CpSc 418/538E Scaling Laws for Transistors February 147200

Today’s lecture: Scaling Lawsfor Transistors

|. Resistors, Capacitors, and Transistors
I1. Delays of gates and wires
I11. Scaling

Announcements:
Midterm on Feb. 28: Papers assigned for midterm:

¢ Architectural and Organizational Tradeoffs in the Desi§the MultiTitan CPU. Norman P. Jouppi.

e A 0.18-um CMOS IA-32 Processor With a 4-GHz Integer Execution Unler® Hinton, Michael Upton,
etal.

Note that the 1A-32 paper was previously assigned on thamgdidt but was never covered in lecture. | plan to
post practice questions within a week.

1 Resistors, Capacitors, and Transistors

1.1 Resistors

A resistor restricts the flow of electrical current. For owater analogies, think of a narrow pipe — the narrower or
longer the pipe, the more pressure is required to achievesatme flow.

The simplest model for an electrical resistor is to assumpeat relationship between voltagegressure) and
current (i.e. flow). This is known as Ohm’s law:
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To keep the units straight, voltage is measured in “voltdiere one volt is one joule per coulomb. A joule is a unit of
energy (one kilogrammetef /second), and a coulomb is a unit of electrical charges(24 « 10'8 electrons). Current
is measured in “amperes ' where one ampere is one coulomkepend. Resistance is measured in ohms, where one
ohm is one volt per ampere.

Now consider a rectangular bar of some resistive mater@al an sketch it in in figure 1). Létbe the length of
the bar, andv andw be the height and width respectively. We expect the registimbe proportional to the length,
and inversely proportional to the cross-sectional ai¢a, The constant of proportionality is called the restivitytiog
material and is typically written with the Greek letjerWe have

R = 5 €

Note that resistivity is measured in units of ohsiseters.
On an integrated circuit, the thickness of a conductingr@y/ypically determined by the manufacturing process —
the designer can’t change it. Thus, we can divide the regishy the thickness of the layer to get the sheet resisjtivi
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Sheet resisitivity is in units of ohms, typically spoken abiths per square”.



Figure 1: A resistor as a rectangular bar of metal

Figure 2: Resistors in series and parallel



Figure 3: A capacitor as a two parallel conductors

It's handy to know formulas for resistors in series and tesssin parallel. They are:

Rseres = Ri1+ Ro (4)
1/Rparallel (1/R1) + (1/R2)

1.2 Capacitors

A capacitor stores charge. A capacitor is typically formgdbving two conductors separated by an insulator (you
can draw the sketch in figure 3). To continue our water exasppleapacitor is like a water tank. You can pump water
into the tank (from the bottom), but the more water that yompin, the more pressure you need to exert to add more
water. If we assume a linear relationship, we get

Q = CV ®)

where(Q is the charge stored in the capacitor in coulombs,@nslthe “capacitance” of the capaictor. Capacitance is
measured in “farads” where one farad is one coulomb per volt.

The capacitance of a water tank is proportional to its ceestional area. Likewise, if a capacitor consists of
two parallel plates, each a rectangle thatidy ¢, then the capacitance is proportionaltd. To figure out the
constant of proportionality, we need to look a little moresdly at our water tank analogy. In a water tank, pressure
builds as the tank is filled because of the weight of the wdkerctrons don’t weigh very much. Instead, the pressure
develops because electrons are repelled from one anotharg€builds up on the plates of a capacitor because the
electrons on one plate are attracted to the positive chargé®e other plate, even though they can’t get there through
the insulator. We can think of the insulator as a flexible iearrAlthough the electrons can'’t get through, they can
deform it and make room for more electrons. The thicker tisalator is, the harder it will be to deform. Thus, the
capacitance is inversely proportionakipthe distance between the two plates, and we writeindicate the constant
of proportionality. We get:

C = e (6)
wheree is the “dielectric constant” in units of farads per meteisitommon to measure the “dielectric constant” as a
multiple of that for a vacuum:

€ = €p€R (7

wheree is the dielectric constant for a vacuum (= 8.854 * 10~!2 F/m), andex, is the relative dielectric constant.
For glass (the common insulator between layers in a chip)katative dielectric constant is about 4. For silicon dgri
(the insulator between the gate and the channel, the reldigNectric constant is about 7.5. About the lowest dielect
constant for a solid is for teflon which is around 2.



Figure 4: A transistor

We can take our formulas above, and derive more useful fasnigr understanding capacitors. First, we can
calculate how much energy it takes to charge a capacitor fanV” volts. Note that a volt times a coulomb is a
joule. For each coulomb that we shove into the capacitor,amecalculate what pressure is applied. This gives us the
formula:
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Note thatC du is the incremental charge, andis the pressure that must be exerted to move that charge lomto t
capacitor.
Next, we can differentiate equation 5 with respect to time get
d _
7@
I

c4 9
By ©)
where we've used the relationship that current is the ratehahge of charge. In all of these formulas, we've as-
sumed that”' is constant. When capacitors are formed by semicondudtersafound the transistors), the actual
capacitance depends on the voltages of the various semicturd. You can think of this as a water tank with varying
cross-sectional area (curvy walls). For the analysis pitesien this class, we’ll make the simplifying approximatio
that capacitances don't vary. This obliterates many det#ilreal circuit behaviour, but will be adequate for us to
understand the basic scaling and asymptotic properties.

