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Admin

Assignment 2:
— Due 9:25am Monday!

Assignment 3 is up.
— Due 9:25am Friday!
— Should be able to do most problems after today’s lecture

Until now, we described algorithms plainly
Starting now, we will describe algorithms more technically

We're going to start using calculus and linear algebra a lot
— Start reviewing these ASAP if you are rusty.

— Mark’s calculus notes: here.

— Mark’s linear algebra notes: here.




Last Time: Linear Regression
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In This Lecture

1. Least Squares (20 minutes)
— LOTS OF MATH

2. Normal Equations (25 minutes)
— LOTS OF MATH



Coming Up Next

LEAST SQUARES

graphing calculator

human-in-the-loop
machine learning
algorithm



Manually Fitting Linear Model

Line with slope w
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Manually Fitting Linear Model

O O Line with slope w

Yi
O
> O

Xi w



Manually Fitting Linear Model

4 Line with slope w
(“best")

“Best” slope
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“Parameter Space”

—

—

Space of possible decision stumps
(“parameter space” of a decision stump)



“Parameter Space”

4 Line with slope w
(“best")

Label space

/”
Q: What defines the “goodness”
Q’/ of a parameter value?
/” —
___________ Not good Meh “Best”
""" » —@ O O >
Feature space Parameter space for

1-d linear regression
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Least Squares Objective

« Qur linear model is given by:
N
}li = WX,

SO0 we make predictions for a new example by using:
A

>/|': Wg(vi

« Qur task is to find an optimal w in parameter space.



which “Error” Should We Use?

O

@) @) Line with slope w

« We can’t use the classification accuracy as before!
. never happens in practice

— Two floating point numbers are never “equal”.

— Even if two floating points can be “equal”,
model will almost always give a slightly wrong prediction.

« Due to noise or relationship not being quite linear



“Residual”

 Residual := difference between prediction and true label

— Usually: prediction minus truth

— Measure of “error” in continuous prediction
A

Q Ji

r=7yi-Y,
aka “residual”
Q Y

Label space

Q: What do residuals look like
when my model is good? .




Least Squares Objective

Q: What’s wrong with this?

Eror = Z \St |

Q: How do we compute y;?
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Least Squares Objective

£:R — K
P) = 37 (wxi—h)

« The function f is called an “error” or “objective function”
— Input: slope
— Qutput: “error” of slope
« Best slope w minimizes f, the sum of squared errors (WHY squared?)
— There are some justifications for this choice.
— A probabilistic interpretation is coming later in the course.

« But usually, it is done because it is easy to minimize.



“Signature”

- Signature: specifies input and output “types” of function

'm‘)\w S owc‘»wc: SCalav-

« Here, function f takes a scalar value and outputs a scalar value
- Later, we will generalize this to

P R—= R

m?v\t dx| \ecto- owc\w\-t: Sco\\a\»
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Objective in 1D Parameter Space

f value

FeR

Not good Meh “Best”

< @ o @ >
Parameter space for
1-d linear regression
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Least Squares Objective

« Classic way to set slope ‘w’ is minimizing sum of squared errors:
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Least Squares Objective

« Classic way to set slope ‘w’ is minimizing sum of squared errors:

s 2
F(u) = Z (WX'. - }’:)
/ ) llérror\\ is The Sum of

—,l\e S¥Mﬂ/(L/ VO\’MQ) O‘F
ga J[Acse_ vertical distances

/i befween the line (WY()
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Minimizing a Differential Function

« Math 101 approach to minimizing a differentiable function ‘f’
1. Take the derivative of ‘f’.
2. Find points ‘w’ where the derivative f'(w) is equal to 0.
3. Choose the smallest one (and check that f"”’(w) is positive).

,r\(w) 1S
fhe Sloge of ()
Jfan(}m"’ line

af W'

s ) hes o I\\-/ 0>o,'m7ls where ‘Fl(w)*\O

SV"\%NW F(w —_
so ifis Jﬂnb
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Digression: Multiplying by a Positive Constant

Note that this problem: n 2
1[\(»0 = 2 (Wxi - }’n)
=1

Has the same set of minimizers as this problem:

“w)z—i-zn (wx; = \/,)2

]:I
And these also have the same minimizers:

{:(vv) :_:3 2 (wx;’)’i>2 ]F(w>:i

1<

n
2

2 bwx=y ) 41000

| can multiply ‘f’ by any positive constant and not change solution.

— Derivative will still be zero at the same locations.
— We'll use this trick a lot!

