
Lecture Notes, Week 2: Linear & Non-Linear Filtering

1 Images as Functions

In the past few lectures we studied how images are formed. The ultimate result of this process is light
that is incident on the imaging sensor. This light (number of photons) is measured by each of the sensor
elements creating a grid of quantized values. We will discuss the quantization process later, but for the
time being it is sufficient to assume that a sensor that has a grid of M×N elements will produce an M×N
array of integer values (or an image) typically represented as unit8, i.e., 0 to 255, with 0 corresponding to
few and 255 to many photons incident on a given element. A color image will get three channels for red,
blue and green portion of the spectra, each of which would be M ×N grid of integer values itself.

As such, the image I(X,Y ) can naturally be treated as a function. The domain of this function are
dimensions of the grid itself, i.e., (X,Y ) ∈ ([1,M ], [1, N ]) where M is the width of the image and N is
the height. The range of this function I(X,Y ) ∈ [0, 255] ∈ Z. Operation on the domain of the function
will lead to warping of an image (e.g., image rotation, scaling, distortion). One example of this would be
image rectification that would remove lens distortions and ensure that lines in the world appear as lines
in the image. We will not talk about this at this stage, but will come back to this later. Changes to the
range of this function, on the other hand, allow us to model many important concepts in vision ranging
from image enhancement (e.g., sharpening, increasing contrast) to solving specific problems (e.g., finding
certain patterns or even objects in an image).

Specifically, there are two classes of range operators to consider: point operators and neighborhood
operators. Point operations are modeled by functions that are applied to individual pixels in an image.
Specifically, for point operations I ′(X,Y ) = g(I(X,Y )), where I(X,Y ) is the input and I ′(X,Y ) an output
image; the g(x) is the operation being applied. For example g(x) = x − c where c is a positive constant
will darken an image; g(x) = x/c where c > 1 will reduce the contrast, while with c < 1 will increase
the contrast. Point operators are limited, however, and neighborhood operators are strictly more powerful
(e.g., any point operator can be expressed as a neighborhood operator with a neighborhood of 1 × 1).
Neighborhood operators ensure that the output at a particular pixel is a function of a, typically symmetric,
M ×M neighborhood around that pixel in the input. In other words, for neighborhood operators

I ′(X,Y ) = g(I(X − k : X + k, Y − k : Y + k)),where k = (M − 1)/2. (1)

For convenience, we will assume that M is odd; but note that this does not need to be true in general and
later we will look at filters where M is even (e.g., a derivative filter). The main benefit of assuming that
M is odd is that it makes it easier and more intuitive to apply the filter. For example, result of applying
an odd sized filter would be same whether it is applied left-to-right or right-to-left.

Whether we are dealing with point or neighborhood operators, such operators can either be linear
or non-linear. A linear operator is one where the output is a weighted combination of the inputs, while
non-linear operator would correspond to more complex interactions between the inputs (e.g., a product of
all pixels in the neighborhood would not be linear). We will mostly focus on linear operators which will
give rise to linear filtering, but will consider a few non-linear operators as well.

2 Linear Filtering

Many important effects can be modeled by a simple class of neighborhood operators, mainly linear operators
or linear filters. To apply a linear filter one must first construct a filter or kernel to apply – F (X,Y ), which
is an array, similar to an image. We will assume that F (X,Y ) has a size of M ×M (where M is an odd
integer) with an indexing coordinate system origin defined at the center of the filter. The values in the
filter will correspond to the contribution (or weight) a neighborhood pixel will have towards the output.
For example, averaging of the neighborhood pixels can be obtained by letting F (i, j) = 1

M2 for all (i, j).

