CPSC 340: Machine Learning and Data Mining

Gradient Descent Summer 2021

In This Lecture

- 1. Analyzing Least Squares (10 minutes)
- 2. Change of Basis (15 minutes)
- 3. Gradient Descent (15 minutes)

Coming Up Next

ANALYZING LEAST SQUARES

Least Squares Cost

- Cost of solving "normal equations" $X^TXw = X^Ty$?
- Forming X^Ty vector costs ○(__).
 - It has 'd' elements, and each is an inner product between 'n' numbers.
- Forming matrix X^TX costs ○(__).
 - It has d² elements, and each is an inner product between 'n' numbers.
- Solving a d x d system of equations costs O(d³).
 - Cost of Gaussian elimination on a d-variable linear system.
 - Other standard methods have the same cost.
- Overall cost is O(_____).
 - Which term dominates depends on 'n' and 'd'.

Least Squares Issues

- Issues with least squares model:
 - Solution might not be _____.
 - It is sensitive to _____.
 - It always uses all features.
 - What is we had a million features?
 - Difficult to store X^TX (WHY?)
 - O(nd² + d³) time cost will be huge
 - It might predict outside range of y_i values.
 - It assumes a linear relationship between x_i and y_i.

Non-Uniqueness of Least Squares Solution

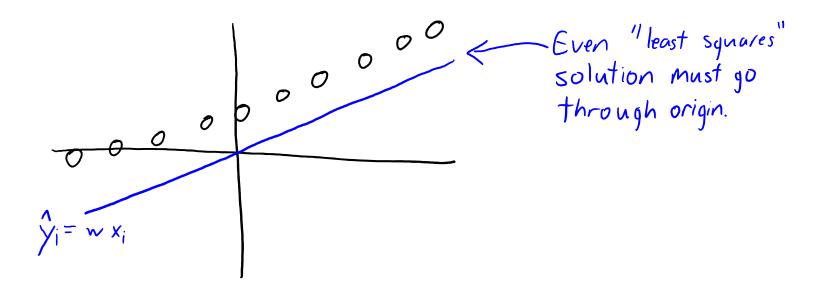
- Why isn't solution unique?
 - Imagine having two features that are identical for all examples.
 - I can increase weight on one feature, and decrease it on the other, without changing predictions. $\gamma_i = w_1 \chi_{ij} + w_2 \chi_{ij} = (w_1 + w_2) \chi_{ij} + 0 \chi_{ij}$

- Thus, if (w_1, w_2) is a solution then $(w_1+w_2, 0)$ is another solution.
- This is special case of features being "collinear":
 - One feature is a linear function of the others.

Q: Will this break my model?

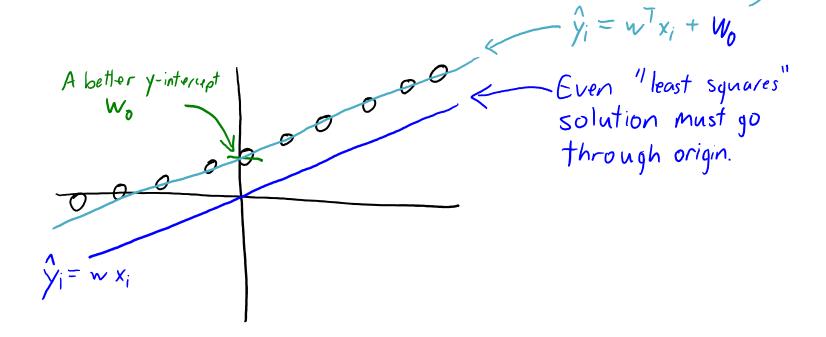
Why don't we have a y-intercept?

- Linear model is $\hat{y}_i = wx_i$ instead of $\hat{y}_i = wx_i + w_0$ with y-intercept w_0 .
- Without an intercept, if $x_i = 0$ then we must predict $\hat{y}_i = 0$.



Why don't we have a y-intercept?

