
Lecture 6: Sampling

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )

Image Credit: https://en.wikibooks.org/wiki/Analog_and_Digital_Conversion/Nyquist_Sampling_Rate

https://en.wikibooks.org/wiki/Analog_and_Digital_Conversion/Nyquist_Sampling_Rate


Menu for Today (September 23, 2024)
Topics: 

— Sampling theory 

— Nyquist rate

Readings: 

— Today’s Lecture:  Szeliski 2.3, Forsyth & Ponce (2nd ed.) 4.5, 4.6 


Reminders: 

— Assignment 1: Image Filtering and Hybrid Images due September 26th


— Color Filter Arrays

— Image encoding



Lecture 5: Re-cap The Convolution Theorem

Convolution Theorem:

Let 

then

where                  ,                 , and                  are Fourier transforms of            ,
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and

At the expense of two Fourier transforms and one inverse Fourier transform,

convolution can be reduced to (complex) multiplication



Cost of FFT/IFFT for image:

Cost of FFT/IFFT for filter:  

Cost of convolution:


At each pixel,           , there are              multiplications

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

There are                                               pixels in 

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Total:                                                     multiplicationsm2 ⇥ n2

General implementation of convolution:

O(m2 logm)

O(n2 log n)

Convolution if FFT space:

O(n2) Note: not a function of filter size !!!

Lecture 5: Re-cap The Convolution Theorem



Lecture 5: Re-cap Median Filter

Take the median value of the pixels under the filter:
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Lecture 5: Re-cap Median Filter

Effective at reducing certain kinds of noise, such as impulse noise (a.k.a ‘salt and 
pepper’ noise or ’shot’ noise)


The median filter forces points with distinct values to be more like their neighbors 

Image credit: https://en.wikipedia.org/wiki/Median_filter#/media/File:Medianfilterp.png

https://en.wikipedia.org/wiki/Median_filter#/media/File:Medianfilterp.png


Lecture 5: Re-cap Bilateral Filter126 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c)

(d) (e) (f)

Figure 3.20 Bilateral filtering (Durand and Dorsey 2002) c� 2002 ACM: (a) noisy step
edge input; (b) domain filter (Gaussian); (c) range filter (similarity to center pixel value); (d)
bilateral filter; (e) filtered step edge output; (f) 3D distance between pixels.

Since bilateral filtering is quite slow compared to regular separable filtering, a number
of acceleration techniques have been developed (Durand and Dorsey 2002; Paris and Durand
2006; Chen, Paris, and Durand 2007; Paris, Kornprobst, Tumblin et al. 2008). Unfortunately,
these techniques tend to use more memory than regular filtering and are hence not directly
applicable to filtering full-color images.

Iterated adaptive smoothing and anisotropic diffusion

Bilateral (and other) filters can also be applied in an iterative fashion, especially if an appear-
ance more like a “cartoon” is desired (Tomasi and Manduchi 1998). When iterated filtering
is applied, a much smaller neighborhood can often be used.

Consider, for example, using only the four nearest neighbors, i.e., restricting |k� i|+ |l�
j|  1 in (3.34). Observe that

d(i, j, k, l) = exp
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2
+ (j � l)2

2�2
d

◆
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(3.39)
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Suppose we want to smooth a noisy step function
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Suppose we want to smooth a noisy step function
A Gaussian kernel performs a weighted average of points over a spatial 
neighbourhood..
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neighbourhood..
But this averages points both at the top and bottom of the step — blurring
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Suppose we want to smooth a noisy step function
A Gaussian kernel performs a weighted average of points over a spatial 
neighbourhood..
But this averages points both at the top and bottom of the step — blurring
Bilateral Filter idea: look at distances in range (value) as well as space x,y



Gaussian filter: weights of neighbor at a spatial offset         away from the 
center pixel             given by:
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Bilateral filter: weights of neighbor at a spatial offset         away from the center 
pixel             given by a product:
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Lecture 5: Re-cap Bilateral Filter



Lecture 5: Re-cap Bilateral Filter Application: Denoising

Noisy Image Gaussian Filter Bilateral Filter

Slide Credit: Alexander Wong




Slide Credit: Alexander Wong


Original Image After 5 iterations of Bilateral Filter 

Lecture 5: Re-cap Bilateral Filter Application: Cartooning



Menu for Today (September 23, 2024)
Topics: 

— Sampling theory 

— Nyquist rate

Readings: 

— Today’s Lecture:  Szeliski 2.3, Forsyth & Ponce (2nd ed.) 4.5, 4.6 


Reminders: 

— Assignment 1: Image Filtering and Hybrid Images due September 26th


— Color Filter Arrays

— Image encoding



Reminder

Images are a discrete, or sampled, representation of a continuous world



A continuous function                is presented at the image sensor at each 
time instant


How do we convert this to a digital signal (array of numbers)                  ?