1



Lecture Notes, Week 2: Linear & Non-Linear Filtering

The filter/kernel is applied on an image by superimposing it in each image location and computing the
following equation:

I ′(X,Y ) =
k∑

i=−k

k∑
j=−k

F (i, j)I(X + i, Y + j) Discrete Correlation

which simply computes a filter weighted sum of the pixels in the neighborhood; k = (M − 1)/2. Note that
the values in the kernel F (i, j) will modulate the output of the linear filtering defined in this way. For
example, some kernels will blur an image, others will make it sharper; some will allow us to quantify how
localizable the neighborhood may be, or even find whether the neighborhood contains a specific object
(more on this later). The equation above characterizes mathematical construct known as correlation. One
interpretation of correlation is similarity of the filter to the neighborhood it is applied to; this is easy to see
if one vectorizes the filter and the patch which would result in equation above implementing a dot product.

Example. The 1D “image” being correlated with a 1D 3×3 kernel will result in the following computation:

I ′(X,Y ) =
1

4
[1, 2, 1]⊗ [9, 5, 2, 1, 3, 4, 6, 2, 4]

= [ · , 21, 10, 7, 11, 17, 18, 14, · ].

To see that this operation is linear it can be expressed as a matrix-vector multiplication with kernel
replicated as follows:

I ′(X,Y ) =
1
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1, 2, 1, 0, 0, 0, 0, 0, 0
0, 1, 2, 1, 0, 0, 0, 0, 0
0, 0, 1, 2, 1, 0, 0, 0, 0
0, 0, 0, 1, 2, 1, 0, 0, 0
0, 0, 0, 0, 1, 2, 1, 0, 0
0, 0, 0, 0, 0, 1, 2, 1, 0
0, 0, 0, 0, 0, 0, 1, 2, 1


·



9
5
2
1
3
4
6
2
4


.

Notably, the above equation is a discrete version of correlation defined on the continuous domain:

I ′(X,Y ) =

∫ ∞
−∞

∫ ∞
−∞

F (i, j)i(X + i, Y + j) di dj. Continuous Correlation

A closely related mathematical construct is convolution, which we will denote by ⊗. Correlation and
convolution differ only in indexing for the image. Notably:

I ′(X,Y ) =

k∑
i=−k

k∑
j=−k

F (i, j)I(X − i, Y − j) Discrete Convolution

=
k∑

i=−k

k∑
j=−k

F (−i,−j)I(X + i, Y + j).

Again, this is a discrete version of continuous convolution defined as follows:

I ′(X,Y ) =

∫ ∞
−∞

∫ ∞
−∞

F (i, j)I(X − i, Y − j) di dj. Continuous Convolution
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For convenience we will actually mostly talk about convolution as opposed to correlation, because convolu-
tion has better mathematical properties. However, it is pretty easy to show that: (1) convolving an image
with a filter (or kernel) F (X,Y ) is equivalent to correlating an image with a filter F ′(X,Y ) where F ′(X,Y )
is simply F (X,Y ) rotated by 180 degrees; and (2) for a filter, or kernel, that is 180 degree symmetric the
convolution and correlation will result in the same output. In practice, it is most convenient to perform
all symbolic operations as convolutions, but then apply the resulting filter as correlation (by rotating it)
since correlation is more intuitive to apply (i.e., you are likely to make fewer mistakes) in practice.

2.1 Border Effects

Convolution (and correlation) as defined above, is not defined for placements of the filter close to the

border of the image. In particular, superimposing a filter at a pixel that is closer than (M−1)
2 to the

left/right/top/bottom border will make the filter extend beyond the domain of the image, making the
operation undefined. There are a number of ways to handle such cases. Mainly:

• Ignore Borders. This will leave the computations at the border “undefined” and result in an output
image that is smaller than the input. In particular convolving an image of size N×N in this way with
a filter that is M ×M results in an output that is (N −M + 1)× (N −M + 1). This is inconvenient,
particularly as multiple filters are applied in succession or filters of different sizes are applied to an
image (e.g., output of filtering with a small kernel will be larger, compared to the output obtained
using a larger kernel).

• Zero Padding. Perhaps the most common approach (and one that has mathematical backing) is to
pad the image with enough zero columns and rows on each side to ensure that the size of the output
image is the same as the input. This requires padding the image with (M−1)

2 zero rows / columns on
each side. The downside of this is that this may introduce artifacts at the border, e.g., darkening in
the output for smoothing filters. This strategy is prevalent in Convolutional Neural Nets (CNNs).