- Linear model is $\hat{y}_i = wx_i$ instead of $\hat{y}_i = wx_i + w_0$ with y-intercept w_0 . Y-intercept fixes this.
- Without an intercept, if $x_i = 0$ then we must predict $\hat{y}_i = 0$.



Adding a Bias Variable

- Simple trick to add a y-intercept ("bias") variable:
 - Make a new matrix "Z" with a ______

$$X = \begin{bmatrix} -0.1 \\ 0.3 \\ 0.1 \end{bmatrix}$$

$$X = \begin{bmatrix} -0.1 \\ 0.3 \\ 0.2 \end{bmatrix}$$

$$Z = \begin{bmatrix} 1 & -0.1 \\ 1 & 0.3 \\ 0.2 \end{bmatrix}$$
"always!" X

- Now use "Z" as your features in linear regression.
 - We'll use 'v' instead of 'w' as regression weights when we use features 'Z'.

$$y_{i} = V_{i} Z_{i1} + V_{2} Z_{i2} = W_{0} + W_{1} X_{i1}$$

- So we can have a non-zero y-intercept by changing features.
 - This means we can ignore the y-intercept in our derivations, which is cleaner.

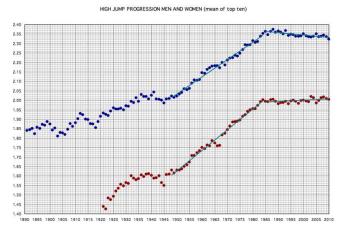
Coming Up Next

CHANGE OF BASIS

Motivation: Non-Linear Progressions in Athletics

Are top athletes going faster, higher, and farther?

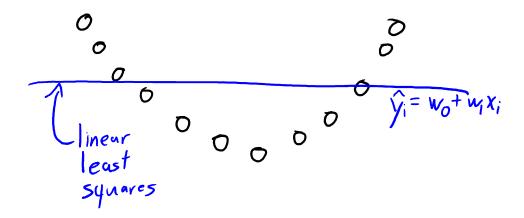




http://www.at-a-lanta.nl/weia/Progressie.html https://en.wikipedia.org/wiki/Usain_Bolt http://www.britannica.com/biography/Florence-Griffith-Joyner

Limitations of Linear Models

On many datasets, y_i is not a linear function of x_i.



Can we use least square to fit non-linear models?

Non-Linear Feature Transforms

Can we use linear least squares to fit a quadratic model?

$$\hat{y}_{i} = w_{a} + w_{i}x_{i} + w_{2}x_{i}^{2}$$

You can do this by changing the features (change of _____):

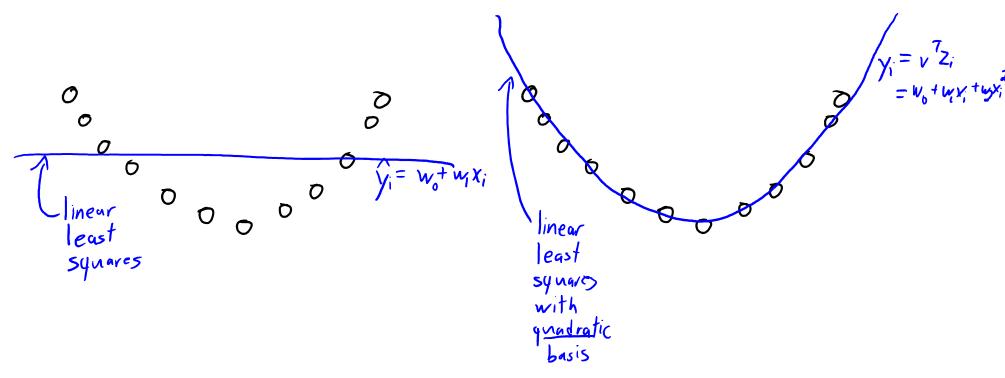
$$X = \begin{bmatrix} 6.2 \\ -0.5 \\ 1 \\ 4 \end{bmatrix} \qquad Z = \begin{bmatrix} 1 & 0.2 & (0.2)^{2} \\ 1 & -0.5 & (-0.5)^{2} \\ 1 & 1 & (1)^{2} \\ 1 & 4 & (4)^{2} \end{bmatrix}$$

$$Y = \inf_{x \in \mathbb{R}^{2}} X \times x^{2}$$

- Fit new parameters 'v' under "chan'ge of basis": solve $Z^TZv = Z^Ty$.
- It's a linear function of w, but a quadratic function of x_i .

