | 0.097 | 0.059
0.097 | 0.159 | 0.097
0.059 | 0.097 | 0.059




Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 2
G,(—1,1) = 53 €XP 202 G,(0,1) = 53 €XP 202 G,(1,1) = 53 €XP 207
Go(—1.0) = —— exp~ 5 G (0,0) = — C10) = L x5
o(=1,0) = o2 P T 2702 o(1,0) = omo? P
Gol—1,=1) =~ exp 7 | Go(0,—1) = ——exp 2 | Gy(l,—1) = —— exp™ 57
T " o2 P T " oz P T " o2 P
Witho =1 0.059 | 0.097 | 0.059 What happens if o is larger?

0.097 | 0.159 | 0.097

0.099 | 0.097 | 0.059




Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 2
G,(—1,1) = 53 6XP 2 G,(0,1) = 53 ¢XP 2 G,(1,1) = 53 XP 2
Go(—1.0) = —— exp~ 5 G (0,0) = — C10) = L x5
-(—1,0) = 53 CXP % o(0:0) = 57 -(1,0) = 53 OXP 2
Gol—1,=1) =~ exp 7 | Go(0,—1) = ——exp 2 | Gy(l,—1) = —— exp™ 57
7 " oo P T " ooz P T " oo P
Witho =1 What happens if o is larger?

—_ |—> |—>

— |— |—>

—_ |—> |—>

— More blur




Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 2
G,(—1,1) = 53 €XP 202 G,(0,1) = 53 €XP 202 G,(1,1) = 53 €XP 207
Go(—1.0) = —— exp~ 5 G (0,0) = — C10) = L x5
o(=1,0) = o2 P T 2702 o(1,0) = omo? P
Gol—1,=1) =~ exp 7 | Go(0,—1) = ——exp 2 | Gy(l,—1) = —— exp™ 57
T " o2 P T " oz P T " o2 P
Witho =1 0.059 | 0.097 | 0.059 What happens if o is larger?

0.097 | 0.159 | 0.097

| | )
0.059 | 0.097 | 0.059 What happens If o Is smaller”




Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 2
G,(—1,1) = 53 6XP 2 G,(0,1) = 53 ¢XP 2 G,(1,1) = 53 XP 2
Go(—1.0) = —— exp~ 5 G (0,0) = — C10) = L x5
-(—1,0) = 53 CXP % o(0:0) = 57 -(1,0) = 53 OXP 2
Gol—1,=1) =~ exp 7 | Go(0,—1) = ——exp 2 | Gy(l,—1) = —— exp™ 57
7 " oo P T " ooz P T " oo P
Witho =1 What happens if o is larger?

What happens if o i1s smaller?

«— |— |—
«— | |
«— |— |—

— Less Dlur



Smoothing with a Box Filter

Forsyth & Ponce (2nd ed.) Figure 4.1 (left and middle)



Smoothing with a Gaussian

Forsyth & Ponce (2nd ed.) Figure 4.1 (left and right)



Box vs. Gaussian Filter

/X7 (Gaussian

original

/X{ box

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fun: How to get shadow effect”

University of
Britisn
Columbia



Fun: How to get shadow effect”

University of
Britisn
Columbia

Blur with a Gaussian kernel, then compose the blurred image with the original
(with some offset)

Adopted from: loannis (Yannis) Gkioulekas (CMU)



Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 2
G,(—1,1) = 53 6XP 2 G,(0,1) = 53 ¢XP 2 G,(1,1) = 53 XP 2
Go(—1.0) = —— exp~ 5 G (0,0) = — C10) = L x5
O'(_ y ) — 9 2 CXp 29 o\ o Vo2 O'( ) ) — 9 o2 CXp 29
Gol—1,=1) =~ exp 7 | Go(0,—1) = ——exp 2 | Gy(l,—1) = —— exp™ 57
7 " oo P T " ooz P T " oo P
Witho =1 0.059 | 0.097 | 0.059 What is the problem with this filter”?

0.097 | 0.159 | 0.097 ?

0.059 | 0.097 | 0.059 @A




Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 2
G,(—1,1) = 53 6XP 2 G,(0,1) = 53 ¢XP 2 G,(1,1) = 53 XP 2
Go(—1.0) = —— exp~ 5 G (0,0) = — C10) = L x5
O'(_ y ) — 9 2 CXp 29 o\ o Vo2 O'( ) ) — 9 o2 CXp 2¢
Gol—1,=1) =~ exp 7 | Go(0,—1) = ——exp 2 | Gy(l,—1) = —— exp™ 57
7 " oo P T " ooz P T " oo P
Witho =1 0.059 | 0.097 | 0.059 What is the problem with this filter”?

0.097 | 0.159 | 0.097 ? does not sum to 1
0.059 | 0.097 | 0.059 -
truncated too much




Gaussian: Area Under the Curve

~iG  -30 20 -1 O IG 20 30 40
~—68% —
< 95% -1
i 99.7% -

- 99.99% .



