CPSC 340:
Machine Learning and Data Mining

Least Squares
Summer 2021



Admin

Assignment 2:
— Due 9:25am Monday!

Assignment 3 is up.
— Due 9:25am Friday!
— Should be able to do most problems after today’s lecture

Midterm is Tuesday, June 1, 2021
Until now, we described algorithms plainly
Starting now, we will describe algorithms more technically

We're going to start using calculus and linear algebra a Lot
— Start reviewing these ASAP if you are rusty.

— Mark’s calculus notes: here.

— Mark’s linear algebra notes: here.



https://www.cs.ubc.ca/%7Eschmidtm/Courses/Notes/calculus.pdf
https://www.cs.ubc.ca/%7Eschmidtm/Documents/2009_Notes_LinearAlgebra.pdf

Last Time: Linear Regression
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In This Lecture

1. Least Squares (20 minutes)
— LOTS OF MATH

2. Normal Equations (25 minutes)
— LOTS OF MATH



Coming Up Next

LEAST SQUARES

graphing calculator

human-in-the-loop
machine learning
algorithm
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Manually Fitting Linear Model

O Line with slope w
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Manually Fitting Linear Model

O

O O Line with slope w




Manually Fitting Linear Model

4 Line with slope w
(“best”)

“Best” slope
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“Parameter Space”

—

Space of possible decision stumps
(“parameter space” of a decision stump)



-

Label space

“Parameter Space”

Line with slope w
(“best”)

Q: What defines the “goodness”

Q’/ of a parameter value?
/”
__________ Not good Meh “Best”
— » —0 O O
Feature space Parameter space for
X, 1-d linear regression

' W
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Least Squares Qbjective

« Qur linear model is given by:
N
>/,~ = WX,

« So we make predictions for a new example by using:
A

—_ v
>/t' = WX

« Qur task is to find an optimal w in parameter space.



which “Error” Should We Use?

O

@) @) Line with slope w

« We can’t use the classification accuracy as beforel

o _\g-\_g._g____ never happens in practice

— Two floating point numbers are never “equal”.

— Even if two floating points can be “equal”,
model will almost always give a slightly wrong prediction.

- Due to noise or relationship not being quite linear



“Residual”

- Residual := difference between prediction and true label
— Usually: prediction minus trlth
— Measure of “error” in continuous prediction

lf’i

Yi

r =y - Y
aka “residual”

s
Label space
O

Q: What do residuals look like 5\""“\) \
when my model is good? \oe I
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Least Squares Qbjective

Q: What's wrong with this?

Eyrovr = Z \3\ 3\

Q: How do we compute y;7?
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Least Squares Qbjective

R — K
D) - i};(wx;-—*ﬂ

« The function f is called an “error” or “objective function”
— Input: slope
— Qutput: “error” of slope
« Best slope w minimizes f, the sum of squared errors (WHY squared?)
— There are some justifications for this choice.
— A probabilistic interpretation is coming later in the course.

« But usually, it is done because it is easy to minimize.



“Signature”

- Signature: specifies input and output “types” of function

'N\?\Ab Sca\\w Out\mk: SCm\av—

« Here, function f takes a scalar value and outputs a scalar value
- Later, we will generalize this to

P R— R

In‘)\/rt dx) \Necto- och\A-t: SCO\\O\V'\
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QObjective in 1D Parameter Space

v
2
T N
Not good Meh “Best”
> O O O >

Parameter space for
1-d linear regression

W)
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Least Squares Qbjective

« Classic way to set slope ‘w’ is minimizing sum of squared errors:

llér/‘ar\\ 53 ‘“\C sum Of
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Least Squares Qbjective

« Classic way to set slope ‘w’ is minimizing sum of squared errors:

n 2
r(w7 = 2 (WXi - }’:>
=
| ll(frror‘\ IS 'V\c sum 070

®
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Minimizing a Differential Function

« Math 101 approach to minimizing a differentiable function ‘f"
1. Take the derivative of ‘f'.
2. Find points ‘w’ where the derivative f'(w) is equal to 0.
3. Choose the smallest one (and check that f"’(w) is positive).

,(\\(w) 1S
the S_lgpe of ‘F(W?
\‘av\(}n\"' line

af W

This W' hes g

‘\\—/ d)oivﬂls where {'(W):O
Saller 1. \/
so 1 is ﬂ«e\/
Minim,; er
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Digression: Multiplying by a Positive Constant

Note that this problem:

=2 (on= ) ngswn( )

Has the same set of minimizers as this problem:

[ Plu)= -;— Z (wx; = \/;)Qo.s*“?\S\AMW\}
And these also have the same minin{ﬁzers:
Fl=g2 bonp)®  F)=E £ by + 000
V\\D.\(heo«\ o) |

| can multiply ‘f’ by any positive constant and not change solution.
— Derivative will still be zero at the same locations.
— We'll use this trick a lot!

