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Admin
• Assignment 2:

– Due 9:25am Monday!
• Assignment 3 is up.

– Due 9:25am Friday!
– Should be able to do most problems after today’s lecture

• Midterm is Tuesday, June 1, 2021
• Until now, we described algorithms plainly
• Starting now, we will describe algorithms more technically
• We’re going to start using calculus and linear algebra a lot

– Start reviewing these ASAP if you are rusty.
– Mark’s calculus notes: here.
– Mark’s linear algebra notes: here.
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https://www.cs.ubc.ca/%7Eschmidtm/Courses/Notes/calculus.pdf
https://www.cs.ubc.ca/%7Eschmidtm/Documents/2009_Notes_LinearAlgebra.pdf


Last Time: Linear Regression
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In This Lecture
1. Least Squares (20 minutes)

– LOTS OF MATH
2. Normal Equations (25 minutes)

– LOTS OF MATH
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LEAST SQUARES
Coming Up Next
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Manually Fitting Linear Model
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Manually Fitting Linear Model
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Manually Fitting Linear Model
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“Parameter Space”
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“Parameter Space”
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Parameter space for 
1-d linear regression
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Q: What defines the “goodness” 
of a parameter value?



Least Squares Objective
• Our linear model is given by:

• So we make predictions for a new example by using:

• Our task is to find an optimal w in parameter space.
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Which “Error” Should We Use?

• We can’t use the classification accuracy as before!
• __________ never happens in practice

– Two floating point numbers are never “equal”.
– Even if two floating points can be “equal”, 

model will almost always give a slightly wrong prediction.
• Due to noise or relationship not being quite linear 12
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“Residual”
• Residual := difference between prediction and true label

– Usually: prediction minus truth
– Measure of “error” in continuous prediction
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ri = �𝑦𝑦𝑖𝑖 - yi
aka “residual”

Q: What do residuals look like 
when my model is good?



Least Squares Objective
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Q: What’s wrong with this?

Q: How do we compute �𝑦𝑦𝑖𝑖?



Least Squares Objective

• The function f is called an “error” or “objective function”
– Input: slope
– Output: “error” of slope

• Best slope w minimizes f, the sum of squared errors (WHY squared?)
– There are some justifications for this choice.
– A probabilistic interpretation is coming later in the course.

• But usually, it is done because it is easy to minimize.
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“Signature”
• Signature: specifies input and output “types” of function

• Here, function f takes a scalar value and outputs a scalar value
• Later, we will generalize this to
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Objective in 1D Parameter Space
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Least Squares Objective
• Classic way to set slope ‘w’ is minimizing sum of squared errors:
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Least Squares Objective
• Classic way to set slope ‘w’ is minimizing sum of squared errors:
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Minimizing a Differential Function
• Math 101 approach to minimizing a differentiable function ‘f’:

1. Take the derivative of ‘f’.
2. Find points ‘w’ where the derivative f’(w) is equal to 0.
3. Choose the smallest one (and check that f’’(w) is positive). 
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Digression: Multiplying by a Positive Constant
• Note that this problem:

• Has the same set of minimizers as this problem:

• And these also have the same minimizers:

• I can multiply ‘f’ by any positive constant and not change solution.
– Derivative will still be zero at the same locations.
– We’ll use this trick a lot!

(Quora trolling on ethics of this) 21

https://www.reddit.com/r/AIethics/comments/4qvi4m/is_it_ethical_to_remove_constants_from_your_loss/


Finding Least Squares Solution
• Find ‘w’ that minimizes sum of squared errors:
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If you’re reviewing: try this on your own first!



Finding Least Squares Solution
• Find ‘w’ that minimizes sum of squared errors:

Q: What can go wrong here?
23



Finding Least Squares Solution
• Finding ‘w’ that minimizes sum of squared errors:

• Check that this is a minimizer by checking second derivative:

– Since (anything)2 is non-negative and (anything non-zero)2 > 0,
if we have one non-zero feature then f’’(w) > 0 and this is a minimizer. 24

Q: Are we done?



Least Squares on 1D Parameter Space
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Q: Does this generalize to higher-dimensional data?



HIGHER-DIMENSIONAL LEAST SQUARES
Coming Up Next
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Motivation: Combining Explanatory Variables
• Smoking is not the only contributor to lung cancer.

– For example, there environmental factors like exposure to asbestos.
• How can we model the combined effect of smoking and asbestos?
• A simple way is with a 2-dimensional linear function:

• We have a weight w1 for feature ‘1’ and w2 for feature ‘2’:
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Parameter Space in 2D
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Objective in 2D Parameter Space
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Partial Derivatives

http://msemac.redwoods.edu/~darnold/math50c/matlab/pderiv/index.xhtml 30

Q: If I “fix” w1, what does f(w2) look like?



Partial Derivatives

http://msemac.redwoods.edu/~darnold/math50c/matlab/pderiv/index.xhtml 31



Different Notations for Least Squares
• If we have ‘d’ features, the d-dimensional linear model is:

– In words, our model is that the output is a _______________ of the inputs.
• We can re-write this in summation notation:

• We can also re-write this in vector notation:

32



Notation Alert (again)
• In this course, all vectors are assumed to be column-vectors:

• So wTxi is a scalar:

• So rows of ‘X’ are actually transpose of column-vector xi:
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Least Squares in d-Dimensions
• The linear least squares model in d-dimensions minimizes:

• Dates back to 1801: Gauss used it to predict location of Ceres.
• How do we find the best vector ‘w’ in ‘d’ dimensions?

