
Lecture 9: Edge Detection

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Menu for Today (October 7, 2024)
Topics:

— Edge Detection

— Canny Edge Detector

Readings:

— Today’s Lecture: Szeliski 7.1-7.2, Forsyth & Ponce 5.1 - 5.2

Reminders:

— Assignment 2: Scaled Representations, Face Detection and Image Blending

— Quiz 2 will be released today

— Lecture videos — stay tuned for some changes on Canvas

— Image Boundaries

Today’s “fun” Example: Colour Constancy

Image Credit: Akiyosha Kitoaka

Today’s “fun” Example: Colour Constancy

Image Credit: Akiyosha Kitoaka

Today’s “fun” Example: Colour Constancy
— Some people see a white and gold dress.

— Some people see a blue and black dress.

— Some people see one interpretation and then switch
to the other

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html

Today’s “fun” Example: Colour Constancy

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html

— Some people see a white and gold dress.

— Some people see a blue and black dress.

— Some people see one interpretation and then switch
to the other

Two pieces

of the dress

Average

colors

The basic pattern

of the dress

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html

Today’s “fun” Example: Colour Constancy

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html

Today’s “fun” Example: Colour Constancy

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html

Lecture 8: Re-cap Multi-Scale Template Matching

= Template

Correlation with a fixed-sized image only detects faces at specific scales

Lecture 8: Re-cap Multi-Scale Template Matching

= Template

Correlation with a fixed-sized image only detects faces at specific scales

Lecture 8: Re-cap Scaled Representations

Gaussian Pyramid

—Each level represents a low-pass filtered image at a different scale

—Generated by successive Gaussian blurring and downsampling

—Useful for image resizing, sampling

Laplacian Pyramid

—Each level is a band-pass image at a different scale

—Generated by differences between successive levels of a Gaussian Pyramid

—Used for pyramid blending, feature extraction etc.

From Template Matching to Local Feature Detection
Image Template

Test Image

From Template Matching to Local Feature Detection
Image Template

Test Image

Edge Template

Test Edge Image

From Template Matching to Local Feature Detection
Image Template Interest Points

Test Image

Edge Template

Test Edge Image

— Move from global template matching to local template matching

— Local template matching also called local feature detection

— Obvious local features to detect are edges and corners

From Template Matching to Local Feature Detection

Edge Detection

Goal: Identify sudden changes in image
intensity

This is where most shape information is
encoded

Example: artist’s line drawing (but artist
also is using object-level knowledge)

What Causes Edges?What causes an edge?

• Depth discontinuity
• Surface orientation

discontinuity
• Reflectance

discontinuity (i.e.,
change in surface
material properties)

• Illumination
discontinuity (e.g.,
shadow)

Slide credit: Christopher Rasmussen

Slide Credit: Christopher Rasmussen

Recall, for a 2D (continuous) function, f(x,y) 

Estimating Derivatives

@f

@x
= lim

✏!0

f(x+ ✏, y)� f(x, y)

✏

@f

@x
⇡ F (X + 1, y)� F (x, y)

�x

Recall, for a 2D (continuous) function, f(x,y) 

A (discrete) approximation is (forward difference):

Estimating Derivatives

@f

@x
= lim

✏!0

f(x+ ✏, y)� f(x, y)

✏

@f

@x
⇡ F (X + 1, y)� F (x, y)

�x

<latexit sha1_base64="kktV8oyb6PwXynpDeIcggEH+gLc=">AAACM3icbZDLSgMxFIYzXmu9VQU3boJVUNQyI6IuFUXUlYLVSqeUM2mmDc3MhCQjlqEbn8iNL+JCEBeKuPUB3JlpC14PBD7+8x9Ozu8JzpS27Uerr39gcGg4M5IdHRufmMxNTZ+rKJaEFknEI1nyQFHOQlrUTHNaEpJC4HF64TX30v7FFZWKReGZbglaCaAeMp8R0Eaq5o5dXwJJXAFSM+DYb39xqY1dEEJG17jrOlgqrTir+HIZr2HDq5fLxr1PuYbUW83l7YLdKfwXnB7kd3YPZm8+9hdOqrl7txaROKChJhyUKju20JUk3U44bWfdWFEBpAl1WjYYQkBVJenc3MaLRqlhP5LmhRp31O8TCQRKtQLPOAPQDfW7l4r/9cqx9rcrCQtFrGlIuov8mGMd4TRAXGOSEs1bBoBIZv6KSQNMPNrEnDUhOL9P/gvn6wVns7BxatI4Qt3KoDk0j5aQg7bQDjpEJ6iICLpFD+gZvVh31pP1ar11rX1Wb2YG/Sjr/RMtQqug</latexit>

@f

@X
⇡ F (X + 1, Y)� F (X,Y)

�X

<latexit sha1_base64="WRic39qr8hRVsi9cqNOmtlhuC1U=">AAADUHicrVJNb9QwEHWyBUr46C49chlRIW3VdJUgBFyQqoIQ3IrEtlttVivH6+xadWLLdmCjKOKnceHKpTeu/IVeOICos9ny0SIQEiNbfnoz82Y8mlhypk0QfHTc1sqly1dWr3rXrt+4udbu3NrXIleE9ongQg1irClnGe0bZjgdSEVxGnN6EB89qf0Hr6nSTGSvTCHpKMXTjCWMYGOpccdJokRhUkYSK8Mwh6T6gecVPIaIs3RcRlRqxkUGkWLTmcFKiTcQVNBkJ9351lmED8UmbIOl/GKz+p5oQyN7vD+Xi7CUSsyXss+6g63Qh8Naz2L/sNZ7SrnBMKigEYR/VfTP5LYX0v9B0fb4V81xeyPoBQuDiyBcgo2d3c77Tydv3+2N28fRRJA8pZkhHGs9DANpRmXdBuG08qJcU4nJEZ7SoYUZTqkelYuFqOCuZSaQCGVvZmDB/pxR4lTrIo1tZIrNTJ/31eTvfMPcJI9GJctkbmhGmkJJzsEIqLcLJkxRYnhhASaK2V6BzLCdk7E76NkhhOe/fBHs3+uFD3r3X9ppvECNraLb6A7qohA9RDvoOdpDfUScD86J88X56h67n91vLacJdZcvWke/WMs7Bfh2DZg=</latexit>

