
Lecture 9: Edge Detection

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )



Menu for Today (October 7, 2024)
Topics: 

— Edge Detection

— Canny Edge Detector

Readings: 

— Today’s Lecture:  Szeliski 7.1-7.2, Forsyth & Ponce 5.1 - 5.2


Reminders: 

— Assignment 2: Scaled Representations, Face Detection and Image Blending

— Quiz 2 will be released today 

— Lecture videos — stay tuned for some changes on Canvas 

— Image Boundaries




Today’s “fun” Example: Colour Constancy

Image Credit: Akiyosha Kitoaka
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Today’s “fun” Example: Colour Constancy
— Some people see a white and gold dress.


— Some people see a blue and black dress.


— Some people see one interpretation and then switch 
to the other

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html
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— Some people see a white and gold dress.
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Lecture 8: Re-cap Multi-Scale Template Matching

= Template

Correlation with a fixed-sized image only detects faces at specific scales
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Lecture 8: Re-cap Scaled Representations

Gaussian Pyramid


—Each level represents a low-pass filtered image at a different scale


—Generated by successive Gaussian blurring and downsampling

—Useful for image resizing, sampling


Laplacian Pyramid 


—Each level is a band-pass image at a different scale


—Generated by differences between successive levels of a Gaussian Pyramid

—Used for pyramid blending, feature extraction etc.



From Template Matching to Local Feature Detection
Image Template

Test Image



From Template Matching to Local Feature Detection
Image Template

Test Image

Edge Template

Test Edge Image



From Template Matching to Local Feature Detection
Image Template Interest Points

Test Image

Edge Template

Test Edge Image



— Move from global template matching to local template matching  

— Local template matching also called local feature detection  

— Obvious local features to detect are edges and corners  

From Template Matching to Local Feature Detection



Edge Detection

Goal: Identify sudden changes in image 
intensity 


This is where most shape information is 
encoded 


Example: artist’s line drawing (but artist 
also is using object-level knowledge) 




What Causes Edges?What causes an edge?

• Depth discontinuity
• Surface orientation 

discontinuity
• Reflectance 

discontinuity (i.e., 
change in surface 
material properties)

• Illumination 
discontinuity (e.g., 
shadow)

Slide credit: Christopher Rasmussen

Slide Credit: Christopher Rasmussen



Recall, for a 2D (continuous) function, f(x,y) 

Estimating Derivatives

@f

@x
= lim

✏!0

f(x+ ✏, y)� f(x, y)

✏

@f
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⇡ F (X + 1, y)� F (x, y)

�x
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Recall, for a 2D (continuous) function, f(x,y) 

A (discrete) approximation is (backward difference):
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Recall, for a 2D (continuous) function, f(x,y) 

A (discrete) approximation is (central difference):
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Recall, for a 2D (continuous) function, f(x,y) 

A (discrete) approximation is (forward difference):
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Differentiation is linear and shift invariant, and therefore can be implemented as a 
convolution 

�1 1



A (discrete) approximation is 


�11

“forward difference” implemented as

�1 1

correlation convolution

from left 

Estimating Derivatives
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A (discrete) approximation is 
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“forward difference” implemented as

�1 1

correlation 
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“backward difference” implemented as

   correlation 

from left from right 

Estimating Derivatives

Introduction 11

Feature extraction

The first stages of most computer vision algorithms
perform feature extraction. The aim is to reduce
the data content of the images while preserving the
useful information they contain.

The most commonly used features are edges, which
are detected along 1-dimensional intensity disconti-
nuities in the image. Automatic edge detection algo-
rithms produce something resembling a line drawing
of the scene.

Corner detection is also
common. Corner features
are particularly useful for
motion analysis.
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A similar definition (and approximation) holds for 
@f
@y

Estimating Derivatives

�1
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Estimating Derivatives
Derivative in Y (i.e., vertical) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle) 



Estimating Derivatives
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Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle) 

Note: visualized by adding 0.5/128



Estimating Derivatives
Derivative in X (i.e., horizontal) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top right) 
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Derivative in X (i.e., horizontal) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top right) 

Estimating Derivatives



A Sort Exercise

Use the “first forward difference" to compute the image derivatives in X and Y 
directions. 
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Estimating Derivatives 

Question: Why, in general, should the weights of a filter used for differentiation 
sum to 0? 
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Estimating Derivatives 

Question: Why, in general, should the weights of a filter used for differentiation 
sum to 0? 