– Can we set the partial derivative of each variable to 0?
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Least Squares Partial Derivatives (1 Example)
• The linear least squares model in d-dimensions for 1 example:

• Computing the partial derivative for variable ‘1’:

35

If you’re reviewing: try this on your own first!



Least Squares Partial Derivatives (1 Example)
• The linear least squares model in d-dimensions for 1 example:

• Computing the partial derivative for variable ‘1’:
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Least Squares Partial Derivatives (‘n’ Examples)
• Linear least squares partial derivative for variable 1 on example ‘i’:

• For a generic variable ‘j’ we would have:

• And if ‘f’ is summed over all ‘n’ examples we would have:

• Unfortunately, the partial derivative for wj depends on all {w1, w2,…, wd}
– I can’t just “set equal to 0 and solve for wj”.
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Gradient and Critical Points in d-Dimensions
• Generalizing “set the derivative to 0 and solve” in d-dimensions:

– Find ‘w’ where the gradient vector equals the zero vector.
• Gradient is a _-dimensional vector with partial derivative ‘j’ in position ‘j’: 

emac.redwoods.edu/~darnold/math50c/matlab/pderiv/index.xhtml
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Gradient and Critical Points in d-Dimensions
• Generalizing “set the derivative to 0 and solve” in d-dimensions:

– Find ‘w’ where the gradient vector equals the zero vector.
• Gradient is a d-dimensional vector with partial derivative ‘j’ in position ‘j’: 

emac.redwoods.edu/~darnold/math50c/matlab/pderiv/index.xhtml
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NORMAL EQUATIONS
Coming Up Next
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Matrix/Norm Notation 
(MEMORIZE/STUDY THIS)

• To solve the d-dimensional least squares, we use matrix notation:
– We use ‘w’ as a “d by 1” vector containing weight ‘wj’ in position ‘j’.
– We use ‘y’ as an “n by 1” vector containing target ‘yi’ in position ‘i’.
– We use ‘xi’ as a “d by 1” vector containing features ‘j’ of example ‘i’.

• We’re now going to be careful to make sure these are column vectors.
– So ‘X’ is a matrix with xiT in row ‘i’.
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Matrix/Norm Notation 
(MEMORIZE/STUDY THIS)

• To solve the d-dimensional least squares, we use matrix notation:
– Our prediction for example ‘i’ is given by the scalar wTxi.
– Our predictions for all ‘i’ (n by 1 vector) is the matrix-vector product Xw.
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Matrix/Norm Notation 
(MEMORIZE/STUDY THIS)

• To solve the d-dimensional least squares, we use matrix notation:
– Our prediction for example ‘i’ is given by the scalar wTxi.
– Our predictions for all ‘i’ (n by 1 vector) is the matrix-vector product Xw.
– Residual vector ‘r’ gives difference between predictions and yi (n by 1).
– Least squares can be written as the squared L2-norm of the residual.
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Back to Deriving Least Squares for d > 2…
• We can write vector of predictions �𝑦𝑦𝑖𝑖 as a matrix-vector product:

• And we can write linear least squares in matrix notation as:

• We’ll use this notation to derive d-dimensional least squares ‘w’.
– By setting the gradient 𝛻𝛻 𝑓𝑓 𝑤𝑤 equal to the zero vector and solving for ‘w’.
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Digression: Matrix Algebra Review
• Quick review of linear algebra operations we’ll use:

– If ‘a’ and ‘b’ be vectors, and ‘A’ and ‘B’ be matrices then:
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Linear and Quadratic Gradients
• From these rules we have (see post-lecture slide for steps):

46

If you’re reviewing: try this on your own first!



Linear and Quadratic Gradients
• From these rules we have (see post-lecture slide for steps):

47Q: Do the dimensions make sense?



Normal Equations
• Set gradient equal to ___________________ to find the “critical” points:

• We now move terms not involving ‘w’ to the other side:

• This is a set of ‘d’ linear equations called the “normal equations”.
– This a linear system like “Ax = b”. 
– You can use Gaussian elimination to solve for ‘w’.
– In Python, you solve linear systems in 1 line using numpy.linalg.solve (A3)

48Q: What are A and b in this linear system?



Incorrect Solutions to Least Squares Problem
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Summary
• Least squares: a classic method for fitting linear models.

– With 1 feature, it has a simple closed-form solution.
– Can be generalized to ‘d’ features.

• Normal equations: system of equations for solving least squares
• Next time: doing linear regression with a million features

– We will talk about gradient descent!
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Review Questions
• Q1: Why can’t we use classification accuracy for regression?

• Q2: What is the input and the output of an objective function?

• Q3: Why is a system of linear equations necessary for computing the 
stationary point of an objective function?

• Q4: Why can’t we always use (XTX)-1 to find w in normal equations?
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Linear Least Squares: Expansion Step
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• In Smithsonian National Air and Space Museum (Washington, DC):
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