@f

@x
= lim

✏!0

f(x+ ✏, y)� f(x, y)

✏

@f

@x
⇡ F (X + 1, Y)� F (X,Y)

�X

@f

@x
⇡ F (X,Y)� F (X � 1, Y)

�X

@f

@x
⇡ F (X + 1, Y)� F (X � 1, Y)

�X

Recall, for a 2D (continuous) function, f(x,y) 

A (discrete) approximation is (backward difference):

Estimating Derivatives

@f

@x
= lim

✏!0

f(x+ ✏, y)� f(x, y)

✏

@f

@x
⇡ F (X + 1, y)� F (x, y)

�x

Recall, for a 2D (continuous) function, f(x,y) 

A (discrete) approximation is (central difference):

<latexit sha1_base64="WRic39qr8hRVsi9cqNOmtlhuC1U=">AAADUHicrVJNb9QwEHWyBUr46C49chlRIW3VdJUgBFyQqoIQ3IrEtlttVivH6+xadWLLdmCjKOKnceHKpTeu/IVeOICos9ny0SIQEiNbfnoz82Y8mlhypk0QfHTc1sqly1dWr3rXrt+4udbu3NrXIleE9ongQg1irClnGe0bZjgdSEVxGnN6EB89qf0Hr6nSTGSvTCHpKMXTjCWMYGOpccdJokRhUkYSK8Mwh6T6gecVPIaIs3RcRlRqxkUGkWLTmcFKiTcQVNBkJ9351lmED8UmbIOl/GKz+p5oQyN7vD+Xi7CUSsyXss+6g63Qh8Naz2L/sNZ7SrnBMKigEYR/VfTP5LYX0v9B0fb4V81xeyPoBQuDiyBcgo2d3c77Tydv3+2N28fRRJA8pZkhHGs9DANpRmXdBuG08qJcU4nJEZ7SoYUZTqkelYuFqOCuZSaQCGVvZmDB/pxR4lTrIo1tZIrNTJ/31eTvfMPcJI9GJctkbmhGmkJJzsEIqLcLJkxRYnhhASaK2V6BzLCdk7E76NkhhOe/fBHs3+uFD3r3X9ppvECNraLb6A7qohA9RDvoOdpDfUScD86J88X56h67n91vLacJdZcvWke/WMs7Bfh2DZg=</latexit>

@f

@x
= lim

✏!0

f(x+ ✏, y)� f(x, y)

✏

@f

@x
⇡ F (X + 1, Y)� F (X,Y)

�X

@f

@x
⇡ F (X,Y)� F (X � 1, Y)

�X

@f

@x
⇡ F (X + 1, Y)� F (X � 1, Y)

�X

Estimating Derivatives

@f

@x
= lim

✏!0

f(x+ ✏, y)� f(x, y)

✏

@f

@x
⇡ F (X + 1, y)� F (x, y)

�x

Recall, for a 2D (continuous) function, f(x,y) 

A (discrete) approximation is (forward difference):

Estimating Derivatives (most common)

@f

@x
= lim

✏!0

f(x+ ✏, y)� f(x, y)

✏

@f

@x
⇡ F (X + 1, y)� F (x, y)

�x

<latexit sha1_base64="kktV8oyb6PwXynpDeIcggEH+gLc=">AAACM3icbZDLSgMxFIYzXmu9VQU3boJVUNQyI6IuFUXUlYLVSqeUM2mmDc3MhCQjlqEbn8iNL+JCEBeKuPUB3JlpC14PBD7+8x9Ozu8JzpS27Uerr39gcGg4M5IdHRufmMxNTZ+rKJaEFknEI1nyQFHOQlrUTHNaEpJC4HF64TX30v7FFZWKReGZbglaCaAeMp8R0Eaq5o5dXwJJXAFSM+DYb39xqY1dEEJG17jrOlgqrTir+HIZr2HDq5fLxr1PuYbUW83l7YLdKfwXnB7kd3YPZm8+9hdOqrl7txaROKChJhyUKju20JUk3U44bWfdWFEBpAl1WjYYQkBVJenc3MaLRqlhP5LmhRp31O8TCQRKtQLPOAPQDfW7l4r/9cqx9rcrCQtFrGlIuov8mGMd4TRAXGOSEs1bBoBIZv6KSQNMPNrEnDUhOL9P/gvn6wVns7BxatI4Qt3KoDk0j5aQg7bQDjpEJ6iICLpFD+gZvVh31pP1ar11rX1Wb2YG/Sjr/RMtQqug</latexit>

@f

@X
⇡ F (X + 1, Y)� F (X,Y)

�X

Recall, for a 2D (continuous) function, f(x,y) 

A (discrete) approximation is (forward difference):

Estimating Derivatives (most common)

@f

@x
= lim

✏!0

f(x+ ✏, y)� f(x, y)

✏

@f

@x
⇡ F (X + 1, y)� F (x, y)

�x

<latexit sha1_base64="kktV8oyb6PwXynpDeIcggEH+gLc=">AAACM3icbZDLSgMxFIYzXmu9VQU3boJVUNQyI6IuFUXUlYLVSqeUM2mmDc3MhCQjlqEbn8iNL+JCEBeKuPUB3JlpC14PBD7+8x9Ozu8JzpS27Uerr39gcGg4M5IdHRufmMxNTZ+rKJaEFknEI1nyQFHOQlrUTHNaEpJC4HF64TX30v7FFZWKReGZbglaCaAeMp8R0Eaq5o5dXwJJXAFSM+DYb39xqY1dEEJG17jrOlgqrTir+HIZr2HDq5fLxr1PuYbUW83l7YLdKfwXnB7kd3YPZm8+9hdOqrl7txaROKChJhyUKju20JUk3U44bWfdWFEBpAl1WjYYQkBVJenc3MaLRqlhP5LmhRp31O8TCQRKtQLPOAPQDfW7l4r/9cqx9rcrCQtFrGlIuov8mGMd4TRAXGOSEs1bBoBIZv6KSQNMPNrEnDUhOL9P/gvn6wVns7BxatI4Qt3KoDk0j5aQg7bQDjpEJ6iICLpFD+gZvVh31pP1ar11rX1Wb2YG/Sjr/RMtQqug</latexit>