Answer: Think of a constant image,                   . The derivative is 0. Therefore, 
the weights of any filter used for differentiation need to sum to 0. 

I(X,Y ) = k
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Question: Why, in general, should the weights of a filter used for differentiation 
sum to 0? 


Answer: Think of a constant image,                   . The derivative is 0. Therefore, 
the weights of any filter used for differentiation need to sum to 0. 
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Image noise tends to result in pixels not looking exactly like their neighbours, 
so simple “finite differences” are sensitive to noise. 


The usual way to deal with this problem is to smooth the image prior to 
derivative estimation. 


Estimating Derivatives



Smoothing and Differentiation 

Edge: a location with high gradient (derivative)


Need smoothing to reduce noise prior to taking derivative 


Need two derivatives, in x and y direction 


We can use derivative of Gaussian filters

— because differentiation is convolution, and 

— convolution is associative 


Let     denote convolution 

D ⌦ (G⌦ I(X,Y )) = (D ⌦G)⌦ I(X,Y )

⌦



1D Example

I(X, 245)

Lets consider a row of pixels in an image:

Where is the edge?



1D Example: Derivative
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Lets consider a row of pixels in an image:

Where is the edge?



1D Example: Smoothing + Derivative

G
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Lets consider a row of pixels in an image:



1D Example: Smoothing + Derivative

G
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I(X, 245)

Lets consider a row of pixels in an image:
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1D Example: Smoothing + Derivative (efficient)
Lets consider a row of pixels in an image:

I(X, 245)



Partial Derivatives of GaussianDerivative of Gaussian

Slide credit: Christopher Rasmussen
Slide Credit: Christopher Rasmussen



Gradient Magnitude

Let              be a (digital) image


Let               and                be estimates of the partial derivatives in the    and    
directions, respectively.


Call these estimates     and      (for short) The vector            is the gradient  

The scalar                 is the gradient magnitude 


I(X,Y )

Ix(X,Y ) Iy(X,Y )

[Ix, Iy]Ix Iy
q

I2x + I2y

x y



Image Gradient
The gradient of an image: 
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The gradient points in the direction of most rapid increase of intensity: 
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The edge strength is given by the gradient magnitude: 

The gradient direction is given by: 

Image Gradient
The gradient of an image: 

The gradient points in the direction of most rapid increase of intensity: 

(how is this related to the direction of the edge?)

By looking at the gradient magnitude we can reason about the 
strength of the edge and by looking at the gradient direction we can 

reason about the direction of the edge 



The edge strength is given by the gradient magnitude: 

The gradient direction is given by: 

Image Gradient
The gradient of an image: 

The gradient points in the direction of most rapid increase of intensity: 

(how is this related to the direction of the edge?)

By looking at the gradient magnitude we can reason about the 
strength of the edge and by looking at the gradient direction we can 

reason about the direction of the edge 



Increased smoothing:

— eliminates noise edges

— makes edges smoother and thicker 

— removes fine detail 

Gradient Magnitude

Scale
Increased smoothing:
• Eliminates noise edges.
• Makes edges smoother and thicker.
• Removes fine detail.

� = 1 � = 2

Forsyth & Ponce (2nd ed.) Figure 5.4



1. Use central differencing to compute gradient image (instead of first 
forward differencing). This is more accurate.


2. Threshold to obtain edges 

Sobel Edge Detector

Sobel Gradient Sobel EdgesOriginal Image
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1. Use central differencing to compute gradient image (instead of first 
forward differencing). This is more accurate.


2. Threshold to obtain edges 

Sobel Edge Detector

Sobel Gradient Sobel EdgesOriginal Image

Thresholds are brittle, we can do better! 