I

(Quora trolling on ethics of this) 2!




Finding Least Squares Solution

If you're reviewing: try this on your own first!

* Find ‘w’ that minimizes sum of squared errors:

w) = ‘—zi (wxi—9)’

1=



Finding Least Squares Solution

 Find ‘w’ that minimizes sum of squared errors:

[]'F )"“- (le \J) -" 1ZX\‘\NZX'3\ 223'

n EXPGV\A

NO W hefe.
0 Y(w) =4 NZX\ XY
Aenvartlvts Z: X ‘ﬁ\
] Hlw) = o, Whea W = = -
[ reavrange Z\X Q: What can go wrong here?

(2]



Finding Least Squares Solution

Finding ‘w’ that minimizes sum of squared errors: .
20 XM
- - =\

{‘/(w\ = 0, W\r\u\ W =

L%

Q: Are we done?

Check that this is a minimizer by checking second derivative:

A (VERW é - é XiYi

= 2 x,—2

,
=z

)

— Since (anything)? is non-negative and (anything non-zero)? > 0,
if we have one non-zero feature then f"’(w) > 0 and this is a minimizer.



Least Squares on 1D Parameter Space

A

Q: Does this generalize to higher-dimensional data?
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HIGHER-DIMENSIONAL LEAST SQUARES



Motivation: Combining Explanatory Variables

Smoking is not the only contributor to lung cancer.
— For example, there environmental factors like exposure to asbestos.
How can we model the combined effect of smoking and asbestos?
A simple way is with a 2-dimensional linear function:
/\. = W X + W, X, L/_ \/alhe of ‘F&MZ in exqm/,é /i
7' N ’ﬁ'/:z————“weiyl«ﬂ“ on feafure 2.

//Weish""\ O.F feqf\ﬁr( 'J \/GIV\Q o_p _fm\um—'- ,n emeFé /'.l

wWe have a weight w; for feature ‘1’ and w, for feature ‘2’:
A

¥ = o c'ngw('f/e;) + 2?(#05&&05)
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Parameter Space in 2D

A
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Objective in 2D Parameter Space

Q: Is this a good parameter value?

ER—R
Thicker colour:
Lower objective value

Q: Is this a good parameter value?

Wi

Q: What makes it the “best” parameter value?
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Partial Derivatives

Q: If | “fix” w,, what does f(w,) look like?

P o S
4




Flw)

Partial Derivatives

The tangent line in the direction of 3y, ) W |
e Partal derivatie

q of £ with respect
3.

. +o W, is The dorivative
6l with fefffcf to wg
;: ) when all ofher variables
Bl are held ‘G_X_eJ.

5 | P o

» Denot

d L‘/ %,; ‘ror
voriable w,
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Different Notations for Least Squares

« If we have ‘d’ features, the d-dimensional linear model is:
N

)/i = \,V')(“‘f W, Xia + %X'S +--- ‘/'MQX,'J

— In words, our model is that the outputisa
e We can re-write this in summation notation:

d

A-

YT 2w
57

e We can also re-write this in vector notation:

of the inputs.

N T (N
>/" ~ w X'- (Gfsvmn(} w aM{ X; o/p (a/wmn‘\/(c#O/j)

\
¥ inne— P! O(J \A(,1
be fw een veclors 32



Notation Alert (again)

 |In this course, all vectors are assumed to be column-vectors:

r~\/\/' ~ Y‘ [ Xxi‘l )
w= | ™ \/: A Xp=| "
LWd - /" -1 -
« SO w'x; is a scalar:
1 o . X1 - . ,
w X, — [\Nl W, ) W(‘/] xiqg |~ chi/; wy X, -“"’J’(‘J
;(iJ = 2 b'/)x“!'

‘):'l
« So rows of ‘X’ are actually transpose of column-vector Xx;:
T

—_ X —
7\__
X= | — x
. 33



Least Squares Iin d-Dimensions

 The linear least squares model in d-dimensions minimizes:

R =R
i (-

1=\

« Dates back to 1801: Gauss used it to predict location of Ceres.