@f

@X
⇡ F (X + 1, Y)� F (X,Y)

�X

Differentiation is linear and shift invariant, and therefore can be implemented as a
convolution

�1 1

A (discrete) approximation is

�11

“forward difference” implemented as

�1 1

correlation convolution

from left

Estimating Derivatives

<latexit sha1_base64="kktV8oyb6PwXynpDeIcggEH+gLc=">AAACM3icbZDLSgMxFIYzXmu9VQU3boJVUNQyI6IuFUXUlYLVSqeUM2mmDc3MhCQjlqEbn8iNL+JCEBeKuPUB3JlpC14PBD7+8x9Ozu8JzpS27Uerr39gcGg4M5IdHRufmMxNTZ+rKJaEFknEI1nyQFHOQlrUTHNaEpJC4HF64TX30v7FFZWKReGZbglaCaAeMp8R0Eaq5o5dXwJJXAFSM+DYb39xqY1dEEJG17jrOlgqrTir+HIZr2HDq5fLxr1PuYbUW83l7YLdKfwXnB7kd3YPZm8+9hdOqrl7txaROKChJhyUKju20JUk3U44bWfdWFEBpAl1WjYYQkBVJenc3MaLRqlhP5LmhRp31O8TCQRKtQLPOAPQDfW7l4r/9cqx9rcrCQtFrGlIuov8mGMd4TRAXGOSEs1bBoBIZv6KSQNMPNrEnDUhOL9P/gvn6wVns7BxatI4Qt3KoDk0j5aQg7bQDjpEJ6iICLpFD+gZvVh31pP1ar11rX1Wb2YG/Sjr/RMtQqug</latexit>

@f

@X
⇡ F (X + 1, Y)� F (X,Y)

�X

A (discrete) approximation is

�11

“forward difference” implemented as

�1 1

correlation convolution

�11�1 1

“backward difference” implemented as

 correlation convolution

from left from right

Estimating Derivatives

<latexit sha1_base64="kktV8oyb6PwXynpDeIcggEH+gLc=">AAACM3icbZDLSgMxFIYzXmu9VQU3boJVUNQyI6IuFUXUlYLVSqeUM2mmDc3MhCQjlqEbn8iNL+JCEBeKuPUB3JlpC14PBD7+8x9Ozu8JzpS27Uerr39gcGg4M5IdHRufmMxNTZ+rKJaEFknEI1nyQFHOQlrUTHNaEpJC4HF64TX30v7FFZWKReGZbglaCaAeMp8R0Eaq5o5dXwJJXAFSM+DYb39xqY1dEEJG17jrOlgqrTir+HIZr2HDq5fLxr1PuYbUW83l7YLdKfwXnB7kd3YPZm8+9hdOqrl7txaROKChJhyUKju20JUk3U44bWfdWFEBpAl1WjYYQkBVJenc3MaLRqlhP5LmhRp31O8TCQRKtQLPOAPQDfW7l4r/9cqx9rcrCQtFrGlIuov8mGMd4TRAXGOSEs1bBoBIZv6KSQNMPNrEnDUhOL9P/gvn6wVns7BxatI4Qt3KoDk0j5aQg7bQDjpEJ6iICLpFD+gZvVh31pP1ar11rX1Wb2YG/Sjr/RMtQqug</latexit>

@f

@X
⇡ F (X + 1, Y)� F (X,Y)

�X

A (discrete) approximation is

�11

“forward difference” implemented as

�1 1

correlation convolution

�11�1 1

“backward difference” implemented as

 correlation convolution

from left from right

Estimating Derivatives

<latexit sha1_base64="kktV8oyb6PwXynpDeIcggEH+gLc=">AAACM3icbZDLSgMxFIYzXmu9VQU3boJVUNQyI6IuFUXUlYLVSqeUM2mmDc3MhCQjlqEbn8iNL+JCEBeKuPUB3JlpC14PBD7+8x9Ozu8JzpS27Uerr39gcGg4M5IdHRufmMxNTZ+rKJaEFknEI1nyQFHOQlrUTHNaEpJC4HF64TX30v7FFZWKReGZbglaCaAeMp8R0Eaq5o5dXwJJXAFSM+DYb39xqY1dEEJG17jrOlgqrTir+HIZr2HDq5fLxr1PuYbUW83l7YLdKfwXnB7kd3YPZm8+9hdOqrl7txaROKChJhyUKju20JUk3U44bWfdWFEBpAl1WjYYQkBVJenc3MaLRqlhP5LmhRp31O8TCQRKtQLPOAPQDfW7l4r/9cqx9rcrCQtFrGlIuov8mGMd4TRAXGOSEs1bBoBIZv6KSQNMPNrEnDUhOL9P/gvn6wVns7BxatI4Qt3KoDk0j5aQg7bQDjpEJ6iICLpFD+gZvVh31pP1ar11rX1Wb2YG/Sjr/RMtQqug</latexit>

@f

@X
⇡ F (X + 1, Y)� F (X,Y)

�X

“forward difference” implemented as

�1 1

correlation

�1 1

“backward difference” implemented as

 correlation

from left from right

Estimating Derivatives

Introduction 11

Feature extraction

The first stages of most computer vision algorithms
perform feature extraction. The aim is to reduce
the data content of the images while preserving the
useful information they contain.

The most commonly used features are edges, which
are detected along 1-dimensional intensity disconti-
nuities in the image. Automatic edge detection algo-
rithms produce something resembling a line drawing
of the scene.