 

I(x, y,�)

1

What is Sampling?

I(X,Y )

i(x, y)
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A continuous function                is presented at the image sensor at each 
time instant


How do we convert this to a digital signal (array of numbers)                  ?


How can we manipulate, e.g., resample, this digital signal correctly?

What is Sampling?

I(X,Y )

i(x, y)
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Resampling Images
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Resampling Images
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Resampling Images
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Resampling Images

How do we correctly generate samples to resample or warp an image? 
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I(X,Y )

What types of transformations can we do? 

changes range of image function changes domain of image function

Filtering Warping

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I(X,Y )

I 0(X,Y )

I 0(X,Y )



I(X,Y )

What types of transformations can we do? 

changes domain of image function

Warping

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y )



Resampling Images
Goal: Resample the image to get a lower resolution counterpart

What is the simplest way to do this (e.g., produce image 1/5 of original size)?



Resampling Images
Goal: Resample the image to get a lower resolution counterpart

Naive Method: Form new image by taking every n-th pixel of the original image 



Resampling Images
Sampling every 5-th pixel, while shifting rightwards one pixel at a time 



Resampling Images
Sampling every 5-th pixel, while shifting rightwards one pixel at a time 



Resampling Images
Sampling every 5-th pixel, while shifting rightwards one pixel at a time 

What’s wrong with this method?



Example: Audio Sampling

Question: What choice/parameters do we have when sampling audio signal? 



Example: Audio Sampling

Question: What choice/parameters do we have when sampling audio signal? 

Sampling rate and bit depth, e.g., 44.1 kHz (samples/second), 16 bits/sample



Example: Audio Sampling



Example: Audio Sampling

Quantization noise / error is the difference between black and red curves



Audio Aliasing

• Aliasing causes undesirable artifacts in audio reproduction

• e.g., if we take an audio signal and simply drop every second sample, the 

highest frequencies will be aliased… we hear robotic sounding distortion
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Example: Image Sampling

Sampling rate and bit depth (e.g., 8-bits)

I(X,Y )

i(x, y)



—            is a real-valued function of real spatial variables,    and


—            is bounded above and below. That is


     for some maximum brightness 


0  i(x, y)  M

i(x, y)

M

i(x, y)

x y

Continuous Case: Observations



—            is a real-valued function of real spatial variables,    and


—            is bounded above and below. That is


     for some maximum brightness 


—           is bounded in extent. That is,           is non-zero (i.e., strictly positive) 

     over, at most, a bounded region

0  i(x, y)  M

i(x, y)

i(x, y)

M

i(x, y)

i(x, y)

x y

Continuous Case: Observations



Suppose    bits-per-pixel are available. One can divide the range           into 
evenly spaced intervals.


Typically            resulting in grey-levels in the range 

Recall: 


We divide the range           into a finite number of equivalence classes. This is 
called quantization. 


The values are called grey-levels.

Pixel Bit Rate

0  i(x, y)  M

[0,M ]

n [0,M ]

n = 8 [0, 255]



Suppose    bits-per-pixel are available. One can divide the range           into 
evenly spaced intervals.


Typically            resulting in grey-levels in the range 

Recall: 


We divide the range           into a finite number of equivalence classes. This is 
called quantization. 


The values are called grey-levels.

Pixel Bit Rate

0  i(x, y)  M

[0,M ]

n [0,M ]

n = 8 [0, 255]

linear luminance (raw)

equal brightness steps
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Heuristic: When in doubt, consider simple cases 


Sampling Theory (informal)
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Sampling Theory (informal)

x

k

i(x)

Case 0: Suppose                  (with    being one of our gray levels)i(x, y) = k k

Note: we use equidistant sampling at integer values for convenience, in 
general, sampling doesn’t need to be equidistant 
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Sampling Theory (informal)

x

k

i(x)

This is easy! 

                   . Any standard interpolation function would give                  for non-
integer    and    (irrespective oh how coarse the sampling is)
I(X,Y ) = k i(x, y) = k

x y

Case 0: Suppose                  (with    being one of our gray levels)i(x, y) = k k



Case 1: Suppose           has a discontinuity not falling precisely at integer 
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We cannot reconstruct           exactly because we can never know exactly where 
the discontinuity lies
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Case 1: Suppose           has a discontinuity not falling precisely at integer 

Sampling Theory (informal)

We cannot reconstruct           exactly because we can never know exactly where 
the discontinuity lies

x

i(x)

k0
k1

i(x, y) = k x, y

i(x, y) = k

This is impossible! 



Question: How do we close the gap between “easy” and “impossible?” 