Smoothing with a Gaussian

Witho =1

0.059

0.097

0.059

0.097

0.159

0.097

0.099

0.097

0.099

Better version of the (Gaussian filter:
4 | 16| 26| 16 | 4

— sums to 1 (normalized) 1 1726|4128 7
— Captures +20 4 | 181 28| 18| 4

INn general, you want the Gaussian filter to capture =30, for o = 1 => /X7 filter



Exercise

With o = 5 what filter size would be appropriate?



Exercise

With o = 5 what filter size would be appropriate?

oc*x0=0%0=30=> 31 X3l



Smoothing Summary

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Point spread function is a box

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)
The Gaussian is a good general smoothing model

— for phenomena (that are the sum of other small effects)
— whenever the Central Limit Theorem applies (avg of many independent rvs = normal dist )



| ets talk about efficiency



Efficient Implementation: Separability

A 2D function of x and y is separable if it can be written as the product of two
functions, one a function only of X and the other a function only of y

Both the 2D box filter and the 2D Gaussian filter are separable

Both can be implemented as two 1D convolutions:
— First, convolve each row with a 1D filter

— Then, convolve each column with a 1D filter

— Aside: or vice versa

The 2D Gaussian is the only (non trivial) 2D function that is both separable and
rotationally invariant.
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Separability: How do you know If filter is separable?

f a 2D filter can be expressed as an outer product of two 1D filters




Separability: How do you know If filter is separable?

Mathematically: Rank of filter matrix is 1 (recall rank is number of linearly
iIndependent row vectors)




Efficient Implementation: Separability

For example, recall the 2D Gaussian:

1 z? y?
GO‘ (QZ‘, y) — ) 2 CXP 202

The 2D Gaussian can be expressed as a product of two functions, one a
function of x and another a function of y



Efficient Implementation: Separability

For example, recall the 2D Gaussian:

1 x24y?
GO‘ (377 y) — 27_‘_0_2 CXP 207
1 a32 ( 1 y2 )
— exX 202 ex 202
( 2O P > 2T O P
function of x function of y

The 2D Gaussian can be expressed as a product of two functions, one a
function of x and another a function of y



Efficient Implementation: Separability

For example, recall the 2D Gaussian:

1 x24y?
GO‘ (377 y) — 27_‘_0_2 CXP 207
1 a32 ( 1 y2 )
— exX 202 ex 202
( 2O P > 2T O P
function of x function of y

The 2D Gaussian can be expressed as a product of two functions, one a
function of x and another a function of y

In this case the two functions are (identical) 1D Gaussians



(Gaussian Blur

2D Gaussian filter can be thought of as an outer product or convolution of
row and column filters

I -
| -

30



Example: Separable Gaussian Filter
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Efficient Implementation: Separability

Naive implementation of 2D Gaussian:

At each pixel, (X,Y), there are m x m multiplications

There are n Xmn pixelsin (X QY)

Total: m® x n® multiplications



Efficient Implementation: Separability

Naive implementation of 2D Gaussian:

At each pixel, (X,Y), there are m x m multiplications

There are n Xmn pixelsin (X QY)

Total: m® x n® multiplications

Separable 2D Gaussian:



Efficient Implementation: Separability

Naive implementation of 2D Gaussian:

At each pixel, (X,Y), there are m x m multiplications

There are n Xmn pixelsin (X QY)

Total: m® x n® multiplications

Separable 2D Gaussian:

At each pixel, (X,Y), thereare 2m  multiplications

There are n Xmn pixelsin (X ,‘Y)

2

Total. 2m x n“ multiplications



Separable Filtering

Several useful filters can be applied as independent row and column operations

T 1 114161 4]1
P : 11271 41162416 4 —1]o0l1 1 [ =2 1
1 1 1 1
. : Llolal2] Llel24a]36|24]6]| Ll —20]2] i[—2]4 |-2
| 11211 4116124164 “1]o0l1 1 =2 1
L1 ! 114161 41
1 1 1 1 1
Ll1]1 1] Lf1]2]1 LiTale]a]1 L-1Tol1 LT —2T1

om oOonm
B B

(a) box, K =5 (b) bilinear (c) “Gaussian” (d) Sobel (e) corner




Sepprable”?

BoXx Filter

Pillbox Filter

Gaussian Filter
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Rotationally Invariant”

Box Filter Pillbox Filter Gaussian Filter
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Low-pass Filtering = “Smoothing”

Box Filter Pillbox Filter Gaussian Filter
114161141
1 111 1 { 4116124|16| 4
9 111 1 01(24|30|24| 6
250
111 1 4116|2416 4
1141614 |1

All of these filters are Low-pass Filters

Low-pass filter: Low pass filter filters out all of the high frequency content
of the Image, only low frequencies remain



Assignment 1: Low/High Pass Filtering

Original Low-Pass Filter High-Pass Filter

[(z,y) [(z,y)* g(z,y) [(z,y) — I(z,y) x g(x,y)



Gala Contemplating the Mediterranean
Sea Which at Twenty Meters Becomes
the Portrait of Abraham Lincoln
(Homage to Rothko)

Salvador Dali, 1976

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Low-pass filtered version

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



High-pass filtered version

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