Corner detection is also
common. Corner features
are particularly useful for
motion analysis.

�1 1

Introduction 11

Feature extraction

The first stages of most computer vision algorithms
perform feature extraction. The aim is to reduce
the data content of the images while preserving the
useful information they contain.

The most commonly used features are edges, which
are detected along 1-dimensional intensity disconti-
nuities in the image. Automatic edge detection algo-
rithms produce something resembling a line drawing
of the scene.

Corner detection is also
common. Corner features
are particularly useful for
motion analysis.

�1 1

“forward difference” implemented as

�1 1

correlation

�1 1

“backward difference” implemented as

 correlation

from left from right

Estimating Derivatives

Introduction 11

Feature extraction

The first stages of most computer vision algorithms
perform feature extraction. The aim is to reduce
the data content of the images while preserving the
useful information they contain.

The most commonly used features are edges, which
are detected along 1-dimensional intensity disconti-
nuities in the image. Automatic edge detection algo-
rithms produce something resembling a line drawing
of the scene.

Corner detection is also
common. Corner features
are particularly useful for
motion analysis.

�1 1

Introduction 11

Feature extraction

The first stages of most computer vision algorithms
perform feature extraction. The aim is to reduce
the data content of the images while preserving the
useful information they contain.

The most commonly used features are edges, which
are detected along 1-dimensional intensity disconti-
nuities in the image. Automatic edge detection algo-
rithms produce something resembling a line drawing
of the scene.

Corner detection is also
common. Corner features
are particularly useful for
motion analysis.

�1 1

“forward difference” implemented as

�1 1

correlation

�1 1

“backward difference” implemented as

 correlation

from left from right

Estimating Derivatives

Introduction 11

Feature extraction

The first stages of most computer vision algorithms
perform feature extraction. The aim is to reduce
the data content of the images while preserving the
useful information they contain.

The most commonly used features are edges, which
are detected along 1-dimensional intensity disconti-
nuities in the image. Automatic edge detection algo-
rithms produce something resembling a line drawing
of the scene.

Corner detection is also
common. Corner features
are particularly useful for
motion analysis.

�1 1

Introduction 11

Feature extraction

The first stages of most computer vision algorithms
perform feature extraction. The aim is to reduce
the data content of the images while preserving the
useful information they contain.

The most commonly used features are edges, which
are detected along 1-dimensional intensity disconti-
nuities in the image. Automatic edge detection algo-
rithms produce something resembling a line drawing
of the scene.

Corner detection is also
common. Corner features
are particularly useful for
motion analysis.

�1 1

“forward difference” implemented as

�1 1

correlation

�1 1

“backward difference” implemented as

 correlation

from left from right

Estimating Derivatives

Introduction 11

Feature extraction

The first stages of most computer vision algorithms
perform feature extraction. The aim is to reduce
the data content of the images while preserving the
useful information they contain.

The most commonly used features are edges, which
are detected along 1-dimensional intensity disconti-
nuities in the image. Automatic edge detection algo-
rithms produce something resembling a line drawing
of the scene.

Corner detection is also
common. Corner features
are particularly useful for
motion analysis.

�1 1

Introduction 11

Feature extraction

The first stages of most computer vision algorithms
perform feature extraction. The aim is to reduce
the data content of the images while preserving the
useful information they contain.

The most commonly used features are edges, which
are detected along 1-dimensional intensity disconti-
nuities in the image. Automatic edge detection algo-
rithms produce something resembling a line drawing
of the scene.

Corner detection is also
common. Corner features
are particularly useful for
motion analysis.

�1 1

“forward difference” implemented as

�1 1

correlation

�1 1

“backward difference” implemented as

 correlation

from left from right

Estimating Derivatives

Introduction 11

Feature extraction

The first stages of most computer vision algorithms
perform feature extraction. The aim is to reduce
the data content of the images while preserving the
useful information they contain.

The most commonly used features are edges, which
are detected along 1-dimensional intensity disconti-
nuities in the image. Automatic edge detection algo-
rithms produce something resembling a line drawing
of the scene.

Corner detection is also
common. Corner features
are particularly useful for
motion analysis.

�1 1

Introduction 11

Feature extraction

The first stages of most computer vision algorithms
perform feature extraction. The aim is to reduce
the data content of the images while preserving the
useful information they contain.

The most commonly used features are edges, which
are detected along 1-dimensional intensity disconti-
nuities in the image. Automatic edge detection algo-
rithms produce something resembling a line drawing
of the scene.

Corner detection is also
common. Corner features
are particularly useful for
motion analysis.

�1 1

A similar definition (and approximation) holds for
@f
@y

Estimating Derivatives

�1

1

Example 1D

0.5

0.4

0.3

0.2

�1 1

Example 1D

0.5

0.4

0.3

0.2

0.5 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.35 0.5 0.5Signal

�1 1

Example 1D

0.5

0.4

0.3

0.2

0.5 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.35 0.5 0.5Signal

Derivative

�1 1

Example 1D

0.5

0.4

0.3

0.2

0.5 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.35 0.5 0.5

0.0

Signal

Derivative

�1 1

Example 1D

0.5

0.4

0.3

0.2

0.5 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.35 0.5 0.5

0.0

Signal

Derivative

�1 1

Example 1D

0.5

0.4

0.3

0.2

0.5 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.35 0.5 0.5

0.0 0.0

Signal

Derivative

�1 1

Example 1D

0.5

0.4

0.3

0.2

0.5 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.35 0.5 0.5

0.0 0.0

Signal

Derivative

�1 1

Example 1D

0.5

0.4

0.3

0.2

0.5 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.35 0.5 0.5

0.0 0.0 -0.1

Signal

Derivative

�1 1

Example 1D

0.5

0.4

0.3

0.2

0.5 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.35 0.5 0.5Signal

Derivative 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.0 0.15 0.15 0.0 X

�1 1

Estimating Derivatives
Derivative in Y (i.e., vertical) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle)