2

4
�1 0 1
�2 0 2
�1 0 1

3

5



Comparing Edge Detectors 



Comparing Edge Detectors 

Good detection: minimize probability of false positives/negatives (spurious/missing) edges


Good localization: found edges should be as close to true image edge as possible


Single response: minimize the number of edge pixels around a single edge 
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Comparing Edge Detectors 

Not single response



Comparing Edge Detectors 

Not single response



Comparing Edge Detectors 

Not good localizationNot single response



Comparing Edge Detectors 

Not good localizationNot single response



Comparing Edge Detectors 

Not good localizationNot single response



Comparing Edge Detectors 

Good detection: minimize probability of false positives/negatives (spurious/missing) edges


Good localization: found edges should be as close to true image edge as possible


Single response: minimize the number of edge pixels around a single edge 

Approach Detection Localization Single Resp Limitations

Sobel Gradient Magnitude 
Threshold Good Poor Poor Results in Thick 

Edges

Marr / Hildreth Zero-crossings of 2nd 
Derivative (LoG) Good Good Good Smooths 

Corners

Canny Local extrema of 1st 
Derivative Best Good Good



Two Generic Approaches for Edge Detection

r

r

r

i(r)

d i(r)
 dr

d2i(r)
 dr2
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y

r Threshold



Two Generic Approaches for Edge Detection

r

r

r

i(r)

d i(r)
 dr

d2i(r)
 dr2

x

y

r

Two generic approaches to edge point detection:

— (significant) local extrema of a first derivative operator 

— zero crossings of a second derivative operator 



Marr / Hildreth Laplacian of Gaussian
A “zero crossings of a second derivative operator” approach 


Steps: 

1. Gaussian for smoothing 


2. Laplacian (     ) for differentiation where 


3. Locate zero-crossings in the Laplacian of the Gaussian (         ) where 


r2

r2f(x, y) =
@2f(x, y)

@x2
+

@2f(x, y)

@y2

r2G

r2G(x, y) =
�1

2⇡�4


2� x2 + y2

�2

�
exp�

x2+y2

2�2



Here’s a 3D plot of the Laplacian of the Gaussian (         )


. . . with its characteristic “Mexican hat” shape

Marr / Hildreth Laplacian of Gaussian

r2G



Laplacian of Gaussian

operator

Where is the edge?  Zero-crossings of bottom graph

1D Example: Continued

r2G
@G

@x
⌦ I(X,Y )

I(X, 245)

r2G

Lets consider a row of pixels in an image:



Image From: A. Campilho

Marr / Hildreth Laplacian of Gaussian



Marr / Hildreth Laplacian of Gaussian

Image From: A. Campilho



Assignment 1: High Frequency Image

original - smoothed

(scaled by 4, offset +128)

smoothed 

(5x5 Gaussian)

original

- =



Assignment 1: High Frequency Image

smoothed - original

(scaled by 4, offset +128)

smoothed 

(5x5 Gaussian)

original

- =



Assignment 1: High Frequency Image

Gaussian
delta function

Laplacian of Gaussian



Assignment 1: High Frequency Image

Gaussian
delta function

Laplacian of Gaussian



Comparing Edge Detectors 

Good detection: minimize probability of false positives/negatives (spurious/missing) edges


Good localization: found edges should be as close to true image edge as possible


Single response: minimize the number of edge pixels around a single edge 

Approach Detection Localization Single Resp Limitations

Sobel Gradient Magnitude 
Threshold Good Poor Poor Results in Thick 

Edges

Marr / Hildreth Zero-crossings of 2nd 
Derivative (LoG) Good Good Good Smooths 

Corners

Canny Local extrema of 1st 
Derivative Best Good Good



Comparing Edge Detectors 

Good detection: minimize probability of false positives/negatives (spurious/missing) edges


Good localization: found edges should be as close to true image edge as possible


Single response: minimize the number of edge pixels around a single edge 

Approach Detection Localization Single Resp Limitations

Sobel Gradient Magnitude 
Threshold Good Poor Poor Results in Thick 

Edges

Marr / Hildreth Zero-crossings of 2nd 
Derivative (LoG) Good Good Good Smooths 

Corners

Canny Local extrema of 1st 
Derivative Best Good Good



Example: Edge Detection

filter
response

Question: How many edges are there? 


