Last updated 18 May 2006.
>> addpath(genpath(pwd))
>> load dataMat_multSyn1N90
>> data = permute(dataMat, [3 1 2 4]);
>> load totalLabels_synIm1
>> trainNdx = 1:40; testNdx = 41:50
featureEng = latticeFeatures(0,0); % Just use raw features and bias traindata.nodeFeatures = mkNodeFeatures(featureEng, data(:,:,:,trainNdx)); traindata.edgeFeatures = mkEdgeFeatures(featureEng, data(:,:,:,trainNdx)); traindata.nodeLabels = totalLabels(:,:,trainNdx); traindata.ncases = length(trainNdx); testdata.nodeFeatures = mkNodeFeatures(featureEng, data(:,:,:,testNdx)); testdata.edgeFeatures = mkEdgeFeatures(featureEng, data(:,:,:,testNdx)); testdata.nodeLabels = totalLabels(:,:,testNdx); testdata.ncases = length(testNdx);
mkdir('DATA/totalImagesTrain'); mkdir('DATA/totalImagesTest'); mkdir('DATA/totalLabelsTrain'); mkdir('DATA/totalLabelsTest');
>> addpath(genpath(pwd))
>> genTrainingFeatures >> genTestingFeatures
trainCell = load('trainingFeatures.mat'); testCell = load('testingFeatures.mat');
trainNdx = 1:108 testNdx = 1:129
expandNodes = 1; expandEdges = 0; featureEng = latticeFeatures(expandNodes, expandEdges); traindata = convertManMade(featureEng, trainCell.ssFea, trainCell.msFea, trainCell.corrLabels, trainNdx); testdata = convertManMade(featureEng, testCell.ssFea, testCell.msFea, testCell.corrLabels, testNdx);
You should get results like the following on the digit denoising
The legend is here
You should get results like the following on the manmade building
patch classification task