Estimating Derivatives
Derivative in Y (i.e., vertical) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle)

Note: visualized by adding 0.5/128

Estimating Derivatives
Derivative in X (i.e., horizontal) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top right)

Derivative in Y (i.e., vertical) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle)

Estimating Derivatives

Derivative in X (i.e., horizontal) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top right)

Estimating Derivatives

A Sort Exercise

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

@f

@y
@f

@x

A Sort Exercise: Derivative in X Direction

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

@f

@y
@f

@x

�1 1

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

@f

@y
@f

@x

A Sort Exercise: Derivative in X Direction �1 1

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

@f

@y
@f

@x

A Sort Exercise: Derivative in X Direction �1 1

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

@f

@y
@f

@x

A Sort Exercise: Derivative in X Direction �1 1

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0

0 0 0 0 0

0 0 0 0 0

@f

@y
@f

@x

A Sort Exercise: Derivative in X Direction �1 1

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 -0.4

0 0 0 0 0

0 0 0 0 0

@f

@y
@f

@x

A Sort Exercise: Derivative in X Direction �1 1

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 -0.4 -0.3 -0.3 0

0 -0.4 -0.3 -0.3 0

0 0 0 0 0

0 0 0 0 0

@f

@y
@f

@x

A Sort Exercise: Derivative in X Direction �1 1

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

@f

@y
@f

@x

A Sort Exercise: Derivative in Y Direction
�1

1

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

@f

@y
@f

@x

A Sort Exercise: Derivative in Y Direction
�1

1

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

@f

@y
@f

@x

A Sort Exercise: Derivative in Y Direction
�1

1

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

@f

@y
@f

@x

A Sort Exercise: Derivative in Y Direction
�1

1

Estimating Derivatives

Question: Why, in general, should the weights of a filter used for differentiation
sum to 0?

�1 1

Estimating Derivatives

Question: Why, in general, should the weights of a filter used for differentiation
sum to 0?

Answer: Think of a constant image, . The derivative is 0. Therefore,
the weights of any filter used for differentiation need to sum to 0.

I(X,Y) = k

�1 1

Estimating Derivatives

Question: Why, in general, should the weights of a filter used for differentiation
sum to 0?

Answer: Think of a constant image, . The derivative is 0. Therefore,
the weights of any filter used for differentiation need to sum to 0.

NX

i=1

fi · k = k
NX

i=1

fi = 0 =)
NX

i=1

fi = 0

I(X,Y) = k

�1 1

Image noise tends to result in pixels not looking exactly like their neighbours,
so simple “finite differences” are sensitive to noise.

The usual way to deal with this problem is to smooth the image prior to
derivative estimation.

Estimating Derivatives

Smoothing and Differentiation

Edge: a location with high gradient (derivative)

Need smoothing to reduce noise prior to taking derivative

Need two derivatives, in x and y direction

We can use derivative of Gaussian filters

— because differentiation is convolution, and

— convolution is associative

Let denote convolution 

D ⌦ (G⌦ I(X,Y)) = (D ⌦G)⌦ I(X,Y)

⌦

1D Example

I(X, 245)

Lets consider a row of pixels in an image:

Where is the edge?

1D Example: Derivative

I(X, 245)

@I(X, 245)

@x

Lets consider a row of pixels in an image:

Where is the edge?

1D Example: Smoothing + Derivative

G

G⌦ I(X,Y)

I(X, 245)

Lets consider a row of pixels in an image:

1D Example: Smoothing + Derivative

G

G⌦ I(X,Y)

@G⌦ I(X,Y)

@x

I(X, 245)

Lets consider a row of pixels in an image:

@G

@x
⌦ I(X,Y)

@G

@x

1D Example: Smoothing + Derivative (efficient)
Lets consider a row of pixels in an image:

I(X, 245)

Partial Derivatives of GaussianDerivative of Gaussian

Slide credit: Christopher Rasmussen
Slide Credit: Christopher Rasmussen

Gradient Magnitude

Let be a (digital) image

Let and be estimates of the partial derivatives in the and
directions, respectively.

Call these estimates and (for short) The vector is the gradient

The scalar is the gradient magnitude

I(X,Y)

Ix(X,Y) Iy(X,Y)

[Ix, Iy]Ix Iy
q

I2x + I2y

x y

Image Gradient
The gradient of an image:

Image Gradient
The gradient of an image:

Image Gradient
The gradient of an image:

Image Gradient
The gradient of an image:

Image Gradient
The gradient of an image:

Image Gradient
The gradient of an image:

The gradient points in the direction of most rapid increase of intensity:

The gradient direction is given by:

Image Gradient
The gradient of an image:

The gradient points in the direction of most rapid increase of intensity:

(how is this related to the direction of the edge?)

The gradient direction is given by:

Image Gradient
The gradient of an image:

The gradient points in the direction of most rapid increase of intensity:

(how is this related to the direction of the edge?)

The edge strength is given by the gradient magnitude:

The gradient direction is given by:

Image Gradient
The gradient of an image:

The gradient points in the direction of most rapid increase of intensity:

(how is this related to the direction of the edge?)

The edge strength is given by the gradient magnitude:

The gradient direction is given by:

Image Gradient
The gradient of an image:

The gradient points in the direction of most rapid increase of intensity:

(how is this related to the direction of the edge?)

The edge strength is given by the gradient magnitude:

The gradient direction is given by:

Image Gradient
The gradient of an image:

The gradient points in the direction of most rapid increase of intensity:

(how is this related to the direction of the edge?)

By looking at the gradient magnitude we can reason about the
strength of the edge and by looking at the gradient direction we can

reason about the direction of the edge

The edge strength is given by the gradient magnitude:

The gradient direction is given by:

Image Gradient
The gradient of an image:

The gradient points in the direction of most rapid increase of intensity:

(how is this related to the direction of the edge?)