(Quora trolling on ethics of this) %%



https://www.reddit.com/r/AIethics/comments/4qvi4m/is_it_ethical_to_remove_constants_from_your_loss/

Finding Least Squares Solution

If you're reviewing: try this on your own first!

* Find ‘w’ that minimizes sum of squared errors:

fow) =47 (wx —4)



Finding Least Squares Solution

* Find ‘w’ that minimizes sum of squared errors:

n 1._l 2% 2 ‘ \u. _L" u
[‘110(\/\0 ="i§ (Wxi"'ﬂiJ §X\ wiqu'&'+iaz-4\j'_'




Finding Least Squares Solution

Finding ‘w’ that minimizes sum of squared errors:

i‘,X"ﬁ\i
w) = O, uhea W= Z—
P W= S
Q: Are we done? NBV’C.

Check that this is a minimizer by checking second derivative:
n A
F’(w): W ‘é )('.1 — éxm
NOE %
V= Zy

T

— Since (anything)? is non-negative and (anything non-zero)? > 0,

if we have one non-zero feature then f"’(w) > 0 and this is a minimizer.
—= -
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Least Squares on 1D Parameter Space

A

Q: Does this generalize to higher-dimensional data?




HIGHER-DIMENSIONAL LEAST SQUARES



Motivation: Combining Explanatory Variables

Smoking is not the only contributor to lung cancer.
— For example, there environmental factors like exposure to asbestos.

How can we model the combined effect of smoking and asbestos?
A simple way is with a 2-dimensional linear function:

7( = W th
'L/_—— vveoyh‘f on feature 2
l/wéish'f\\ o'F {ea'f\nr@ ’ \/O\’V\Q o-p -EM H'\ eYC'Wlloé /’l

We have a weight w; for feature ‘1’ and w, for feature ‘2"
A

)/,' = o ci9a/ff/e>) + 23 (#asbe*w)

L/ Value of ‘sz in exqm/,é 72
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Parameter Space in 2D
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Qbjective

In 2D Parameter Space

Q: Is this a good parameter value?

£R— R

Thicker colour:
Lower objective value

Q: Is this a good pe_zram

eter value?

@Q \la\ve_, low

\(\AM‘MWZ’
@

Wi

Q: What makes it the “best” parameter value?
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Partial Derivatives

Q: If I “fix"” w;, what does f(w,) look like?

P |
4] .




Fw)

Partial Derivatives

The tangent line in the direction of {4 Y \ |
2 FarTlal AeflVaf2V6

A | of "F\ wiTh res/oec‘f
2

o +O Wz s 7(1'16 Jﬂrivdl'vc
- va/h r’efffcf Ilb %

when all oTher variables
Qré I\e/J ﬁﬁ(l

Denoted ‘L‘/ I’?C; for

variable w,
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Different Notations for Least Squares

« |If we have ‘d’ features, the d-dimensional linear model is:
N
Y = “./1)-(‘_'+ W, A2 Wy X3 1 +v2,xg
vL \“f — U\Mw— Casdhetin )

— In words, our model is that the output is a _\&@&\vg}_gg\_amm of the inputs.
« We can re-write this in summation notation:

Ao d
yi= 2w,
5:| -
e We can also re-write this in vector notation:

N T (N
>/l = W X' (qijm,'v\() w amJ X; a/e (o/wmn‘V(c#O/j)

\
\/C////'nner' P! od ucl
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W:

Notation Alert (again)

A

l

W,

\ J
: P

 |n this course, all vectors are assumed to be column-vectors:

™ Vi [ Xii 7

—_ X
y: ).{Z Xi= ;'z X\ — —i
ol J B
> YI\ ./X'd‘—J \
\ ! -
A

LWd J

: )
« So w'x, is a scalar:

W—lX" = [@ :’\L

W ux\

g ]

:LWIX'»/ X, T -”VJ'\"Q

2]

« S0 rows of ‘X’ are actually transpose of column-vector X

X

—

_— X ——

-1
—_ X3

—

[

—

|
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Least Squares in d-Dimensions

 The linear least squares model in d-dimensions minimizes:

FR—R, 5
-F(w\jm,u-- ,\M]) =Z(

“/WV_/—‘ 1= A

~ ) <

« Dates back to 1801: Gauss used it to predict location of Ceres.

