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In This Lecture
• Outlier Detection (30 minutes)
• Linear Regression Intro (20 minutes)
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OUTLIER DETECTION
Coming Up Next
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Motivating Example: Finding Holes in Ozone Layer

• The huge Antarctic ozone hole was “discovered” in 1985.

• It had been in satellite data since 1976:
– But it was flagged and filtered out by a quality-control algorithm.

https://en.wikipedia.org/wiki/Ozone_depletion
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What is an Outlier?
• Outlier := un-usually different observation

– Usual difference: noise/variance in data, no worries
– Unusual difference: even with noise/variance, this is weird
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Outlier Detection in Learning
• Outlier detection is used in both supervised and unsupervised contexts
• This lecture focuses on unsupervised outliers.
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Unsupervised:
examples that look different 

from others

Supervised:
examples with weird labels
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Outlier Detection
• Outlier detection:

– Also known as “anomaly detection”.
– May want to remove outliers, or be interested in the outliers themselves (security).

• Some sources of outliers:
– Measurement errors.
– Data entry errors.
– Contamination of data from different sources.
– Rare events.

http://mathworld.wolfram.com/Outlier.html
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Applications of Outlier Detection
• Data cleaning: less outliers → better models
• Security and fault detection (network intrusion, DOS attacks).
• Fraud detection (credit cards, stocks, voting irregularities).

• Detecting natural disasters (underwater earthquakes).
• Astronomy (find new classes of stars/planets).
• Genetics (identifying individuals with new/ancient genes).
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Classes of Methods for Outlier Detection
1. Model-based methods.
2. Graphical approaches.
3. Cluster-based methods.
4. Distance-based methods.
5. Supervised-learning methods.

• Warning: these solutions are highly ambiguous.
– ______________ is (usually) required for good results
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But first…
• Usually it’s good to do some basic sanity checking…

– Would any values in the column cause a Python “type” error?
– What is the range of numerical features?
– What are the unique entries for a categorical feature?
– Does it look like parts of the table are duplicated?

• These types of simple errors are VERY common in real data.

Egg Milk Fish Wheat Shellfish Peanuts Peanuts Sick?
0 0.7 0 0.3 0 0 0 1

0.3 0.7 0 0.6 -1 3 3 1
0 0 0 “sick” 0 1 1 0

0.3 0.7 1.2 0 0.10 0 0 2
900 0 1.2 0.3 0.10 0 0 1
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MODEL-BASED OUTLIER DETECTION
Coming Up Next
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Model-Based Outlier Detection
• Model-based outlier detection:

1. Fit a probability density function.
2. Outliers are examples with ______________.

• Example:
– Assume data follows normal distribution.
– The z-score for 1D data is given by:

– “Number of standard deviations away from the mean”.
– Say “outlier” if |z| > 4, or some other threshold.

http://mathworld.wolfram.com/Outlier.html
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Q: What’s the problem with using mean and variance?

Q: When is z-score high? When is z-score low?



Problems with Z-Score
• Unfortunately, the mean and variance are __________ to outliers.

– Possible fixes: use quantiles, or sequentially remove worse outlier.
• The z-score also assumes that data is “uni-modal”.

– Data is concentrated around the mean.
– Bonus: why Mark Schmidt hates “curving” grades

http://mathworld.wolfram.com/Outlier.html
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Global vs. Local Outliers
• Is the red point an outlier?
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Global vs. Local Outliers
• Is the red point an outlier? What if we add the blue points?
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Global vs. Local Outliers
• Is the red point an outlier? What if we add the blue points?

• Red point has the lowest z-score.
– In the first case it was a “global” outlier.
– In this second case it’s a “local” outlier:

• Within normal data range, but far from other points.
• It’s hard to precisely define “outliers”.
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Global vs. Local Outliers
• Is the red point an outlier? What if we add the blue points?