By looking at the gradient magnitude we can reason about the
strength of the edge and by looking at the gradient direction we can

reason about the direction of the edge

Increased smoothing:

— eliminates noise edges

— makes edges smoother and thicker

— removes fine detail

Gradient Magnitude

Scale
Increased smoothing:
• Eliminates noise edges.
• Makes edges smoother and thicker.
• Removes fine detail.

� = 1 � = 2

Forsyth & Ponce (2nd ed.) Figure 5.4

1. Use central differencing to compute gradient image (instead of first
forward differencing). This is more accurate.

2. Threshold to obtain edges

Sobel Edge Detector

Sobel Gradient Sobel EdgesOriginal Image

2

4
�1 0 1
�2 0 2
�1 0 1

3

5

1. Use central differencing to compute gradient image (instead of first
forward differencing). This is more accurate.

2. Threshold to obtain edges

Sobel Edge Detector

Sobel Gradient Sobel EdgesOriginal Image

2

4
�1 0 1
�2 0 2
�1 0 1

3

5

1. Use central differencing to compute gradient image (instead of first
forward differencing). This is more accurate.

2. Threshold to obtain edges

Sobel Edge Detector

Sobel Gradient Sobel EdgesOriginal Image

2

4
�1 0 1
�2 0 2
�1 0 1

3

5

1. Use central differencing to compute gradient image (instead of first
forward differencing). This is more accurate.

2. Threshold to obtain edges

Sobel Edge Detector

Sobel Gradient Sobel EdgesOriginal Image

Thresholds are brittle, we can do better!

2

4
�1 0 1
�2 0 2
�1 0 1

3

5

Comparing Edge Detectors

Comparing Edge Detectors

Good detection: minimize probability of false positives/negatives (spurious/missing) edges

Good localization: found edges should be as close to true image edge as possible

Single response: minimize the number of edge pixels around a single edge

Comparing Edge Detectors

Comparing Edge Detectors

Comparing Edge Detectors

Comparing Edge Detectors

Comparing Edge Detectors

Not single response

Comparing Edge Detectors

Not single response

Comparing Edge Detectors

Not good localizationNot single response

Comparing Edge Detectors

Not good localizationNot single response

Comparing Edge Detectors

Not good localizationNot single response

Comparing Edge Detectors

Good detection: minimize probability of false positives/negatives (spurious/missing) edges

Good localization: found edges should be as close to true image edge as possible

Single response: minimize the number of edge pixels around a single edge

Approach Detection Localization Single Resp Limitations

Sobel Gradient Magnitude
Threshold Good Poor Poor Results in Thick

Edges

Marr / Hildreth Zero-crossings of 2nd
Derivative (LoG) Good Good Good Smooths

Corners

Canny Local extrema of 1st
Derivative Best Good Good

Two Generic Approaches for Edge Detection

r

r

r

i(r)

d i(r)
 dr

d2i(r)
 dr2

x

y

r Threshold

Two Generic Approaches for Edge Detection

r

r

r

i(r)

d i(r)
 dr

d2i(r)
 dr2

x

y

r

Two generic approaches to edge point detection:

— (significant) local extrema of a first derivative operator

— zero crossings of a second derivative operator

Marr / Hildreth Laplacian of Gaussian
A “zero crossings of a second derivative operator” approach

Steps:

1. Gaussian for smoothing

2. Laplacian () for differentiation where

3. Locate zero-crossings in the Laplacian of the Gaussian () where

r2

r2f(x, y) =
@2f(x, y)

@x2
+

@2f(x, y)

@y2

r2G

r2G(x, y) =
�1

2⇡�4


2� x2 + y2

�2

�
exp�

x2+y2

2�2

Here’s a 3D plot of the Laplacian of the Gaussian ()

. . . with its characteristic “Mexican hat” shape

Marr / Hildreth Laplacian of Gaussian

r2G

Laplacian of Gaussian

operator

Where is the edge? Zero-crossings of bottom graph

1D Example: Continued

r2G
@G

@x
⌦ I(X,Y)

I(X, 245)

r2G

Lets consider a row of pixels in an image:

Image From: A. Campilho

Marr / Hildreth Laplacian of Gaussian

Marr / Hildreth Laplacian of Gaussian

Image From: A. Campilho

Assignment 1: High Frequency Image

original - smoothed

(scaled by 4, offset +128)

smoothed

(5x5 Gaussian)

original

- =

Assignment 1: High Frequency Image

smoothed - original

(scaled by 4, offset +128)

smoothed

(5x5 Gaussian)

original

- =

Assignment 1: High Frequency Image

Gaussian
delta function

Laplacian of Gaussian

Assignment 1: High Frequency Image

Gaussian
delta function

Laplacian of Gaussian

Comparing Edge Detectors

Good detection: minimize probability of false positives/negatives (spurious/missing) edges

Good localization: found edges should be as close to true image edge as possible

Single response: minimize the number of edge pixels around a single edge

Approach Detection Localization Single Resp Limitations

Sobel Gradient Magnitude
Threshold Good Poor Poor Results in Thick

Edges

Marr / Hildreth Zero-crossings of 2nd
Derivative (LoG) Good Good Good Smooths

Corners

Canny Local extrema of 1st
Derivative Best Good Good

Comparing Edge Detectors

Good detection: minimize probability of false positives/negatives (spurious/missing) edges

Good localization: found edges should be as close to true image edge as possible

Single response: minimize the number of edge pixels around a single edge

Approach Detection Localization Single Resp Limitations

Sobel Gradient Magnitude
Threshold Good Poor Poor Results in Thick

Edges

Marr / Hildreth Zero-crossings of 2nd
Derivative (LoG) Good Good Good Smooths

Corners

Canny Local extrema of 1st
Derivative Best Good Good

Example: Edge Detection

filter
response

Question: How many edges are there?

Question: What is the position of each edge?

filter
response

threshold

Question: How many edges are there?

Question: What is the position of each edge?

Example: Edge Detection

filter
response

threshold

Question: How many edges are there?

Question: What is the position of each edge?