Question: What is the position of each edge? 



filter
response

threshold

Question: How many edges are there? 


Question: What is the position of each edge? 

Example: Edge Detection



filter
response

threshold

Question: How many edges are there? 


Question: What is the position of each edge? 

Example: Edge Detection



Canny Edge Detector: A “local extrema of first derivative operator” approach

Steps: 


1. Apply directional derivatives of Gaussian 


2. Compute gradient magnitude and gradient direction 


3. Non-maximum suppression 

    — thin multi-pixel wide “ridges” down to single pixel width 


4. Linking and thresholding

    — Low, high edge-strength thresholds

    — Accept all edges over low threshold that are connected to edge over high   

         threshold 



Look at the magnitude of the smoothed gradient |rI|

14 Engineering Part IIB: 4F12 Feature Extraction

2D edge detection

The next step is to find the gradient of the smoothed
image S(x, y) at every pixel:

∇S = ∇(Gσ ∗ I)

=





∂(Gσ∗I)
∂x

∂(Gσ∗I)
∂y



 =





∂Gσ
∂x ∗ I

∂Gσ
∂y ∗ I





The following example shows |∇S| for a fruity im-
age:

(a) Original image (b) Edge strength |∇S|

14 Engineering Part IIB: 4F12 Feature Extraction

2D edge detection

The next step is to find the gradient of the smoothed
image S(x, y) at every pixel:

∇S = ∇(Gσ ∗ I)

=





∂(Gσ∗I)
∂x

∂(Gσ∗I)
∂y



 =





∂Gσ
∂x ∗ I

∂Gσ
∂y ∗ I





The following example shows |∇S| for a fruity im-
age:

(a) Original image (b) Edge strength |∇S|

|rI| =
q

g2x + g2y

[ Canny 1986 ]

|rI|Non-maximal suppression (keep points where         is a maximum in directions           )     ±rI

Canny Edge Detector



Non-maxima Suppression
Idea: suppress near-by similar detections to obtain one “true” result



Slide Credit: Kristen Grauman
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Non-maxima Suppression



Slide Credit: Kristen Grauman

Idea: suppress near-by similar detections to obtain one “true” result

Non-maxima Suppression



Non-maxima Suppression

Select the image maximum point across the width of the edge

Forsyth & Ponce (1st ed.) Figure 8.11

Gradient magnitude 

Gradient 

direction 



Forsyth & Ponce (2nd ed.) Figure 5.5 left

Value at q must be larger than interpolated values at p and r

Non-maxima Suppression
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Forsyth & Ponce (2nd ed.) Figure 5.5 left

Value at q must be larger than interpolated values at p and r

Non-maxima Suppression



Example: Non-maxima Suppression

Slide Credit: Christopher Rasmussen

Original Image Gradient Magnitude Non-maxima 

Suppression



Original Image Gradient Magnitude Non-maxima 

Suppression

We only found local extrema of gradient magnitude, but some extrema 
may be small, others large in value, which do we keep? Threshold? 

Example: Non-maxima Suppression



Example

Forsyth & Ponce (1st ed.) Figure 8.13 top



Forsyth & Ponce (1st ed.) Figure 8.13 top Figure 8.13 bottom left

Fine scale (          ), high threshold

Example

� = 1



Example

Forsyth & Ponce (1st ed.) Figure 8.13 top Figure 8.13 bottom middle

Fine scale (          ), high threshold� = 4



Example

Forsyth & Ponce (1st ed.) Figure 8.13 top Figure 8.13 bottom right

Fine scale (          ), low threshold  � = 4



Linking Edge Points

Original Image Gradient Magnitude Non-maxima 

Suppression

We only found local extrema of gradient magnitude, but some extrema 
may be small, others large in value, which do we keep? Threshold? 



Linking Edge Points

Original Image Gradient Magnitude Non-maxima 

Suppression

We only found local extrema of gradient magnitude, but some extrema 
may be small, others large in value, which do we keep? Threshold? 