« How do we find the best vector ‘w’ in ‘d’ dimensions?
— Can we set the partial derivative of each variable to 07



Least Squares Partial Derivatives (1 Example)

If you're reviewing: try this on your own first!
 The linear Least squares model in d-dimensions for 1 example:

f(""I)WZ) WJ)~ ’ ()f: )/72
)/ = WX, wx"' - W, XiJ

« Computing the partial derivative for variable ‘1"

awﬂf( W e y) =



Least Squares Partial Derivatives (1 Example)

 The linear Least squares model in d-dimensions for 1 example:

1] f(ww \4/ =1/ 2 =1 12_ »
12y~ J) (/l )/7 3 y.d yy, ‘(yl
[Q_] )’ WX.. Y PREE WJXj'li(i_\vas)’(wa )}’u 2)/
NG VR YT B il
. Computing the partial derivative for vérlable ‘1"
[3) Dw'F( Yy wy) = (i""x )x,. Yi i t 0
{
]
(42 L rixe i) = (S =y,

AL 0 ‘
__/iﬂ_(wY.\’r‘Nﬂﬁ Wiy a\n\y\&
[B] ( ) Xyq = \)ﬁwﬁi \X‘&' = ("" Xi — y,)x..

L’" 36



Least Squares Partial Derivatives (‘n’ Examples)

Linear least squares partial derivative for variable 1 on example ‘i’;
— T
9\/‘/‘ ‘F(V\I')WJ)~~')WJ) (w Xi — }/,- )x,-,
For a generic variable ‘j’ we would have:
d
And if ‘f’ is summed over all ‘n’ examples we would have:

9 ‘r Wy Wy \"’J)" 2 (w' X )’7)(

Unfortunately, the partial derivative for w; depends on all {w;, Wy,..., Wy}
— |l can’t just “set equal to 0 and solve for w;".

37



Gradient and Critical Points in d-Dimensions

- Generalizing “set the derivative to 0 and solve” in d-dimensions:
— Find ‘w’ where the gradient vector equals the zero vector.
« Gradient is a d-dimensional vector with partial derivative ‘j’ in position ‘)’

(1 ?(w)

s
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Gradient and Critical Points in d-Dimensions

- Generalizing “set the derivative to 0 and solve” in d-dimensions:
— Find ‘w’ where the gradient vector equals the zero vector.
« Gradient is a d-dimensional vector with partial derivative ‘j’ in position ‘)"

E){ {mear ,eqsf §()v\a/r5 C\a\lmj ‘/\of /neal /eq{‘f S/Ma//
172
(&£ 7 Z(W xi=y)xit gw |. Finding o ‘w’ where NFW)=0
' done by solving a
V(L) = 2 Can be y Solving
Vr(w) — 35&1 'ic' (w Xi ~ Y)XZ ‘}Nyc wm of /m‘eaf e(!uqf:oq/,
1;,1‘ : 2 Al ‘w' whee YFW)=0 are
n — .
L 2w | ) Mihimiz 615,
d L ,§ o' ¥j y) X'JJ :}’"\,(’
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NORMAL EQUATIONS



Matrix/Norm Notation

(MEMORIZE/STUDY THIS)

To solve the d-dimensional least squares, we use matrix notation:
— We use ‘w’ as a “d by 1” vector containing weight ‘w;" in position ‘j’.

— We use ‘y’ as an “n by 1” vector containing target ‘y, in position ‘I'.

— We use ‘x;’ as a “d by 1” vector containing features ‘j’ of example ‘i'.

Y

LW}

~
X

-
Xy Mg " Xy
Ya M o >y

] L ’

Xm X 'xnlj

« We're now going to be careful to make sure these are column vectors.
— So ‘X' is a matrix with x;T in row ‘i'.

)




Matrix/Norm Notation
(MEMORIZE/STUDY THIS)

« To solve the d-dimensional least squares, we use matrix notation:
— Our prediction for example ‘i’ is given by the scalar wTx,.
— Qur predictions for all ‘i’ (n by 1 vector) is the matrix-vector product Xw.

r 1 N S
0 T = | — x,— T
g T T

‘., 1]
X W A
P '\”J

{r edicfin for

V3
e""“‘?/’l" I ip row !

n .
A)Sd ’9€quue w X, (5 @ SCao/on/‘ w

) )

T —
we have woxi = x'w X

(6'9'7 L[;JT - £5]>
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(MEMORIZE/STUDY THIS)

To solve the d-dimensional least squares, we use matrix notation:
— Qur prediction for example ‘i’ is given by the scalar w'x..

Matrix/Norm Notation

e nr+hn

ixn =\

F - HVb,

n
:ZP‘;V;

el

— Qur predictions for all ‘i’ (n by 1 vector) is the matrix-vector product Xw.
— Residual vector ‘r’ gives difference between predictions and y; (n by 1).

— Least squares can be written as the squared L2-norm of the residual.

5

I

Y
J2

YV\

W-'}'u <\ ,1
= W1fa'-7z
w"\ -1'\]

r\T;'@D _ Tn_]

F)= Z (w'y

) e~

i

(y 1S difloronce

fo‘ (’de\‘s\o a

1)/’

—



Back to Deriving Least Squares for d > 2...