Example: Edge Detection

Canny Edge Detector: A “local extrema of first derivative operator” approach

Steps:

1. Apply directional derivatives of Gaussian

2. Compute gradient magnitude and gradient direction

3. Non-maximum suppression

 — thin multi-pixel wide “ridges” down to single pixel width

4. Linking and thresholding

 — Low, high edge-strength thresholds

 — Accept all edges over low threshold that are connected to edge over high

 threshold

Look at the magnitude of the smoothed gradient |rI|

14 Engineering Part IIB: 4F12 Feature Extraction

2D edge detection

The next step is to find the gradient of the smoothed
image S(x, y) at every pixel:

∇S = ∇(Gσ ∗ I)

=





∂(Gσ∗I)
∂x

∂(Gσ∗I)
∂y



 =





∂Gσ
∂x ∗ I

∂Gσ
∂y ∗ I





The following example shows |∇S| for a fruity im-
age:

(a) Original image (b) Edge strength |∇S|

14 Engineering Part IIB: 4F12 Feature Extraction

2D edge detection

The next step is to find the gradient of the smoothed
image S(x, y) at every pixel:

∇S = ∇(Gσ ∗ I)

=





∂(Gσ∗I)
∂x

∂(Gσ∗I)
∂y



 =





∂Gσ
∂x ∗ I

∂Gσ
∂y ∗ I





The following example shows |∇S| for a fruity im-
age:

(a) Original image (b) Edge strength |∇S|

|rI| =
q

g2x + g2y

[Canny 1986]

|rI|Non-maximal suppression (keep points where is a maximum in directions) ±rI

Canny Edge Detector

Non-maxima Suppression
Idea: suppress near-by similar detections to obtain one “true” result

Slide Credit: Kristen Grauman

Idea: suppress near-by similar detections to obtain one “true” result

Non-maxima Suppression

Slide Credit: Kristen Grauman

Idea: suppress near-by similar detections to obtain one “true” result

Non-maxima Suppression

Non-maxima Suppression

Select the image maximum point across the width of the edge

Forsyth & Ponce (1st ed.) Figure 8.11

Gradient magnitude

Gradient

direction

Forsyth & Ponce (2nd ed.) Figure 5.5 left

Value at q must be larger than interpolated values at p and r

Non-maxima Suppression

Forsyth & Ponce (2nd ed.) Figure 5.5 left

Value at q must be larger than interpolated values at p and r

Non-maxima Suppression

Forsyth & Ponce (2nd ed.) Figure 5.5 left

Value at q must be larger than interpolated values at p and r

Non-maxima Suppression

Example: Non-maxima Suppression

Slide Credit: Christopher Rasmussen

Original Image Gradient Magnitude Non-maxima

Suppression

Original Image Gradient Magnitude Non-maxima

Suppression

We only found local extrema of gradient magnitude, but some extrema
may be small, others large in value, which do we keep? Threshold?

Example: Non-maxima Suppression

Example

Forsyth & Ponce (1st ed.) Figure 8.13 top

Forsyth & Ponce (1st ed.) Figure 8.13 top Figure 8.13 bottom left

Fine scale (), high threshold

Example

� = 1

Example

Forsyth & Ponce (1st ed.) Figure 8.13 top Figure 8.13 bottom middle

Fine scale (), high threshold� = 4

Example

Forsyth & Ponce (1st ed.) Figure 8.13 top Figure 8.13 bottom right

Fine scale (), low threshold � = 4

Linking Edge Points

Original Image Gradient Magnitude Non-maxima

Suppression

We only found local extrema of gradient magnitude, but some extrema
may be small, others large in value, which do we keep? Threshold?

Linking Edge Points

Original Image Gradient Magnitude Non-maxima

Suppression

We only found local extrema of gradient magnitude, but some extrema
may be small, others large in value, which do we keep? Threshold?

Linking Edge Points

Assume the marked point is an edge point. Take the normal to the gradient at
that point and use this to predict continuation points (either r or s)

Forsyth & Ponce (2nd ed.) Figure 5.5 right

Linking Edge Points

Assume the marked point is an edge point. Take the normal to the gradient at
that point and use this to predict continuation points (either r or s)

Forsyth & Ponce (2nd ed.) Figure 5.5 right

<latexit sha1_base64="oSR0m3XF45jCgdoIugsj1o/23B0=">AAACF3icbVC7SgNBFJ31bXxFLW0GH2AVdkXUSkQbywhGA0lYZmfvJkNmH8zcDYZl/8LGH7GwsYiIrXZ+iNZONil8HRg4nHPvnXuPl0ih0bbfrYnJqemZ2bn50sLi0vJKeXXtSsep4lDjsYxV3WMapIighgIl1BMFLPQkXHvds6F/3QOlRRxdYj+BVsjakQgEZ2gkt1xpItxg1lbMFxAhLWxMfcjpMW2GDDtekHVzN+uIdienbnnLrtgF6F/ijMnWyfbH/aC38Fl1y29NP+ZpaGZzybRuOHaCrYwpFFxCXmqmGhLGu6wNDUMjFoJuZcVdOd0xik+DWJlndivU7x0ZC7Xuh56pHG6qf3tD8T+vkWJw1MpElKQIER99FKSSYkyHIVFfKOAo+4YwroTZlfIOU4yjibJkQnB+n/yXXO1VnIPK/oVJ45SMMEc2yCbZJQ45JCfknFRJjXBySx7IgDxZd9aj9Wy9jEonrHHPOvkB6/UL6t2k0A==</latexit>