Linking Edge Points

Assume the marked point is an edge point. Take the normal to the gradient at 
that point and use this to predict continuation points (either r or s) 

Forsyth & Ponce (2nd ed.) Figure 5.5 right



Linking Edge Points

Assume the marked point is an edge point. Take the normal to the gradient at 
that point and use this to predict continuation points (either r or s) 

Forsyth & Ponce (2nd ed.) Figure 5.5 right
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gradient magnitude > khigh
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gradient magnitude < klow
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klow < gradient magnitude < khigh

— definitely edge pixel

— definitely not edge pixel

— maybe an edge pixel



Edge Hysteresis

One way to deal with broken edge chains is to use hysteresis 


Hysteresis: A lag or momentum factor 


Idea: Maintain two thresholds          and 

— Use          to find strong edges to start edge chain

— Use         to find weak edges which continue edge chain 


Typical ratio of thresholds is (roughly): 


khigh

klow
= 2

khigh klow

khigh

klow



Canny Edge Detector

Original 

Image

Strong 

Edges

Weak 

Edges

Strong + 

connected 

Weak Edges



How do humans perceive boundaries? 

Edges are a property of the 2D image. 


It is interesting to ask: How closely do image edges correspond to 
boundaries that humans perceive to be salient or significant? 




Traditional Edge Detection 

Generally lacks semantics (i.e., too low-level for many task)



"Divide the image into some number of segments, where the segments 
represent ’things’ or ’parts of things’ in the scene. The number of segments is 
up to you, as it depends on the image. Something between 2 and 30 is likely to 
be appropriate. It is important that all of the segments have approximately equal 
importance." 


(Martin et al. 2004) 

How do humans perceive boundaries? 



Figure Credit: Martin et al. 2001

How do humans perceive boundaries? 



How do humans perceive boundaries? 

Figure Credit: Martin et al. 2001



Figure Credit: Szeliski Fig. 4.31. Original: Martin et al. 2004

Each image shows multiple (4-8) human-marked boundaries. Pixels are darker 
where more humans marked a boundary. 

How do humans perceive boundaries? 



Boundary Detection

We can formulate boundary detection as a high-level recognition task 

— Try to learn, from sample human-annotated images, which visual features or 
cues are predictive of a salient/significant boundary 


Many boundary detectors output a probability or confidence that a pixel is 
on a boundary 














— Consider circular windows of radii    at each pixel         
cut in half by an oriented line through the middle 


— Compare visual features on both sides of the cut 


— If features are very different on the two sides, the 
cut line probably corresponds to a boundary 


— Notice this gives us an idea of the orientation of the 
boundary as well 


Boundary Detection: Example Approach

✓
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r
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— Consider circular windows of radii    at each pixel         
cut in half by an oriented line through the middle 


— Compare visual features on both sides of the cut 
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cut line probably corresponds to a boundary 


— Notice this gives us an idea of the orientation of the 
boundary as well 
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Implementation: consider 8 discrete orientations (   )  and 3 scales (  )r✓
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An edge exists if there is a large difference  
between the distributions
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Features:

— Raw Intensity

— Orientation Energy

— Brightness Gradient

— Color Gradient 

— Texture gradient

Raw

Intensity

Bright

Grad

Color

Grad

Texture

Grad

Boundary Detection:



For each feature type 


— Compute non-parametric distribution (histogram) for left side

— Compute non-parametric distribution (histogram) for right side

— Compare two histograms, on left and right side, using statistical test


Use all the histogram similarities as features in a learning based approach that 
outputs probabilities (Logistic Regression, SVM, etc.) 

Boundary Detection:



Boundary Detection: Example Approach

Figure Credit: Szeliski Fig. 4.33. Original: Martin et al. 2004



Summary
Physical properties of a 3D scene cause “edges” in an image: 

— depth discontinuity

— surface orientation discontinuity

— reflectance discontinuity 

— illumination boundaries 


Two generic approaches to edge detection:

— local extrema of a first derivative operator → Canny

— zero crossings of a second derivative operator → Marr/Hildreth 


Many algorithms consider “boundary detection” as a high-level 
recognition task and output a probability or confidence that a pixel is on a 
human-perceived boundary 


