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Shortest Path via the Value Function

e Assume isotropic holonomic vehicle

Do) = i(t) = ult), |u)] <1 =

e Plan paths to target set 7 optimal by cost
metric

¢
Y(xo) = 1r(1f) ' c(z(s)) ds,
z(+) Jto

t; = argmin{s | z(s) € T}.

Top: Goal location (blue circle) and
. obstacles (grey).

equation Middle: Contours of value function.
Bottom: Gradients of value function

IV ()| = c(z), forz € Q\ T; (subsampled grid).

e Value function ¢ (z) satisfies Eikonal

Y(x) =0, forxz e T.
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Path Extraction from Value Function

e Given the value function, optimal state Q_‘ AR AAAARAL
feedback action AL
Vo@ | —
o Typical robot makes decisions on a periodic ot
cycle with period §t so path is given by | 1
ti+1 = tz + At7 4 2 0 2 - & B 0
Top: Fixed stepsize explicit (forward
2(tisr) = 2(t) + At ' (2(L,)). iy (
. . Middle: Adaptive stepsize implicit
e Even variable step integrators for (ode15s).
l‘(t) =u* (x(t)) struggle Bottom: Sampled gradient algorithm.
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2. Background: Gradient Sampling and Particle Filters
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Gradient Sampling for Nonsmooth Optimization |

Gradient sampling algorithm [Burke, Lewis & Overton, SIOPT 2005]

Gradient samples (yellow) and
. consensus direction (red).
e Evaluate gradient at k& random samples

within e-ball of current point x(¢;)

M) (t;) = x(t;) + e 6™, -
PP (&) = V(B ().

e Determine consensus direction )
Plotted in state space.

p*(t;) = argmin ||p||
pEP(t;)

P(t;) = conv{pM(t,), ..., p") (1)}, #, -

P(t;) approximates the Clarke 74
subdifferential at z(¢;).

Plotted in gradient space.
Convex hull (blue) also shown.
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Gradient Sampling for Nonsmooth Optimization Il

Gradient sampling algorithm [Burke, Lewis & Overton, SIOPT 2005]
Gradient samples (yellow) and
If ||p* (tz)” #0 consensus direction (red).
o Choose step length s by Armijo line search
along p*(¢;).
e Set new point

p*(ti)

x(ti_H) = a:(tz) — Sm

Plotted in state space.
If {|p*(£:)] = 0

o There is a Clarke e-stationary point inside
the sampling ball.

e Shrink € and resample.

Plotted in gradient space.
Convex hull (blue) also shown.
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Particle Filters

Monte Carlo localization (MCL) [Thrun, Burgard & Fox, Probabilistic Robotics,
2005] is often used to estimate current state for mobile robots.

e State estimate is a collection of N weighted samples
{(w(k)(t),x(k)(t)) for k = 1...N}.
e Predict: Draw new sample state z(*)(¢;,1) when action u(t;) is taken
M (i) ~ pla(tior) [ F) (), u(ts).
e Correct: Update weights w(*)(¢;, 1) when sensor reading arrives
w® (t; 1) = p(sensor reading | ¥ (t;11)) w™ (t;),

e Resample states and reset weights regularly.

We always work with particle cloud after resampling (when all weights are unity).
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3. Gradient Sampling Particle Filter
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Narrow Corridor Simulation

Choosing action by AMCL expected state (roughly the mean of particle locations).

o Chattering despite very accurate localization.
e Chattering remains even as step size reduced.

Simulated traversal of a narrow corridor in ROS/Gazebo.
Estimated (blue) and true (green) paths shown.
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The Gradient Sampling Particle Filter (GSPF)

Choosing action by GSPF.

e Sample the gradients at the particle locations.

o If |lp*(¢;)]] # 0, then p*(t;) is a consensus descent direction for current state
estimate.

_

Simulated traversal of a narrow corridor in ROS/Gazebo.
Estimated (blue) and true (green) paths shown.
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4. Dealing with Stationary Points
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Finite Wall Scenario

If ||p*(¢;)|| = O there is no consensus direction.

Finite wall scenario displays the two
typical types of stationary points:
e Minimum (left side): Path is
complete(?)
e Saddle point (right side): Seek a
descent direction.

w

Cost. Value approximation.
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Classify the Stationary Point

Quadratic ansatz for value function in neighborhood of samples

Y(z) = 3(z — ) A(x —2.) + b7 (x —2.) 4+ ¢

o Fit to the existing gradient samples

/
Vi(z) = Az — z.) +b.
9() = Alw — ) + L—
e Solve by least squares : \\//
Iﬂi{} 1p™ (t:) — Az™ () — b|| p(x) at minimum.

and set ., = A~ b,

o Examine eigenvalues {\;}9_, of A

» If all A; > 0, local minimum.
» If any A\; < 0, corresponding eigenvectors
are descent directions.

(x) at saddle.
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Classification Experiments: Minimum

State space gradient samples
(gold) and eigenvectors of
Hessian of v (x) (blue).
Inward pointing eigenvector
arrow pairs correspond to
positive eigenvalues.

State space view of path.
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Classification Experiments: Saddle

7 Gradient space convex hull
L]

& \

—

~—

\

State space eigenvectors of
Hessian of ¢ (x).

State space view of path.
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Resolve the Stationary Point

Three potential responses to detection of a stationary point

e Stop: If it is a minimum and localization is
sufficiently accurate.

o Reduce sampling radius: Collect additional sensor
data to improve localization estimate.

» Rate and/or quality of sensing can be reduced when
consensus direction is available.

» Localization should be improved by independent
sensor data. T

Resolution by using an
improved sensor.

e Vote: If it is a saddle and improved localization is
infeasible.
> Let v be the eigenvector associated to a negative Resolution by voting.
eigenvalue and a = 3, sign(—v”p®).
» Travel in direction sign(a)v.
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5. Concluding Remarks
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Path Planning Under Uncertainty

Differential games and the Hamilton-Jacobi-Isaacs equation

» [Evans & Souganidis, Indiana University Mathematics Journal, 1984]
Robust MPC

» [Mayne, Automatica, 2014]
Asymptotically optimal sampling-based planners in belief space

» [Bry & Roy, ICRA 2011]
» [Luders & How, ACC 2014]

Efficient POMDP solvers

» [Pineau, Gordon, & Thrun, [JCAI 2003]
> [Bai, Hsu, & Lee, IJRR 2014]

QMDP
» [Littman, Cassandra, & Kaelbling, ICML 1995]
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Conclusions

Gradient sampling particle filter (GSPF)

o Utilizes natural uncertainty in system state
to reduce chattering due to non-smooth
value function and/or numerical
approximation.

e Easily implemented on existing planners and

state estimation. ™
Future work \ @
e Nonholonomic dynamics.
o Convergence proof. O [0

e Scalability to more particles.
Actions synthesized by nearest

neighbor lookup on RRT* tree. GSPF
is not only for value functions.
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