Next, we build intuition based on informal argument 


Sampling Theory (informal)
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Example: A Simple Sine Wave

How do we discretize the signal? 

Signal can be confused with one at lower frequency 
— This is called “Aliasing”

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Any signal can be written as a sum of sinusoidal functions

? ?

Recall: Fourier Representation

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



To avoid aliasing a signal must be sampled at twice the maximum frequency:

Nyquist Sampling Theorem

fs > 2⇥ fmax

1

where       is the sampling frequency, and            is the maximum frequency 
present in the signal 

fs > 2⇥ fmax

1

fs > 2⇥ fmax

1

Futhermore, Nyquist’s theorem states that a signal is exactly recoverable 
from its samples if sampled at the Nyquist rate (or higher)

Note: that a signal must be bandlimited for this to apply (i.e., it has a 
maximum frequency)



Reconstruction with Bandlimited Signal
It can be shown that a bandlimited and correctly sampled signal can be 
reconstructed exactly via interpolation with a sinc function (sin(x)/x)


(This is the Fourier Transform pair of a box filter, which in frequency domain is a 
pure low-pass filter)

51
https://en.wikipedia.org/wiki/Whittaker%E2%80%93Shannon_interpolation_formula

fs > 2⇥ fmax

fs < 2⇥ fmax

1

fs > 2⇥ fmax

fs < 2⇥ fmax

1

https://en.wikipedia.org/wiki/Whittaker%E2%80%93Shannon_interpolation_formula


Audio Aliasing

• Aliasing causes undesirable artifacts in audio reproduction

• e.g., if we take an audio signal and simply drop every second sample, the 

highest frequencies will be aliased… we hear robotic sounding distortion
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Audio Aliasing

• We can reduce the aliasing artifacts by pre-filtering with a low pass filter


• e.g., if we apply smoothing with a Gaussian filter standard deviation 2.0 for 
each octave (factor 2) of downsampling we get a better result:

53

ꜜ8 ꜜ8 with pre-filtering

• Note we have still lost some of the high frequency content, but the crunchy 
sounding distortion due to aliasing has now gone
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Exact reconstruction requires constraint on the rate at which i(x,y) can change 
between samples

— “rate of change” means derivative

— the formal concept is bandlimited signal 


— “bandlimit” and “constraint on derivative” are linked 


Think of music

— bandlimited if it has some maximum temporal frequency 

— the upper limit of human hearing is about 20 kHz 


Think of imaging systems. Resolving power is measured in 

— “line pairs per mm” (for a bar test pattern)

— “cycles per mm” (for a sine wave test pattern) 


An image is bandlimited if it has some maximum spatial frequency 

Sampling Theory (informal)



It is clear that some information may be lost when we work on a discrete pixel grid. 

Sampling

Forsyth & Ponce (2nd ed.) Figure 4.7 
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Aliasing Example

No filtering Gaussian Blur � = 3.0

Sampling every 5th pixel with and without low-pass blur

𝜎=1/(2𝑠)



Resampling Images

•Note that selecting every 10th pixel ignores the intervening information, 
whereas the low-pass filter (blur) smoothly combines it

• If we shifted the original image 1 pixel to the right, the aliased image would 
look completely different, but the low pass filtered image would look almost 
the same

59

every 10th pixel low pass filtered
(aliased) (correct sampling)



Image Sampling and Aliasing
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Aliasing in Photographs
This is also known as “moire”

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image Pyramids

Used in Graphics (Mip-map) and Vision 
(for multi-scale processing)
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Sampling Theory (informal)
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Question: For a bandlimited signal, what if you oversample (i.e., sample at 
greater than the Nyquist rate) 


Answer: Nothing bad happens! Samples are redundant and there are wasted 
bits 


Question: For a bandlimited signal, what if you undersample (i.e., sample at 
less than the Nyquist rate) 


Answer: Two bad things happen! Things are missing (i.e., things that should be 
there aren’t). There are artifacts (i.e., things that shouldn’t be there are) 


Sampling Theory (informal)



How to Prevent Aliasing?

1. Reduce the maximum frequency, by low pass filtering i.e., Smoothing 
before sampling.




How to Prevent Aliasing?

1. Reduce the maximum frequency, by low pass filtering i.e., Smoothing 
before sampling.


2. Sample more frequently i.e., oversampling — sample more than you think 
you need and average (i.e., area sampling)



Aliasing 

aliasing artifacts anti-aliasing by oversampling

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Temporal Aliasing 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Temporal Aliasing 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Temporal Aliasing 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Temporal Aliasing 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Temporal Aliasing 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Temporal Aliasing 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Sometimes undersampling is unavoidable, and there is a trade-off between 
“things missing” and “artifacts.” 