• Assuming Periodicity. Assuming periodicity effectively ensures that filter that extends past the
image wraps around from left-to-right and top-to-bottom respectively. This alleviates averaging with
zero elements which happens with zero padding but may create other artifacts if color/texture of the
image between the ends of the image does not match well.

• Border Reflection. This strategy copies rows/columns locally by reflecting them over the edge of
the image. Similarly to periodicity it alleviates artifacts at the border. Another way to think about
it, is that some pixels in the border neighborhood will contribute 2× as much to the weighted sum,
because they will be counted both in the original and reflected counterpart.

2.2 Properties of Convolutions

Linear filters and convolutions have a number of important properties that one should consider.

• Superposition: Assuming F1 and F2 are two filters of the same size (if they are not, then the
smaller of the two can be padded with zeros to match size of the larger) then,

(F1 + F2)⊗ I(X,Y ) = F1 ⊗ I(X,Y ) + F2 ⊗ I(X,Y ). (2)

This can be convenient and efficient when constructing filters that are combinations of other filters
(see sharpening in the slides which is a difference between a delta filter and a smoothing filter).
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• Scaling: Assuming F is a filter and k is a scalar,

(kF )⊗ I(X,Y ) = F ⊗ (kI(X,Y )) = k(F ⊗ I(X,Y )). (3)

Again this can be convenient and efficient. For example, implementing box filter by pulling out the
normalizing constant reduces computation of convolution from O(M2N2) to O(N2). Why? Once
the normalizing constant is pulled out, box filter becomes all ones which effectively serve as selection
(no multiplication is needed) and only a single multiplication with the normalizing constant after a
sum is required per application of the filter in a given location.

• Shift Invariance: Output of linear filtering is local and does not depend on the position of the
filter, only on the values of pixels under it. This also implies sift equivariance, i.e. moving pixels
left/right/up/down will result in similar move of outputs after filtering. Shift variant operation would
be the one that takes into account, for example, position of where the filter is applied itself. For
example, computing average X position within the neighborhood would be a shift variant operator.

Convolution will have additional properties, not shared with correlation. Mainly:

• Associativity: Assuming F1 and F2 are two filters then

F2 ⊗ (F1 ⊗ I(X,Y )) = (F2 ⊗ F1)⊗ I(X,Y ). (4)

This is a very convenient property that allows one to pre-convolve filters before applying them to an
image. This property also allows us to apply separable 1D filters in succession.

• Symmetry: Similarly, assuming F1 and F2 are two filters then

(F1 ⊗ F2)⊗ I(X,Y ) = (F2 ⊗ F1)⊗ I(X,Y ). (5)

Characterization Theorem: Any linear, shift invariant operation can be expressed as convolution. This
shows that a large class of operators can be expressed as convolutions.

3 Efficient Implementation of Convolution

Naive implementation of convolution (or correlation) requires O(M2N2) operations. We saw above that
for certain filters the computation can be reduced. Here we consider another class of filters for which this
would be the case, as well as the general case that would work for all filters.

Separability: A 2D (or 3D) filter that can be expressed as an outer-product of 1D filters is separable.
Alternatively, a filter F represented as a matrix is separable if rank(F ) = 1. Similarly, in continuous space,
the function of multiple variables is separable if it can be expressed as a product of functions of each of the
variables involved. Separable filters, or kernels, can be applied efficiently by filtering the image successively
by the corresponding 1D filters. This stems directly from associativity property. Doing so, results in drastic
reduction of computations from O(M2N2) to O(MN2), more specifically to 2MN2 computation for an
N × N image being filtered by M ×M filter. Note, not all filters are separable, e.g., box and Gaussian
are, while, pillbox is not.

The Convolution Theorem: Convolution theorem states that convolution in FFT space reduces to
complex multiplication. In other words, convolution can be applied by first transforming both an image
and a filter to FFT space, performing multiplication there, and then applying inverse FFT mapping to
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obtain the result. This works for any filter and computation in FFT space is independent of filter size!
Considering that fastest FFT and inverse FFT has complexity O(N2 logN) the overall complexity of
this process is approximately O(N2 logN + M2 logM + N2) = O(N2 logN). So as long as logN < M2

efficiencies will result. Specifically, performing convolution in this way will be efficient for large filters and
may actually be slower for smaller ones.

