
CpSc 418/538E Scaling Laws for Transistors February 14, 2007

Today’s lecture: Scaling Laws for Transistors

I. Resistors, Capacitors, and Transistors
II. Delays of gates and wires
III. Scaling

Announcements:

Midterm on Feb. 28: Papers assigned for midterm:

• Architectural and Organizational Tradeoffs in the Design of the MultiTitan CPU. Norman P. Jouppi.

• A 0.18-µm CMOS IA-32 Processor With a 4-GHz Integer Execution Unit. Glenn Hinton, Michael Upton,
et al.

Note that the IA-32 paper was previously assigned on the reading list but was never covered in lecture. I plan to
post practice questions within a week.

1 Resistors, Capacitors, and Transistors

1.1 Resistors

A resistor restricts the flow of electrical current. For our water analogies, think of a narrow pipe – the narrower or
longer the pipe, the more pressure is required to achieve thesame flow.

The simplest model for an electrical resistor is to assume a linear relationship between voltage (∼pressure) and
current (i.e. flow). This is known as Ohm’s law:

I = V
R

or, equivalently V = IR
(1)

To keep the units straight, voltage is measured in “volts”, where one volt is one joule per coulomb. A joule is a unit of
energy (one kilogram∗meter2/second2), and a coulomb is a unit of electrical charge (−6.24∗1018 electrons). Current
is measured in “amperes ’ where one ampere is one coulomb per second. Resistance is measured in ohms, where one
ohm is one volt per ampere.

Now consider a rectangular bar of some resistive material (you can sketch it in in figure 1). Letℓ be the length of
the bar, andh andw be the height and width respectively. We expect the resistance to be proportional to the length,ℓ,
and inversely proportional to the cross-sectional area,wh. The constant of proportionality is called the restivity ofthe
material and is typically written with the Greek letterρ. We have

R = ℓ
whρ (2)

Note that resistivity is measured in units of ohms∗ meters.
On an integrated circuit, the thickness of a conducting layer is typically determined by the manufacturing process –

the designer can’t change it. Thus, we can divide the resistivity by the thickness of the layer to get the sheet resisitivity:

ρ� = ρ
h (3)

Sheet resisitivity is in units of ohms, typically spoken as “ohms per square”.

1



Figure 1: A resistor as a rectangular bar of metal

Figure 2: Resistors in series and parallel
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Figure 3: A capacitor as a two parallel conductors

It’s handy to know formulas for resistors in series and resistors in parallel. They are:

Rseries = R1 + R2

1/Rparallel = (1/R1) + (1/R2)
(4)

1.2 Capacitors

A capacitor stores charge. A capacitor is typically formed by having two conductors separated by an insulator (you
can draw the sketch in figure 3). To continue our water examples, a capacitor is like a water tank. You can pump water
into the tank (from the bottom), but the more water that you pump in, the more pressure you need to exert to add more
water. If we assume a linear relationship, we get

Q = CV (5)

whereQ is the charge stored in the capacitor in coulombs, andC is the “capacitance” of the capaictor. Capacitance is
measured in “farads” where one farad is one coulomb per volt.

The capacitance of a water tank is proportional to its cross-sectional area. Likewise, if a capacitor consists of
two parallel plates, each a rectangle that isw by ℓ, then the capacitance is proportional towℓ. To figure out the
constant of proportionality, we need to look a little more closely at our water tank analogy. In a water tank, pressure
builds as the tank is filled because of the weight of the water.Electrons don’t weigh very much. Instead, the pressure
develops because electrons are repelled from one another. Charge builds up on the plates of a capacitor because the
electrons on one plate are attracted to the positive chargeson the other plate, even though they can’t get there through
the insulator. We can think of the insulator as a flexible barrier. Although the electrons can’t get through, they can
deform it and make room for more electrons. The thicker the insulator is, the harder it will be to deform. Thus, the
capacitance is inversely proportional tod, the distance between the two plates, and we writeǫ to indicate the constant
of proportionality. We get:

C = wl
d ǫ (6)

whereǫ is the “dielectric constant” in units of farads per meter. Itis common to measure the “dielectric constant” as a
multiple of that for a vacuum:

ǫ = ǫ0ǫR (7)

whereǫ0 is the dielectric constant for a vacuum (ǫ0 = 8.854 ∗ 10−12 F/m), andǫR is the relative dielectric constant.
For glass (the common insulator between layers in a chip), the relative dielectric constant is about 4. For silicon nitride
(the insulator between the gate and the channel, the relative dielectric constant is about 7.5. About the lowest dielectric
constant for a solid is for teflon which is around 2.
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Figure 4: A transistor

We can take our formulas above, and derive more useful formulas for understanding capacitors. First, we can
calculate how much energy it takes to charge a capacitor from0 to V volts. Note that a volt times a coulomb is a
joule. For each coulomb that we shove into the capacitor, we can calculate what pressure is applied. This gives us the
formula:

E =

∫ u

0

Cu du

= 1
2CV 2

(8)

Note thatC du is the incremental charge, andu is the pressure that must be exerted to move that charge onto the
capacitor.

Next, we can differentiate equation 5 with respect to time and get

d
dtQ = C d

dt

I = C d
dt

(9)

where we’ve used the relationship that current is the rate ofchange of charge. In all of these formulas, we’ve as-
sumed thatC is constant. When capacitors are formed by semiconductors (i.e. around the transistors), the actual
capacitance depends on the voltages of the various semiconductors. You can think of this as a water tank with varying
cross-sectional area (curvy walls). For the analysis presented in this class, we’ll make the simplifying approximation
that capacitances don’t vary. This obliterates many details of real circuit behaviour, but will be adequate for us to
understand the basic scaling and asymptotic properties.

It’s handy to know formula for capacitors in parallel (we won’t be worrying about capacitors in series in this class).
The formula is:

Cparallel = C1 + C2 (10)

1.3 Transistors

As you can draw in figure 4, a transistor can be modeled as a switch that has some resistance when it is on. Likewise,
it has capacitances from its gate, source, and drain, to ground. We writeℓ for the “length” of the transistor, this is the
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Figure 5: A simple RC circuit

distance from the source to the drain. We writew for the “width” of the transistor, this is the parallel extend of the
source and drain along the channel. Typically, transistorsare much wider than they are long, but these are this is the
standard terminology.

When a n-channel transistor is conducting, the gate has attracted a thin layer of electrons to the top of the channel.
We can think of this as a sheet of resistive material, and we’ll write ρn� to denote the sheet resisitivity of this material.
From this, we have that the on-resistance of a n-channel device is

Ron,n(w, ℓ) = ℓ
w ρn� (11)

Likewise, we can writeρp� fo the sheet resistivity of a p-channel transistor when it isconducting to get

Ron,p(w, ℓ) = ℓ
w ρp� (12)

The capacitance of the gate and the channel form a parallel plate capacitor, and we conclude:

Cgate(w, ℓ) = wℓ
dSi3N4

ǫSi3N4 (13)

Finally, the source and drain capacitances are proportional to the width of the transistor. The source capacitor is formed
by the source-depletionLayer-substrate sandwich and likewise for the drain.

2 Delays

2.1 RC circuits

The critical thing to understand is that the product of a resistance and a capacitance is a time:

1ohm∗ 1farads = ((1volt)/(1ampere)) ∗ ((1coulomb)/(1volt))
= (1coulomb)/(1ampere)
= (1coulomb)/((1coulomb)/(1second))
= 1second

(14)

Consider the circuit you can draw in figure 5. Let the switch set the input to0 volts for all time up to time0. Then,
the voltage on the capacitor will be0 volts at time 0. At time0 flip the switch to set the input voltage toU volts. We
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Figure 6: A two-inverter chain

have:
IR(t) = (Vin(t) − Vout(t))/R, current through the resistor
IC(t) = C d

dtVout, current through the capactor
IR(t) = IC(t), Kirchoff’s current law

d
dtVout(t) = Vin(t)−Vout(t)

RC , a little algebra
Vout(0) = 0, assumed
Vin(t) = U, assumed, fort > 0

Vout(t) = (1 − e−t/RC)U

(15)

Thus,RC is the time for the signal to transition to(1 − e−1) ≈ 0.63 of its final value. Since we’re not worried about
little constants here and there in this presentation, we’llconsider this to be the transition time of the circuit.