« How do we find the best vector ‘w’ in ‘d’ dimensions?
— Can we set the partial derivative of each variable to 07



Least Squares Partial Derivatives (1 Example)

If you're reviewing: try this on your own first!
« The linear least squares model in d-dimensions for 1 example:

‘r(""l)wz WJ>~ J (/‘ ¥i 72
4\
yi= i wz Xt Wy xig
« Computing the partial derivative for variable ‘1"

awﬂf( W e s) =



Least Squares Partial Derivatives (1 Example)

« The linear least squares model in d-dimensions for 1 example:

[‘-.\ \r(w W. \4/ Yot ‘ N Z | 42_ A 7
e J> (/ )/7 2 )’.J YiYi +4% yi
= | 2
[l] ;,\’,: \/\/’Xn +W2Kil+-“WJXiJ "Z (‘)2;-,\‘/3)('5) +4 (Jél\%x") )y|+}L ‘.2
« Computing the partial derivative for variable ‘1"
[3) L fy ) = (Bt )i = it + 0
{

4] = (Jé “ij = ¥i)x;
[B] = (WTXi - y,- )x..,



Least Squares Partial Derivatives (‘n’ Examples)

Linear least squares partial derivative for variable 1 on example ‘i’

— T
DW\.F( Y2y J) - (\"’ Xi _y;')X.',
For a generic variable ‘j’ we would have:

5%’)’ £ (w 2y w) = (' - yi)xg

And if ‘f' is summed over all ‘n’” examples we would have:

o Tl - ) = 2wy

Unfortunately, the partial derivative for w; depends on all {w;, W,..., Wy}
— | can’t just “set equal to O and solve for w;".
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Gradient and Critical Points in d-Dimensions

« Generalizing “set the derivative to 0 and solve” in d-dimensions:
— Find ‘w’ where the gradient vector equals the zero vector.
« Gradient is a -dimensional vector with partial derivative ‘j’ in position ‘"

(2 ) ?(w)

w
|
e ae,
2 r ,115?:’-}”3% "l: '
=L -2~ T g
— ST A AT
' R
/
]
— 2 w .

/lamy,.‘r slope s 0 in every direction at minimizer.



Gradient and Critical Points in d-Dimensions

« Generalizing “set the derivative to 0 and solve” in d-dimensions:
— Find ‘w’ where the gradient vector equals the zero vector.
« Gradient is a d-dimensional vector with partial derivative ‘j’ in position ‘j":

R{ {inear 'easf {c)qu; _ C\a\)mj for /MPa/ /eqf‘f S'/Ma/(".'
r% ) ? (w7xa‘7;>)<il \ F/'Ming a ‘w where NFW)=D
! Ny be done by solving a
2 Vf(w) - 2 Ty =y ) x- Can / 9
vr(w) - ’Q_%,Z 'ic. (W‘ X 71) xlz S\SJV/’L’,\:&\_M" i(!uqff()nf.
; Al "W whee YFW)=0 are
?J.\ N - = L
= 2wy (w7y- - y.) X Ml 2.
) ]

~— .:l 4-\
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NORMAL EQUATIONS



Matrix/Norm Notation

(MEMORIZE/STUDY THIS)

To solve the d-dimensional least squares, we use matrix notation:
— We use ‘w’ as a “d by 1” vector containing weight ‘w;’ in position ‘J".

— We use ‘y’ as an “n by 1” vector containing target ‘y;’ in position ‘.

— We use ‘x;" as a “d by 1” vector containing features ‘j’ of example ‘i’.

~
I

X,

—
—

Xi)
Xi2

/
/

Xi}

~
Xy X\z i )(u
X2 %) S XzJ

| B L !

Xm X ~ T an‘&

+ We're now going to be careful to make sure these are column vectors.
— So ‘X' is a matrix with x;T in row ‘"

)




Matrix/Norm Notation
(MEMORIZE/STUDY THIS)

« To solve the d-dimensional least squares, we use matrix notation:
— Our prediction for example ‘i’ is given by the scalar wTx;.

— OQur predictions for all ‘i’ (n by 1 vector) is the matrix-vector product Xw.
0 T = — X, — —_x! (A
\;=W Xi XW ‘x'.'——- \L = XL'\V‘:, :X‘ —4
. L k :
T . - x | — )‘”w ‘4
A]Sd) 'oecowue W'Y,' 15 @ 5(a.’af7 ’ w \” -/
T 5 redicfn 4
we have W X; = X w X ’

A I
€x,,.,.,//p i in row !

(6.9.7 L';]T = LS]>
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Matrix/Norm Notation
(MEMORIZE/STUDY THIS)

To solve the d-dimensional least squares, we use matrix notation
— Our prediction for example ‘i’ is given by the scalar wTx

s
— OQur predictions for all ‘i’ (n by 1 vector) is the matrix-vector product Xw
— Residual vector ‘r’ gives difference between predictions and y; (n by 1)
— Least squares can be written as the squared L2-norm of the residual

F(w)fé (w'x; = )’i)l =5 (r;)

e~ 1=
, T N
:xw"\/‘z w:y, L wY T\ zzf;rl
e 71 = w1r,' 1 1=
/ W’v T T
A )m Wiy "Ya R i< J\Womm = r
fO" @Xd\\MP\Q a

= el = (= y



Back to Deriving Least Squares for d > 2...