— Medical imaging: usually try to maximize information content, tolerate 
some artifacts 


— Computer graphics: usually try to minimize artifacts, tolerate some 
information missing 


Sampling Theory (informal)
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Example

Image Resolution: 10 x 8 Image Resolution: 5 x 4

Sensor Resolution: 10 x 8 Sensor Resolution: 10 x 8



Color is an Artifact of Human Perception
“Color” is not an objective physical property of light (electromagnetic radiation).

Instead, light is characterized by its wavelength.

What we call “color” is how we 
subjectively perceive a very small 

range of these wavelengths.

electromagnetic 
spectrum

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Color Filter Arrays (CFA)

photodiodephotodiode

microlensmicrolens

potential wellpotential well

photodiode

microlens

potential well

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Photodiode: converts 

photons to electrons

each pixel has a microns

In addition to a camera lens,

Electrons stored in the 

potential well, until

they are read off

Quantum efficiency: fraction of photons being “detected” through this process

(human eye QE: 20%, film cameras QE: 10%, CCD QE: 80%)



Color Filter Arrays (CFA)

photodiodephotodiode

microlensmicrolens

potential wellpotential well

photodiode

microlens

potential well

Issue: Color Filter Array (SFA) by itself has no way of distinguishing wavelengths 
of light, just ability to record the amount of light incident on an element



Color Filter Arrays (CFA)
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Color Filter Arrays (CFA)

photodiodephotodiode

color filtercolor filter

microlensmicrolens

potential wellpotential well

photodiode

color filter

microlens

potential well

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Implication: Only certain wavelengths of light are recorded at a given pixel



Color Filters
Two design choices:

— What spectral sensitivity functions         to use for each color filter?

— How to spatially arrange (“mosaic”) different color filters? 
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Color Filters
Two design choices:

— What spectral sensitivity functions         to use for each color filter?

— How to spatially arrange (“mosaic”) different color filters? 

Bayer 
mosaic

Why more 
green pixels?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Canon 50D

Generally do not 
match human 

sensitivity



Different Color Filter Arrays (CFAs)
Finding the “best” CFA mosaic is an active research area.

CYGM

Canon IXUS, Powershot

RGBE

Sony Cyber-shot

How would you go about designing your own 
CFA? What criteria would you consider?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Many Different Spectral Sensitivity Functions
Each camera has its more or less unique, and most of the time secret, SSF

Same scene captured using 3 different cameras with identical settings
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



RAW Bayer Image

lots of noise mosaicking 
artifacts

— Kind of disappointing

— We call this the RAW image

After all of this, what does an image look like?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



CFA Demosicing 

Produce full RGB image from mosaiced sensor output

Any ideas on how to do this?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



CFA Demosicing 

Produce full RGB image from mosaiced sensor output

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Interpolate from neighbors:

— Bilinear interpolation (needs 4 neighbors)

— Bicubic interpolation (needs more neighbors, may overblur)

— Edge-aware interpolation (e.g., Bilateral) 



Demosaicing by Bilinear Interpolation

Bilinear interpolation: Simply average your 4 neighbors.

G?G1

G4

G3

G2

G? =
G1 + G2 + G3 + G4

4

Neighborhood changes for different channels:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



(in camera) Image Processing Pipeline
The sequence of image processing operations applied by the camera’s image 
signal processor (ISP) to convert a RAW image into a “conventional” image.

analog front-end

RAW image 
(mosaiced, 

linear, 12-bit)
white balanceCFA demosaicingdenoising

color transforms tone reproduction compression final RGB image 
(non-linear, 8-bit)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



(in camera) White balance

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



(in camera) White balance

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

R: 200

G: 255

B: 190

R-correction: + 55

G-correction: + 0

B-correction: + 65



(in camera) White balance



•Humans are good at adapting to global illumination conditions: you would still 
describe a white object as white whether under blue sky or candle light.
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•Humans are good at adapting to global illumination conditions: you would still 
describe a white object as white whether under blue sky or candle light.
•However, when the picture is viewed later, the viewer is no longer correcting 
for the environment and the illuminant colour typically appears too strong. 
•White balancing is the process of correcting for the illuminant

•A simple white balance algorithm is to assume the scene is grey on average 
“greyworld”,  state of the art methods use learning, e.g., Barron ICCV 2015

(in camera) White balance
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(in camera) Tone reproduction



“Color” is not an objective physical property of light (electromagnetic radiation).

Instead, light is characterized by its wavelength.


Color Filter Arrays (CFAs) allow capturing of mosaiced color information; the 
layout of the mosaic is called Bayer pattern.


Demosaicing is the process of taking the RAW image and interpolating 
missing color pixels per channel 

 

Summary