It's handy to know formula for capacitors in parallel (we \itdye worrying about capacitors in series in this class).
The formulais:
Cparallel = C’1 + C’2 (10)

1.3 Transistors

As you can draw in figure 4, a transistor can be modeled as altsthiat has some resistance when it is on. Likewise,
it has capacitances from its gate, source, and drain, tangkdtve write/ for the “length” of the transistor, this is the



Figure 5: A simple RC circuit

distance from the source to the drain. We writdor the “width” of the transistor, this is the parallel exteof the
source and drain along the channel. Typically, transisicgamuch wider than they are long, but these are this is the
standard terminology.

When a n-channel transistor is conducting, the gate hactatt a thin layer of electrons to the top of the channel.
We can think of this as a sheet of resistive material, and weite p,, to denote the sheet resisitivity of this material.
From this, we have that the on-resistance of a n-channeteévi

Ronn(w,¢) = £pnO (11)
Likewise, we can write, fo the sheet resistivity of a p-channel transistor when@oisducting to get
Ron,p(wa 0) = %PPD (12)

The capacitance of the gate and the channel form a paradle papacitor, and we conclude:

Cgate(w, Z) = wEN4 €Si3N, (13)

dsig

Finally, the source and drain capacitances are propottiotize width of the transistor. The source capacitor is fedm
by the source-depletionLayer-substrate sandwich andiiesfor the drain.

2 Delays
2.1 RCcircuits

The critical thing to understand is that the product of astasice and a capacitance is a time:

lohms 1farads = ((1volt)/(lamperg) = ((1coulomb/(1volt))
= (lcoulomb/(1lampere

(

1

(14)

1coulomb/((1coulomb/(1secondl)
second

Consider the circuit you can draw in figure 5. Let the switchtse input to0 volts for all time up to tim&). Then,
the voltage on the capacitor will lievolts at time 0. At time) flip the switch to set the input voltage &6 volts. We



Figure 6: A two-inverter chain

have:
Ir(t) = (Vin(t) — Vour(t))/R, current through the resistor
Io(t) = O%th, current through the capactor
Ir(t) = Ic(t), Kirchoff's current law
AV (t) = Yl Veull) 3 jitte algebra (15)

Vout(0) = 0,assumed
Vin(t) = U,assumed, fot > 0

Vour(t) = (1—eMRO)U

Thus,RC is the time for the signal to transition {@ — e~1) ~ 0.63 of its final value. Since we’re not worried about
little constants here and there in this presentation, wettisider this to be the transition time of the circuit.

3 Circuitswith transistors

Typically, we want our circuits to go fast while using additenergy as possible. Note that making a transistor longer
increases both its capacitance and its resistance. Néighgs us with our speed or energy goals. Thus, we'll assume
that all transistors are designed to their minimum allowédthv In real circuits, there may be reasons to occasionally
violate this assumption, but this rule is good enough foougure out the big picture trends. L&t be this minimum
allowed transistor length. We can simplify our earlier fatas by defining:

Tn = EO * Pp,0
n = Lo * Pp,0 (16)
€9 = dS'L;)N4 €Sig Ny

Typically, r, ~ 2r,. Leta = r,/r,. We'll make the additional assumption that gates are desigio that the
resistance of the pull-up and pull-down networks are ede@d.example, for an inverter, this means that the width of
the p-channel transistor will be times that of the n-channel one. This isn't necessarilynogkj but it's close enough,
and it simplifies the analysis.



First, we’'ll consider an inverter that drives one other mwethat is the same size as itself (draw it in figure 6). For

the delay, we get:

3.1 Scaling transistor sizes

A

Let A be a scaling factor of a chip. For examplecould be the minimum length for a transistor. We us®
compare different manufacturing processes. For simpligie’ll assume that all dimensions on a chip scale at
the same rate. Thus, if we reduce the minimum transistotthelng a factor of two, the minimum wire width,
wire spacing, wire thickness, gate-oxide thickness, ate.all reduced by a factor of 2 as well.

Number of logic gates on a chip—2

Assuming that the size of the chip remains constant, thenuhwer of gates scales 85\2. Thus, if we reduce
the minimum transistor length by a factor of two and scalegéng accordingly, the number of logic gates
increases by a factor of four.

Power supply voltage\

As transistors are made smaller, the operating voltage beustduced. Otherwise, the thin oxide layer between
the gate and the substrate of the transistors would break.dtw\ is the minimum transistor length, a good
rule-of-thumb is that the power supply voltadéy, is roughly \ x w"T"“S, wherely is one micron (i.e10~6
meters). See also the notes on voltage scaling below.

Transistor resistance:

Scaling the gate-oxide thickness and the power supply geltay A leaves the strength of the electric field
(volts/meter) unchanged. This makes sense, we were scalitagje to prevent a breakdown of the gate-oxide.