• Red point has the lowest z-score.
– In the first case it was a “global” outlier.
– In this second case it’s a “local” outlier:

• Within normal data range, but far from other points.
• It’s hard to precisely define “outliers”.

– Can we have outlier groups?
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Global vs. Local Outliers
• Is the red point an outlier? What if we add the blue points?

• Red point has the lowest z-score.
– In the first case it was a “global” outlier.
– In this second case it’s a “local” outlier:

• Within normal data range, but far from other points.
• It’s hard to precisely define “outliers”.

– Can we have outlier groups? What about repeating patterns?
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GRAPHICAL OUTLIER DETECTION
Coming Up Next
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Graphical Outlier Detection
• Graphical approach to outlier detection:

1. Look at a plot of the data.
2. Human decides if data is an outlier.

• Examples:
1. Box plot:

• Visualization of quantiles/outliers.
• Only 1 variable at a time.

http://bolt.mph.ufl.edu/6050-6052/unit-1/one-quantitative-variable-introduction/boxplot/
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Graphical Outlier Detection
• Graphical approach to outlier detection:

1. Look at a plot of the data.
2. Human decides if data is an outlier.

• Examples:
1. Box plot.
2. Scatterplot:

• Can detect complex patterns.

http://mathworld.wolfram.com/Outlier.html 21



Graphical Outlier Detection
• Graphical approach to outlier detection:

1. Look at a plot of the data.
2. Human decides if data is an outlier.

• Examples:
1. Box plot.
2. Scatterplot:

• Can detect complex patterns.
• Only 2 variables at a time.

https://www.espn.com/nba/story/_/id/28214630/james-harden-greatest-scorer-nba-era 22



Graphical Outlier Detection
• Graphical approach to outlier detection:

1. Look at a plot of the data.
2. Human decides if data is an outlier.

• Examples:
1. Box plot.
2. Scatterplot.
3. Scatterplot array:

• Look at all combinations of variables.
• But laborious in high-dimensions.
• Still only 2 variables at a time.

https://randomcriticalanalysis.wordpress.com/2015/05/25/standardized-tests-correlations-within-and-between-california-public-schools/23



Graphical Outlier Detection
• Graphical approach to outlier detection:

1. Look at a plot of the data.
2. Human decides if data is an outlier.

• Examples:
1. Box plot.
2. Scatterplot.
3. Scatterplot array.
4. Scatterplot of 2-dimensional PCA:

• ‘See’ high-dimensional structure.
• But loses information and

sensitive to outliers.

http://scienceblogs.com/gnxp/2008/08/14/the-genetic-map-of-europe/ 24

We’ll cover PCA later in course



CLUSTER-BASED OUTLIER DETECTION
Coming Up Next
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Cluster-Based Outlier Detection
• Detect outliers based on clustering:

1. Cluster the data.
2. Find points that don’t belong to clusters.

• Examples:
1. K-means:

• Find points that are far away from any mean.
• Find clusters with a small number of points.
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Cluster-Based Outlier Detection
• Detect outliers based on clustering:

1. Cluster the data.
2. Find points that don’t belong to clusters.

• Examples:
1. K-means.
2. Density-based clustering:

• Outliers are points not assigned to cluster.

http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap10_anomaly_detection.pdf
27



Cluster-Based Outlier Detection
• Detect outliers based on clustering:

1. Cluster the data.
2. Find points that don’t belong to clusters.

• Examples:
1. K-means.
2. Density-based clustering.
3. Hierarchical clustering:

• Outliers take longer to join other groups.
• Also good for outlier groups.

http://www.nature.com/nature/journal/v438/n7069/fig_tab/nature04338_F10.html
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DISTANCE-BASED OUTLIER DETECTION
Coming Up Next
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Distance-Based Outlier Detection
• Most outlier detection approaches are based on distances.
• Can we skip the model/plot/clustering and just measure distances?

– How many points lie in a radius ‘epsilon’?
– What is distance to kth nearest neighbour?