We can write vector of predictions y;, as a matrix-vector product:

y Xw = [‘"’"

T
W rn

And we can write linear least squares in matrix notation as:

flw) :”j“)(w"yuz ::}ﬁ(w X, y)

1<)

we’ll use this notation to derive d-dimensional least squares ‘w'.
— By setting the gradient V f(w) equal to the zero vector and solving for ‘w’.
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Digression: Matrix Algebra Review

« Quick review of linear algebra operations we’ll use:
— If ‘a” and ‘b’ be vectors, and ‘A’ and ‘B’ be matrices then:

G\Tlo = loTO\

ha”zqum San'ﬂLY Che ck:

(A+B) AT+ ALWAYg CHECK THAT
(AB) = g7AT DT MENSTONS MATCH
CA+B)(A+5)=AA + A +Ab+28 (o rehy you did somehiny wiory)

0\7AL — LTATG\
Ly v~

Ve or V¢ d}) '4 45



Linear and Quadratic Gradients

If you're reviewing: try this on your own first!
« From these rules we have (see post-lecture slide for steps):

1 (W) = 5'-_2“_." (Wi =)

i=



Linear and Quadratic Gradients

« From these rules we have (see post-lecture slide for steps):

@ ) = 13 (- = {IIXW-S\\ - ‘NTLW W’Xﬂ + z‘:)Tﬂ

0’-‘ v
MocbriX '\M'“ . o\otm&wl-m re“: \° C
2. ex?am«\

[2] Vﬁ(w\ = —- VolAw — Vb + Ve
i = L. 2Aw — b - Aw-b= XYXN’XB)

Colelate %ml.ewts (see notes on méos\te)

Q: Do the dimensions make sense? 47




Normal Equations

Set gradient equal to

Vhw= X=Xy = 0

wWe now move terms not involving ‘w’ to the other side:
XXw = X'

This is a set of ‘d’ linear equations called the “normal equations”.

— This a linear system like “Ax = b”.

— You can use Gaussian elimination to solve for ‘w’.

— In Python, you solve linear systems in 1 line using numpy.linalg.solve (A3)

Q: What are A and b in this linear system?

to find the “critical” points:
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Incorrect Solutions to Least Squares Problem

“The least s guares OEJ\‘!C'IL[VG s ‘F(w):%“)(w—yﬂz

The minimizers of thls Objc ctive are solutions fo the [near system:
XTXw=X" ¥
The {\O/fowm are n_gf The solutions 1o the lenst S Guares lo,ol,/m:
w= X y> (o Frue P XX _is_invectisle)

)

IMenStons don?
even  na 1(‘ h )

v X

X—'X (you Canno‘f c\iviJé’ L‘/ QA Moﬂlflx)
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summary

« Least squares: a classic method for fitting linear models.
— With 1 feature, it has a simple closed-form solution.
— Can be generalized to ‘d’ features.
 Normal equations: system of equations for solving least squares

* Next time: doing linear regression with a million features
— We will talk about gradient descent!



Review Questions

Ql: Why can’t we use classification accuracy for regression?
Q2: What is the input and the output of an objective function?

Q3: Why is a system of linear equations necessary for computing the
stationary point of an objective function?

Q4: Why can’t we always use (XTX)! to find w in normal equations?
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Linear Least Squares: Expansion Step

Wont ‘w' tha minimizes

Rule:
‘f(@:ﬁé(w’x,’% l:—;\ | Xw = y”:z I{(wa?' (Xw‘y> l(’ql/zja;q )
— T _ .7 -\ /-146T = /47-&6'
L gt =50 7) Uy ()= B7A7
‘h\en Compate  — TyT o T oA -
5’,“4_‘”\{'1” <w X~y 7()( /)

1

1 -

3w X7 (Xwmy) - );'(Xw‘Ty)) (=i
{(WTX'XW’WTXVT‘,V XwtyTy) Al
_lzw'[)('ixw—wx\/‘l'_“;yl\/ 0\76\’?:%:/\4’70\

Vvector vedtor
Sanﬁy check: dll of These are  scalass,
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In Smithsonian National Air and Space Museum (Washington, DC):
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