3 Circuits with transistors

Typically, we want our circuits to go fast while using as little energy as possible. Note that making a transistor longer
increases both its capacitance and its resistance. Neitherhelps us with our speed or energy goals. Thus, we’ll assume
that all transistors are designed to their minimum allowed width. In real circuits, there may be reasons to occasionally
violate this assumption, but this rule is good enough for us to figure out the big picture trends. Letℓ0 be this minimum
allowed transistor length. We can simplify our earlier formulas by defining:

rn = ℓ0 ∗ ρn,�

rp = ℓ0 ∗ ρp,�

cg = ℓ0
dSi3N4

ǫSi3N4

(16)

Typically, rp ≈ 2rn. Let α = rp/rn. We’ll make the additional assumption that gates are designed so that the
resistance of the pull-up and pull-down networks are equal.For example, for an inverter, this means that the width of
the p-channel transistor will beα times that of the n-channel one. This isn’t necessarily optimal, but it’s close enough,
and it simplifies the analysis.
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First, we’ll consider an inverter that drives one other inverter that is the same size as itself (draw it in figure 6). For
the delay, we get:

3.1 Scaling transistor sizes

λ
Let λ be a scaling factor of a chip. For example,λ could be the minimum length for a transistor. We useλ to
compare different manufacturing processes. For simplicity, we’ll assume that all dimensions on a chip scale at
the same rate. Thus, if we reduce the minimum transistor length be a factor of two, the minimum wire width,
wire spacing, wire thickness, gate-oxide thickness, etc.,are all reduced by a factor of 2 as well.

Number of logic gates on a chip:λ−2

Assuming that the size of the chip remains constant, then thenumber of gates scales as1/λ2. Thus, if we reduce
the minimum transistor length by a factor of two and scale everything accordingly, the number of logic gates
increases by a factor of four.

Power supply voltage:λ
As transistors are made smaller, the operating voltage mustbe reduced. Otherwise, the thin oxide layer between
the gate and the substrate of the transistors would break down. If λ is the minimum transistor length, a good
rule-of-thumb is that the power supply voltage,Vdd, is roughlyλ ∗ 10volts

µ , where1µ is one micron (i.e.10−6

meters). See also the notes on voltage scaling below.

Transistor resistance:1
Scaling the gate-oxide thickness and the power supply voltage byλ leaves the strength of the electric field
(volts/meter) unchanged. This makes sense, we were scalingvoltage to prevent a breakdown of the gate-oxide.

With a constant strength for the field, the concentration of electrons under in the channel under the gate of
a n-channel transistor with the gate high is constant under scaling (and likewise for holes with a p-channel
transistor). This means that the sheet resistance of the channel for a conducting transistor remains unchanged
under scaling. The scaling preserves the aspect ratio (width/length) of the transistor. Thus, the resistance of an
“on” transistor is unchanged by scaling. A good rule-of-thumb is that the resistance for a n-channel transistor is
20 ∗ 103Ω/� for a n-channel transistor, and twice that for a p-channel device.

Transistor capacitance:λ
Recall that capacitance is given bywℓ

d ǫ. Scalingw, ℓ, andd all by λ scales the capacitance byλ2/λ = λ.

Note that this means that a transistor of fixed width has the same capacitance under process scaling. A good
rule of thumb is that gate capacitance is2fF/µ, where1fF = 10−15F . Drain capacitance is rougly0.7 to 1.0
times the gate capacitance. With good careful layout, the drain capacitance can often be reduced to half of this
value.

Gate delay:λ
Recall that delay is resistance times capacitance. For circuits where the delay is dominated by the logic gates (i.e.
there are no “long” wires), this scales with the product of the transistor resistance and the transistor capacitance.
Thus, gate delay scales asλ: if the minimum transistor length is reduced by a factor of two, the logic circuits
will be twice as fast, and the clock frequency can be twice as high.