gradient magnitude > khigh

<latexit sha1_base64="4DhftVoESV1Cid/dbzi1Qp+0bK0=">AAACFnicbVC7SgNBFJ2N7/iKWioyGAQbw66IWlgEbSwTMCokIczO3k2GzD6YuauGZUu/wMZP0cZCEVux8xv8CSeJhUYPDBzOuffOvceNpdBo2x9Wbmx8YnJqeiY/Oze/sFhYWj7TUaI41HgkI3XhMg1ShFBDgRIuYgUscCWcu93jvn9+CUqLKDzFXgzNgLVD4QvO0EitwnYD4RrTtmKegBDpwMbEg4we0kbAsOP6aTdrpTK6ymirULRL9gD0L3G+SbG8dl/9vFm/r7QK7w0v4klgRnPJtK47dozNlCkUXEKWbyQaYsa7rA11Q0MWgG6mg7MyumkUj/qRMs+sNlB/dqQs0LoXuKayv6ge9frif149Qf+gmYowThBCPvzITyTFiPYzop5QwFH2DGFcCbMr5R2mGEeTZN6E4Iye/Jec7ZScvdJu1aRxRIaYJqtkg2wRh+yTMjkhFVIjnNySB/JEnq0769F6sV6HpTnru2eF/IL19gVluaPY</latexit>

gradient magnitude < klow

<latexit sha1_base64="+a6J/MT3Rm7MwsBigdSnzv/KU+w=">AAACKnicbVC5TgMxEPVyhnAFKGksDokq2kUIKCg4GsogkYCURJHXO5tY8R6yZ4Fotd9DQ80PUNOkAEW0/ALUOJsUXE+y9PTezHjmubEUGm17YE1MTk3PzBbmivMLi0vLpZXVmo4SxaHKIxmpa5dpkCKEKgqUcB0rYIEr4crtng39qxtQWkThJfZiaAasHQpfcIZGapVOGgHDjuun3ayVyug2o0e0gXCHaVsxT0CINO/AxIPc+1beEe1ORlulTbts56B/iTMmm8dbH49PN/OflVap3/AingRmNpdM67pjx9hMmULBJWTFRqIhZrzL2lA3NGQB6Gaan5rRbaN41I+UeWa3XP3ekbJA617gmsrhpvq3NxT/8+oJ+ofNVIRxghDy0Ud+IilGdJgb9YQCjrJnCONKmF0p7zDFOJp0iyYE5/fJf0ltt+zsl/cuTBqnZIQCWScbZIc45IAck3NSIVXCyT15Ji/k1Xqw+tbAehuVTljjnjXyA9b7F2ZerOI=</latexit>

klow < gradient magnitude < khigh

— definitely edge pixel

— definitely not edge pixel

— maybe an edge pixel

Edge Hysteresis

One way to deal with broken edge chains is to use hysteresis

Hysteresis: A lag or momentum factor

Idea: Maintain two thresholds and

— Use to find strong edges to start edge chain

— Use to find weak edges which continue edge chain

Typical ratio of thresholds is (roughly):

khigh

klow
= 2

khigh klow

khigh

klow

Canny Edge Detector

Original

Image

Strong

Edges

Weak

Edges

Strong +

connected

Weak Edges

How do humans perceive boundaries?

Edges are a property of the 2D image.

It is interesting to ask: How closely do image edges correspond to
boundaries that humans perceive to be salient or significant?

Traditional Edge Detection

Generally lacks semantics (i.e., too low-level for many task)

"Divide the image into some number of segments, where the segments
represent ’things’ or ’parts of things’ in the scene. The number of segments is
up to you, as it depends on the image. Something between 2 and 30 is likely to
be appropriate. It is important that all of the segments have approximately equal
importance."

(Martin et al. 2004)

How do humans perceive boundaries?

Figure Credit: Martin et al. 2001

How do humans perceive boundaries?

How do humans perceive boundaries?

Figure Credit: Martin et al. 2001

Figure Credit: Szeliski Fig. 4.31. Original: Martin et al. 2004

Each image shows multiple (4-8) human-marked boundaries. Pixels are darker
where more humans marked a boundary.

How do humans perceive boundaries?

Boundary Detection

We can formulate boundary detection as a high-level recognition task

— Try to learn, from sample human-annotated images, which visual features or
cues are predictive of a salient/significant boundary

Many boundary detectors output a probability or confidence that a pixel is
on a boundary

— Consider circular windows of radii at each pixel
cut in half by an oriented line through the middle

— Compare visual features on both sides of the cut

— If features are very different on the two sides, the
cut line probably corresponds to a boundary

— Notice this gives us an idea of the orientation of the
boundary as well

Boundary Detection: Example Approach

✓

(x, y)
r

(x, y)

r

— Consider circular windows of radii at each pixel
cut in half by an oriented line through the middle

— Compare visual features on both sides of the cut

— If features are very different on the two sides, the
cut line probably corresponds to a boundary

— Notice this gives us an idea of the orientation of the
boundary as well

Boundary Detection: Example Approach

✓

(x, y)
r

(x, y)

r

Implementation: consider 8 discrete orientations () and 3 scales ()r✓

✓

r

(x, y)

✓

r

(x, y)

✓

r

(x, y)

✓

r

(x, y)

✓

r

(x, y)

✓

r

(x, y)

An edge exists if there is a large difference
between the distributions

✓

r

(x, y)

✓

r

(x, y)

✓

r

(x, y)

✓

r

(x, y)

✓

r

(x, y)

✓

r

(x, y)

Features:

— Raw Intensity

— Orientation Energy

— Brightness Gradient

— Color Gradient

— Texture gradient

Raw

Intensity

Bright

Grad

Color

Grad

Texture

Grad

Boundary Detection:

For each feature type

— Compute non-parametric distribution (histogram) for left side

— Compute non-parametric distribution (histogram) for right side

— Compare two histograms, on left and right side, using statistical test

Use all the histogram similarities as features in a learning based approach that
outputs probabilities (Logistic Regression, SVM, etc.)

Boundary Detection:

Boundary Detection: Example Approach

Figure Credit: Szeliski Fig. 4.33. Original: Martin et al. 2004

Summary
Physical properties of a 3D scene cause “edges” in an image:

— depth discontinuity

— surface orientation discontinuity

— reflectance discontinuity

— illumination boundaries

Two generic approaches to edge detection:

— local extrema of a first derivative operator → Canny

— zero crossings of a second derivative operator → Marr/Hildreth

Many algorithms consider “boundary detection” as a high-level
recognition task and output a probability or confidence that a pixel is on a
human-perceived boundary