With a constant strength for the field, the concentrationle€teons under in the channel under the gate of
a n-channel transistor with the gate high is constant unciing (and likewise for holes with a p-channel
transistor). This means that the sheet resistance of thenehéor a conducting transistor remains unchanged
under scaling. The scaling preserves the aspect ratiot{ileédgth) of the transistor. Thus, the resistance of an
“on” transistor is unchanged by scaling. A good rule-ofttiis that the resistance for a n-channel transistor is
20 * 103Q/0 for a n-channel transistor, and twice that for a p-channebge

Transistor capacitance:

Recall that capacitance is given b{%e. Scalingw, ¢, andd all by X scales the capacitance Ay/\ = .

Note that this means that a transistor of fixed width has theessapacitance under process scaling. A good
rule of thumb is that gate capacitancej&F/ ., wherel f F = 10~1°F. Drain capacitance is rougly7 to 1.0
times the gate capacitance. With good careful layout, thandrapacitance can often be reduced to half of this
value.

Gate delay:\

Recall that delay is resistance times capacitance. Faritsivhere the delay is dominated by the logic gates (i.e.
there are no “long” wires), this scales with the product eftitansistor resistance and the transistor capacitance.
Thus, gate delay scales asif the minimum transistor length is reduced by a factor ob fwhe logic circuits

will be twice as fast, and the clock frequency can be twiceigis.h

A common measure of “gate delay” is the delay for a simpleriredriving four inverters of the same size.
This is called a “fanout-of-four inverter delay” and ablbeted F'O4. A good rule of thumb is

FO4 = \x0ne (17)

It's worth noting that in manufacturing processes that Haeen optimized for high performance (i.e., processes
for general purpose CPUs), the manufacturing people do sdoks that make the effective length of the
transistor about half what is drawn. Simply put, they getdberce and drain regions to spread out under the
gate by a carefully controlled amount. Because of thisFtbé delay for these processes (e.g. the manufacturing
process for a Pentium-4) is about half what you would expechthe stated feature size.



Wire Resistancer !
Recall that the resistance of a rectangular bé¢ i¢wh))p. Scalingw, £, andd all by A scales the resistance by
A/(A?) = A"L
Note that the transition from aluminum wiring to copper pd®ad a one-time, reduction of wire resistance by
about 30much opportunity to go further in this directiore(tiesistivity of silver is only slighly lower than that
of copper).

Wire Capacitance\
Same reasoning as for transistor capacitance.

Short Wire Delay:1
Just multiply wire resistance by wire capacitance. Notéttha is for wires whose length scale with everything
else. This is what is meant by “Short Wire”.

Long Wire Delay (unbuffered)—2
Real designs have some fraction of their wires that cros®tiiee chip. Thusw andh scale with\, but ¢
remains fixed. We now get a capacitancé(af + )r/d)e wherer is the distance across the chipjs the wire
width, h is wire height, andl is wire spacing. We have that, h, andd scale as\, andr ande are constant.
Thus, long wire capacitance scaleslas

The resistance of a long wireig (wh))p which scales ag~?2 thus long wire delay scales as?.

Buffer spacing:A\!-®
As noted earlier, the clock period for logic scales\asire delay can be reduced by inserting buffers. Wire
delay is minimized by choosing the separation between wgireh that the wire segment delay equals the buffer
delay. We've shown that buffer delay (a special case of gel@y)l scales aa. Thus, we need to choose our
wire length,z such that wire delay scales ass well. The delay for a wire segment of lendtis:

i) = %p % (w%dh)ge

Noting thatw, h, andd scale as\, andp ande are constant, we get thé¢¢) scales ag>/\2. Thus, if the wire
delay is to scale ak, then¢? must scale a&3. This means that must scale ag!-.

Thus, if we reduce the transistor length by a factor of twe,flamber of (smaller) gates that a wire can cross
perFO4 delay goes down by a factor gf2. If the clock period remains a fixed numberfd4 delays, then the
number of optimally buffered segments that can be travarsadtlock period remains constant under scaling.
However, these segments traveyée fewer gates. Thus, the number of gates within one clock pgerf@nother
goes down by a factor of. In other words, the region of synchronous design shrinks.

Power consumption (first analysis): 1 Power is, to a rougm@ﬁmation,%nCVfdf wheren is the number of logic
gates;C is the capacitance per logic galé;, is the power supply voltagef, is the clock frequency; and is
the fraction of clock cycles that each node changes. If wescale the desigry remains constant; goes as
A~2; C goes as\; V4 goes as\, andf goes as\~*. We multiply it all together and see that power consumption
remains constant. This seems like wondeful news.

3.2 Power consumption (what went wrong?)

\oltage scaling down slower than predicted
Made possible by better materials and manufacturing.
Improves performance.
Necessitated by leakage currents.

Wires are taller than predicted by simple scaling. Talleewireduce resistance, improves performance.
More trade-offs in wiring.



3.3 Voltage scaling