We can write vector of predictions y;, as a matrix-vector product:

1

?: XW = [\"’T’l

T
W I

And we can write linear least squares in matrix notation as:

o) = Iy I =12 (g =)

we'll use this notation to derive d-dimensional least squares ‘w’.
— By setting the gradient V f(w) equal to the zero vector and solving for ‘w’.
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Digression: Matrix Algebra Review

« Quick review of linear algebra operations we’ll use:
— If ‘@’ and ‘0’ be vectors, and ‘A’ and ‘B’ be matrices then:

a'b= b'a

Dall”=a"a, Sanity Check:

(A+8) =A"+ 3" ALWAYS CHEWK THAT
(ABY = BTA" e DI MENSTONS MATCH
<A+6>(A+@):AA+M~F@B (i hoty you did something WM))

0\7/-\19 — LTATO\
L —~

vedor vetor 45



Linear and Quadratic Gradients

If you're reviewing: try this on your own first!
« From these rules we have (see post-lecture slide for steps):



Linear and Quadratic Gradients

« From these rules we have (see post-lecture slide for steps):

3 $(0) =15, (=9~ -3l 4K Ko - -y + 19

= rom ekt m‘" Gl Y =

2. es(\)ami

[2] Vﬁ(w\ = —-VwTAw ~ Vui'b + Ve
I

i - _L.Q_,L\w — b - Aw—b= Xer'Xj

Aa axd dut daw T —_—

Colcwlote %mcl‘eﬂs (See notes on \néos\'te) =

Q: Do the dimensions make sense? 47




Normal Equations

V= XKu—X'y = 0

We now move terms not involving ‘w’ to the other side:
Xw = X\
b ﬂ sove L
F A o

This is a set of ‘d’ linear equations called the “normal equations”.

— This a linear system like “Ax = b".
— You can use Gaussian elimination to solve for ‘w’.

— In Python, you solve linear systems in 1 line using numpy.linalg.s%e (A3)

Q: What are A and b in this linear system?
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Incorrect Solutions to Least Squares Problem

7}‘8 lgasf ss/marej OAJ\QC'}I-Ve (S ‘F[W>:%“Xw">//’z

T}\e minimiz ers of fhl's ol,)‘,; ctive are SO’u tons ILo ﬂe /Mfar 5}/57'1*@'
X T)(W = X 77 _,\
- T‘\B {\0//0 WM? are r\_g:_/ 'H\€ 30,01'/'/0\/\: +O '“\e Iéasf S?’Ma/(S Ioroé/fmi

w= (XY y> (only Frae i X'X s invertivle)

Ty _ 7 | .
RN W)( X = X 7 (mw‘ny Mu/f//oli(a.f)o/\ S r_|_97' COmmudative Cl
)

IMenStons ofor\"/
even  na Ie h )

.
WZX_Z

)(—'X (VOU( CGnno’f c\iviJé’ E\/ QA Mo.fr;x)
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summary

- Least squares: a classic method for fitting Linear models.
— With 1 feature, it has a simple closed-form solution.
— Can be generalized to ‘d’ features.
 Normal equations: system of equations for solving least squares

« Next time: doing linear regression with a million features
— We will talk about gradient descent!



Review Questions

Ql: Why can’t we use classification accuracy for regression?
Q2: What is the input and the output of an objective function?

Q3: Why is a system of linear equations necessary for computing the
stationary point of an objective function?

Q4: Why can’t we always use (XTX)! to find w in normal equations?

Sl



Linear Least Squares: Expansion Step

\/\/om‘ ‘W' That Minim 2 ¢S

Rule:
[ 20yt =510 =yl =4 (M) amy) =
- T -\ (A+67) = (A+87)
Tt =40 =) Uy e
Tkenapa?rqfe :Ji w7X7“y7>(Xw'y) (Ab)'=R8'A
5ro\ 4T,

( WTX%XW‘)/) = )’T(Xw ‘_y)) (A8)( = Ac+ac
(W X=Xy = yTXw by Ty) - A O

0\7/\ L= LTATO\
L~ v

Vvedtor vettor
Sonier check: dll of these are  scalars,
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In Smithsonian National Air and Space Museum (Washington, DC):

/f’ W

9 10 1" 12 13 14
log [# PARTICLESIcm" . EETA 79001 GLASS (

15 16 17
p=33glem’]

Scientists found in the meteorite trapped gas whose
composition was nearly identical fo the Martian
atmosphere as measured by the Viking Landers.
This graph compares the concentration of gases

in the Martian atmosphere (vertical axis) with their
concentration in the meteorite (horizontal axis). If
they matched perfectly, the points would fall on the
diagonal line. The close match strongly suggests
that this meteorite came from Mars.
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