• First paper on this topic:
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Global Distance-Based Outlier Detection: KNN
• KNN outlier detection:

– For each point, compute the average distance to its nearest neighbours.
– Choose points with biggest values (or values above a threshold) as outliers.

• “Outliers” are points that are far from their nearest neighbours.

• Goldstein and Uchida [2016]:
– Compared 19 methods on 10 datasets.
– KNN best for finding “global” outliers.
– “Local” outliers best found with local

distance-based methods…

http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0152173
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Local Distance-Based Outlier Detection
• As with density-based clustering, problem with differing densities:

• Basic idea behind local distance-based methods:
– Outlier o2 is “relatively” far

• compared to how close its neighbours are to one another

http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf
32

Q: Is o2 an outlier? 
Why?

Feature space Feature space

far
near



Local Distance-Based Outlier Detection
• “Outlier-ness” ratio of example ‘i’:

• If outlier-ness > 1, xi is further away from neighbours than expected.

http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf
https://en.wikipedia.org/wiki/Local_outlier_factor
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Problem with Unsupervised Outlier Detection
• Why wasn’t the hole in the ozone layer discovered for 9 years?

• Can be hard to decide when to report an outler:
– If you report too many non-outliers, users will turn you off.
– Most antivirus programs do not use ML methods (see "base-rate fallacy“)

https://en.wikipedia.org/wiki/Ozone_depletion
34

http://www.raid-symposium.org/raid99/PAPERS/Axelsson.pdf


Supervised Outlier Detection
• Final approach to outlier detection is to use supervised learning:

• yi = 1 if xi is an outlier.
• yi = 0 if xi is a regular point.

• We can use our methods for supervised learning:
– We can find very complicated outlier patterns.
– Classic credit card fraud detection methods used decision trees.

• But it needs supervision:
– We need to know what outliers look like.
– We may not detect new “types” of outliers.
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End of Part 2: Key Concepts
• We focused on 2 unsupervised learning tasks:

– Clustering.
• Partitioning (k-means) vs. density-based.
• “Flat” vs. hierarachial (agglomerative).
• Vector quantization.
• Label switching.

– Outlier Detection.
• Surveyed common approaches (and said that problem is ill-defined).

• We will cover later in course:
– Recommender systems and improving distance-based methods.

• Amazon product recommendation.
• Region-based pruning: fast “closest point” calculations.
• Shingling: divides objects into parts, matches individual parts of measures part set distance.
• Frequent itemsets: find items often bought together (a prior is an efficient method).
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Part 3: Linear Models
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LINEAR REGRESSION INTRO
Coming Up Next
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Supervised Learning Round 2: Regression
• We’re going to revisit supervised learning:

• Previously, we considered classification: 
– We assumed yi was discrete: yi = ‘spam’ or yi = ‘not spam’.

• Now we’re going to consider regression:
– We allow yi to be numerical: yi = 10.34cm.
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Example: Dependent vs. Explanatory Variables
• We want to discover relationship between numerical variables:

– Does number of lung cancer deaths change with number of cigarettes?
– Does number of skin cancer deaths change with latitude?

http://www.cvgs.k12.va.us:81/digstats/main/inferant/d_regrs.html
https://onlinecourses.science.psu.edu/stat501/node/11
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Example: Dependent vs. Explanatory Variables
• We want to discover relationship between numerical variables:

– Do people in big cities walk faster?
– Is the universe expanding or shrinking or staying the same size?

http://hosting.astro.cornell.edu/academics/courses/astro201/hubbles_law.htm
https://www.nature.com/articles/259557a0.pdf
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Example: Dependent vs. Explanatory Variables
• We want to discover relationship between numerical variables:

– Does number of gun deaths change with gun ownership?
– Does number violent crimes change with violent video games?

http://www.vox.com/2015/10/3/9444417/gun-violence-united-states-america
https://www.soundandvision.com/content/violence-and-video-games
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Example: Dependent vs. Explanatory Variables
• We want to discover relationship between numerical variables:

– Does higher gender equality index lead to more women STEM grads?