4 Smoothing/Blurring Filters

Smoothing or blurring filters are good for removing unwanted noise from images. They will also prove
useful when resizing images, allowing to reduce aliasing artifacts. We will consider three such linear filters.
Different filters, in general, would be optimal for different types of noise characteristics. For example, salt
and pepper noise would generally be better removed by non-linear median filter; while Gaussian noise by
a linear Gaussian filter.

Box Filter. Box filter, which we saw before, of size M ×M has value of 1
M2 in each of the array cells.

The effect is that box filter uniformly averages pixel values in a squared neighborhood. Larger size of the
filter (i.e., larger M) results in more blurring. In terms of the properties, box filter is: (1) not rotationally
symmetric1, and (2) is separable, allowing efficient implementation. Finally, it can be easily shown that
box filter cannot well approximate geometric defocus, or blur, that happens in out-of-focus imaging. The
reason for this is that a single point in focus will be blurred in squared shape using a box filter.

Pillbox Filter. Pillbox filter is similar to the box filter in that it also uniformly blurs the image pixels
in the neighborhood, but is doing so in circular patter (instead of a square pattern). Pillbox filter can be
defined by first defining a continuous function:

fr(x, y) =
1

πr2

{
1 if x2 + y2 ≤ r2
0 otherwise

and then sampling and evaluating it at the center of each cell coordinate within a filter. Specifically a 3×3
pillbox filter with r = 1 is obtained as follows:

 f1(−1,−1) f1(0,−1) f1(1,−1)
f1(−1, 0) f1(0, 0) f1(1, 0)
f1(−1, 1) f1(0, 1) f1(1, 1)

 =
π

5


0 1

π 0

1
π

1
π

1
π

0 1
π 0

 .

Pillbox filter is (1) rotationally symmetric; (2) is not separable, and (3) does model geometric out-of-focus
blurring well. Similar to a box filter, larger filter size will result in more blurring. Note that the extent of
the function in the continuous space is 2r × 2r this means that for a given filter of size M ×M it should
be set to r = M

2 . Alternatively, for a given value of parameter r it is easy to find a filter size that would
capture the extent, or support, of the pillbox filter. Mainly, we can set M = 2r rounded to the next odd
integer. For example, for r = 5, M should be 11, resulting in pillbox filter that is 11× 11. Note that while
the continuous function is normalized to sum to 1 over the continuous domain, sampling and evaluating it
a discrete set of points corresponding to filter array cell centers will generally produce values that over the
filter will not sum to 1 (see example above which will sum to 5

π ). To ensure that filter does not change the
overall brightness of the image being filtered, it is therefore necessary to normalize the filter to sum to 1.

1A filter is rotationally symmetric implies that amount of smoothing perfromed by the filter will be the same in all directions.
A rotationally symmetric filter will not introduce directional edges to the original image.
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Gaussian Filter. Similar to the pillbox filter, the Gaussian filter is defined by a continuous function that
is sampled and evaluated at the filter cell locations. The function is defined as follows:

Gσ(x, y) =
1

2πσ2
exp

[
−x

2 + y2

2σ2

]
.

Gaussian filter is perhaps the most common filter in vision; we will be using it a lot. The reason for
this is that it is as close to the perfect low-pass filter as we have. The parameter σ is standard deviation
and controls the spread of the Gaussian function. Important thing to note about the Gaussian is that
contributions of the pixels in the neighborhood will depend on the distance from the center pixel. Mainly,
there is exponential drop off, meaning that pixels in the neighborhood that are further away from the
center pixel, for which filter response is computed, will contribute less. How much less depends on σ.