A common measure of “gate delay” is the delay for a simple inverter driving four inverters of the same size.
This is called a “fanout-of-four inverter delay” and abbreviatedFO4 . A good rule of thumb is

FO4 = λ ∗ 0.5ns
µ (17)

It’s worth noting that in manufacturing processes that havebeen optimized for high performance (i.e., processes
for general purpose CPUs), the manufacturing people do sometricks that make the effective length of the
transistor about half what is drawn. Simply put, they get thesource and drain regions to spread out under the
gate by a carefully controlled amount. Because of this, theFO4 delay for these processes (e.g. the manufacturing
process for a Pentium-4) is about half what you would expect from the stated feature size.
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Wire Resistance:λ−1

Recall that the resistance of a rectangular bar is(ℓ/(wh))ρ. Scalingw, ℓ, andd all by λ scales the resistance by
λ/(λ2) = λ−1.

Note that the transition from aluminum wiring to copper provided a one-time, reduction of wire resistance by
about 30much opportunity to go further in this direction (the resistivity of silver is only slighly lower than that
of copper).

Wire Capacitance:λ
Same reasoning as for transistor capacitance.

Short Wire Delay:1
Just multiply wire resistance by wire capacitance. Note that this is for wires whose length scale with everything
else. This is what is meant by “Short Wire”.

Long Wire Delay (unbuffered):λ−2

Real designs have some fraction of their wires that cross theentire chip. Thus,w andh scale withλ, but ℓ
remains fixed. We now get a capacitance of((w + h)r/d)ǫ wherer is the distance across the chip,w is the wire
width, h is wire height, andd is wire spacing. We have thatw, h, andd scale asλ, andr andǫ are constant.
Thus, long wire capacitance scales as1.

The resistance of a long wire isr/(wh))ρ which scales asλ−2 thus long wire delay scales asλ−2.

Buffer spacing:λ1.5

As noted earlier, the clock period for logic scales asλ. Wire delay can be reduced by inserting buffers. Wire
delay is minimized by choosing the separation between wiressuch that the wire segment delay equals the buffer
delay. We’ve shown that buffer delay (a special case of gate delay) scales asλ. Thus, we need to choose our
wire length,x such that wire delay scales asλ as well. The delay for a wire segment of lengthℓ is:

δ(ℓ) = ℓ
whρ ∗ (w+h)ℓ

d ǫ

Noting thatw, h, andd scale asλ, andρ andǫ are constant, we get thatδ(ℓ) scales asℓ2/λ2. Thus, if the wire
delay is to scale asλ, thenℓ2 must scale asλ3. This means thatℓ must scale asλ1.5.

Thus, if we reduce the transistor length by a factor of two, the number of (smaller) gates that a wire can cross
perFO4 delay goes down by a factor of

√
2. If the clock period remains a fixed number ofF04 delays, then the

number of optimally buffered segments that can be traversedin a clock period remains constant under scaling.
However, these segments traverse

√
λ fewer gates. Thus, the number of gates within one clock period of another

goes down by a factor ofλ. In other words, the region of synchronous design shrinks.

Power consumption (first analysis): 1 Power is, to a rough approximation,α2 nCV 2
ddf wheren is the number of logic

gates;C is the capacitance per logic gate;Vdd is the power supply voltage;f is the clock frequency; andα is
the fraction of clock cycles that each node changes. If we just scale the design,α remains constant;n goes as
λ−2; C goes asλ; Vdd goes asλ, andf goes asλ−1. We multiply it all together and see that power consumption
remains constant. This seems like wondeful news.

3.2 Power consumption (what went wrong?)

Voltage scaling down slower than predicted
Made possible by better materials and manufacturing.
Improves performance.
Necessitated by leakage currents.

Wires are taller than predicted by simple scaling. Taller wires reduce resistance, improves performance.
More trade-offs in wiring.
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3.3 Voltage scaling
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