• Not that we’re doing supervised learning:
– Trying to predict value of 1 variable (the ‘yi’ values).

(instead of measuring correlation between 2).

• Supervised learning does not give causality:
– OK: “Higher index is correlated with lower grad %”.
– OK: “Higher index helps predict lower grad %”.
– BAD: “Higher index leads to lower grads %”.

• People/media get these confused all the time, be careful!
• There are lots of potential reasons for this correlation.

https://www.weforum.org/agenda/2018/02/does-gender-equality-result-in-fewer-female-
stem grads/
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Handling Numerical Labels
• One way to handle numerical yi: discretize.

– E.g., for ‘age’ could we use {‘age ≤ 20’, ‘20 < age ≤ 30’, ‘age > 30’}.
– Now we can apply methods for classification to do regression.
– But coarse discretization loses resolution.
– And fine discretization requires lots of data.

• There exist regression versions of classification methods:
– Regression trees, probabilistic models, non-parametric models.

• Today: one of oldest, but still most popular/important methods:
– Linear regression based on squared error.
– Interpretable and the building block for more-complex methods.
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Linear Regression in 1 Dimension
• Assume we only have 1 feature (d = 1):

– E.g., xi is number of cigarettes and yi is number of lung cancer deaths.
• Linear regression makes predictions �𝑦𝑦i using a linear function of xi:

• The parameter ‘w’ is the weight or regression coefficient of xi.
– We’re temporarily ignoring the y-intercept.

• As xi changes, slope ‘w’ affects the rate that �𝑦𝑦i increases/decreases:
– Positive ‘w’: �𝑦𝑦i increase as xi increases.
– Negative ‘w’: �𝑦𝑦i decreases as xi increases.
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Linear Regression in 1 Dimension
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Aside: terminology woes
• Different fields use different terminology and symbols.

– Data points = objects = examples = rows = observations.
– Inputs = predictors = features = explanatory variables= regressors = 

independent variables = covariates = columns.
– Outputs = outcomes = targets = response variables = dependent 

variables (also called a “label” if it’s categorical).
– Regression coefficients = weights = parameters = betas.

• With linear regression, the symbols are inconsistent too:
– In ML, the data is X and y, and the weights are w.
– In statistics, the data is X and y, and the weights are β.
– In optimization, the data is A and b, and the weights are x.

47



Summary
• Biclustering: clustering of the examples and the features.
• Outlier detection is task of finding unusually different example.

– A concept that is very difficult to define.
– Model-based find unlikely examples given a model of the data.
– Graphical methods plot data and use human to find outliers.
– Cluster-based methods check whether examples belong to clusters.
– Distance-based outlier detection: measure (relative) distance to neighbours.
– Supervised-learning for outlier detection: turns task into supervised learning.

• Regression considers the case of a numerical yi.

• Next time: using linear algebra to tackle linear regression
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Review Questions
• Q1: What is the fundamental challenge in automated outlier detection?

• Q2: Why is using Z-score not optimal for outlier detection?

• Q3: How is distance-based outlier detection different from using density-based clustering?

• Q4: What is the problem with the usual reports of “linkage” between variables 
that we see in the news?
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Issues with using z-scores for grades
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“Quality Control”: Outlier Detection in Time-Series

• A field primarily focusing on outlier detection is quality control.
• One of the main tools is plotting z-score thresholds over time:

• Usually don’t do tests like “|zi| > 3”, since this happens normally.
• Instead, identify problems with tests like “|zi| > 2 twice in a row”.

https://en.wikipedia.org/wiki/Laboratory_quality_control
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Outlierness (Symbol Definition)
• Let Nk(xi) be the k-nearest neighbours of xi.
• Let Dk(xi) be the average distance to k-nearest neighbours:

• Outlierness is ratio of Dk(xi) to average Dk(xj) for its neighbours ‘j’:

• If outlierness > 1, xi is further away from neighbours than expected.
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Outlierness with Close Clusters
• If clusters are close, outlierness gives unintuitive results:

• In this example, ‘p’ has higher outlierness than ‘q’ and ‘r’:
– The green points are not part of the KNN list of ‘p’ for small ‘k’.

http://www.comp.nus.edu.sg/~atung/publication/pakdd06_outlier.pdf 53



Outlierness with Close Clusters
• ‘Influenced outlierness’ (INFLO) ratio:

– Include in denominator the ‘reverse’ k-nearest neighbours:
• Points that have ‘p’ in KNN list.

– Adds ‘s’ and ‘t’ from bigger cluster that includes ‘p’:

• But still has problems:
– Dealing with hierarchical clusters.
– Yields many false positives if you have “global” outliers.
– Goldstein and Uchida [2016] recommend just using KNN.

http://www.comp.nus.edu.sg/~atung/publication/pakdd06_outlier.pdf
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Isolation Forests
• Recent method based on random trees is isolation forests.

– Grow a tree where each stump uses a random feature and random split.
– Stop when each example is “isolated” (each leaf has one example).
– The “isolation score” is the depth before example gets isolated.

• Outliers should be isolated quickly, inliers should need lots of rules to isolate.

– Repeat for different random
trees, take average score.

https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf
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Training/Validation/Testing (Supervised)
• A typical supervised learning setup:

– Train parameters on dataset D1.
– Validate hyper-parameters on dataset D2.
– Test error evaluated on dataset D3.

• What should we choose for D1, D2, and D3?

• Usual answer: should all be IID samples from data distribution Ds.
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Training/Validation/Testing (Outlier Detection)
• A typical outlier detection setup:

– Train parameters on dataset D1 (there may be no “training” to do).
• For example, find z-scores.

– Validate hyper-parameters on dataset D2 (for outlier detection).
• For example, see which z-score threshold separates D1 and D2.

– Test error evaluated on dataset D3 (for outlier detection).
• For example, check whether z-score recognizes D3 as outliers.

• D1 will still be samples from Ds (data distribution). 
• D2 could use IID samples from another distribution Dm.

– Dm represents the “none” or “outlier” class.
– Tune parameters so that Dm samples are outliers and Ds samples aren’t.

• Could just fit a binary classifier here.
57



Training/Validation/Testing (Outlier Detection)
• A typical outlier detection setup:

– Train parameters on dataset D1 (there may be no “training” to do).
• For example, find z-scores.

– Validate hyper-parameters on dataset D2 (for outlier detection).
• For example, see which z-score threshold separates D1 and D2.

– Test error evaluated on dataset D3 (for outlier detection).
• For example, check whether z-score recognizes D3 as outliers.

• D1 will still be samples from Ds (data distribution). 
• D2 could use IID samples from another distribution Dm.
• D3 could use IID samples from Dm.

– How well do you do at recognizing “data” samples from “none” samples?
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Training/Validation/Testing (Outlier Detection)
• Seems like a reasonable setup:

– D1 will still be samples from Ds (data distribution). 
– D2 could use IID samples from another distribution Dm.
– D3 could use IID samples from Dm.

• What can go wrong?

• You needed to pick a distribution Dm to represent “none”.
– But in the wild, your outliers might follow another “none” distribution.
– This procedure can overfit to your Dm.

• You can overestimate your ability to detect outliers.
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OD-Test: a better way to evaluate outlier detections

• A reasonable setup:
– D1 will still be samples from Ds (data distribution). 
– D2 could use IID samples from another distribution Dm.
– D3 could use IID samples from Dm.
– D3 could use IID samples from yet-another distribution Dt.

• “How do you perform at detecting different types of outliers?”
– Seems like a harder problem, but arguably closer to reality.
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OD-Test: a better way to evaluate outlier detections

• “How do you perform at detecting different types of outliers?”

https://arxiv.org/pdf/1809.04729.pdf 61
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