A larger σ will result in more smoothing and more gradual fall off of contributions of pixels with the
distance. A smaller σ will result in less smoothing and sharper drop off of contribution from the neighbors.
A very small σ will result in no blurring/smoothing at all. Similar to the pillbox filter above, because
we are discretizing a continuous function, we need to choose a filter size that would capture majority of
function support (meaning majority of function domain where it has non-zero values). We also need to
normalize the filter after sampling, for the same reasons discussed above, i.e., a normalized continuous
function sampled at a set of discrete positions will generally not sum up to 1. Finding an appropriate size
of the filter for a given value of σ is relatively easy, because we know that majority of Gaussian support
(99.7% to be exact) lays between −3σ and +3σ; hence most of the domain of the Gaussian function on
which it is non-zero can be captures by 6σ. The filter size M can hence be obtained by 6σ rounded to the
next odd integer. For example, Gaussian with σ = 1.2 would require a filter of size 1.2× 6 = 7.2 rounded
to the next odd integer, so 9× 9.

Gaussian filter is rotationally symmetric and is also separable, meaning that a 2D Gaussian filter can
be efficiently implemented by two 1D Gaussian filters applied in succession (one along the rows and one
along the columns). Further, additional property of a Gaussian is that convolving two Gaussians together
results in another Gaussian. Specifically, convolving image with two 2D Gaussians with certain standard
deviation σ is equivalent to convolving image with a single Gaussian with larger standard deviation –

√
2σ.

5 Relationship to CNNs

Convolutional Neural Networks (CNNs) is a class of models that has recently been achieving state of
the art results on variety of computer vision tasks from object detection and pixel-level segmentation,
to generating descriptions of images in natural language form. CNNs are built of convolutional layers
– functional operators that take the form of linear filtering. These layers are applied in succession and
ultimately result in predictions from the CNN network. Each CNN layer takes the form of linear filter
typically applied with zero-padding to the input. The main difference with what we studied in class so
far is that (a) the values in these filters are learned (instead of being defined by a function) and (b) that
after computing the output of the filtering at each layer a simple non-linearity is applied. Usually the non-
linearity takes the form of Rectified Linear Unit (ReLU). ReLU simply zeros out elements of the output
array that result in value below 0. Note that while we have not seen this so far, filter values that are < 0
can result in output value that would be below 0. We will study why non-linearities are necessary in CNNs
as well as how we can potentially learn parameters of the CNNs, comprising in part of the filters.
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6 Non-linear Filters

The ReLU operation discussed above makes CNN layer non-linear (even though the core operation of
filtering within it linear). Other non-linear filtering operators and functions exists. We will mainly study
two of them in this class: Median and Bilateral.

Median. Median is perhaps the simplest non-linear denoising filter. It receives as input a neighborhood of
M×M pixel values centered at a pixel. However, rather than taking a weighted combination of these values,
it simply computes a median statistic on them. Specifically it sorts the values from the neighborhood from
lowest to highest and takes one from the middle of the sorted array as an output. Note that while median
filter is shift invariant it cannot be implemented as convolution. Median filter is particularly useful for
removing salt and paper or speckle noise.

Bilateral Filter. Bilateral is an edge-preserving non-linear smoothing filter. Similar to a Gaussian filter,
the filter weights for the Bilateral filter depend on spatial distance from the center pixel. Hence pixels closer
to the center pixel have higher contribution to the output as compared to pixels further away. However,
unlike the Gaussian filter, Bilateral filter weights also depend on the greyscale/color difference between
center pixel and neighborhood pixels. In other words, pixels that are equally far away with similar value
to the center pixel will contribute more than pixels with dissimilar value. This can be expressed as a
product of two Gaussian kernels (a domain and a range kernel). Therefore a Bilateral filter can be written
as follows:

Bσd,σr(x, y, I(X,Y )) =
1

2πσ2
exp

[
−x

2 + y2

2σ2d

]
· 1

2πσ2
exp

[
−(I(X + x, Y + y)− I(X,Y ))2

2σ2r

]
.

Worth noting that the kernel now is a function of the image itself and will change for each superposition,
making this filter costly to apply. Applying bilateral filters many times results in cartooning effect where
an image starts to look like a set of discrete regions where within each region the color is uniform.
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