$$\hat{y}_{i} = V^{T}Z_{i} = V_{i}Z_{i1} + V_{2}Z_{i2} + V_{3}Z_{i3}$$

Non-Linear Feature Transforms



To predict on new data \$\tilde{\chi}_2\$ form \$\tilde{\chi}\$ from \$\tilde{\chi}\$ and take \$y=\tilde{\chi} \chi\$

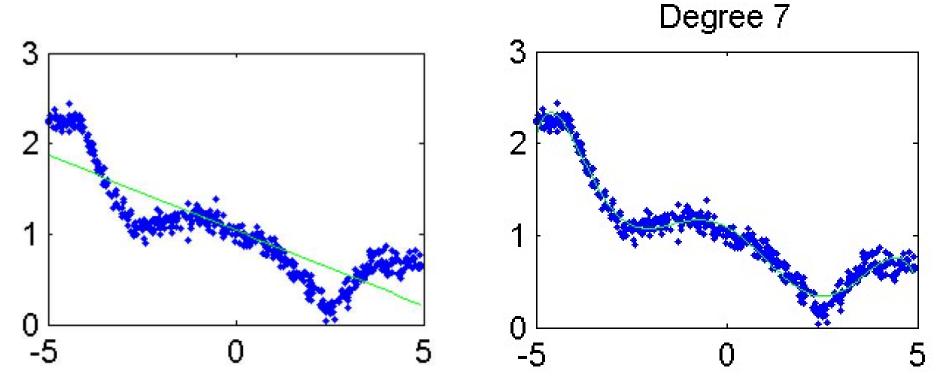
General Polynomial Features (d=1)

• We can have a polynomial of degree 'p' by using these features:

$$Z = \begin{bmatrix} 1 & x_1 & (x_1)^2 & \dots & (x_n)^p \\ 1 & x_2 & (x_2)^2 & \dots & (x_n)^p \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & (x_n)^2 & \dots & (x_n)^p \end{bmatrix}$$

- There are polynomial basis functions that are numerically nicer:
 - E.g., Lagrange polynomials (see CPSC 303).

General Polynomial Features



- If you have more than one feature, you can include interactions:
 - With p=2, in addition to $(x_{i1})^2$ and $(x_{i2})^2$ you could include $x_{i1}x_{i2}$.

"Change of Basis" Terminology

- Instead of "nonlinear feature transform", in machine learning it is common to use the expression "change of basis".
 - The z_i are the "coordinates in the new basis" of the training example.
- "Change of basis" means something different in math:
 - Math: basis vectors must be linearly independent (in ML we don't care).
 - Math: change of basis must span the same space (in ML we change space).
- Unfortunately, saying "change of basis" in ML is common.
 - When I say "change of basis", just think "nonlinear feature transform".

Linear Basis vs. Nonlinear Basis

(You'll use this in A3)

Usual linear Regression

Linear regression with change of basis

Train:

- Vse' X'and 'y' to Find 'w'

Test:
- Use X and w to Find ?

raini

- Use 1x' to find 121

- Use 'Z' and 'y' to find 'v'

- Vse 1x to find 12'
- Vse 2 and 1v to find 9

Change of Basis Notation (MEMORIZE)

- Linear regression with original features:
 - We use 'X' as our "n by d" data matrix, and 'w' as our parameters.
 - We can find _-dimensional 'w' by minimizing the squared error:

$$f(w) = \frac{1}{\lambda} || \chi_w - \gamma ||^2$$

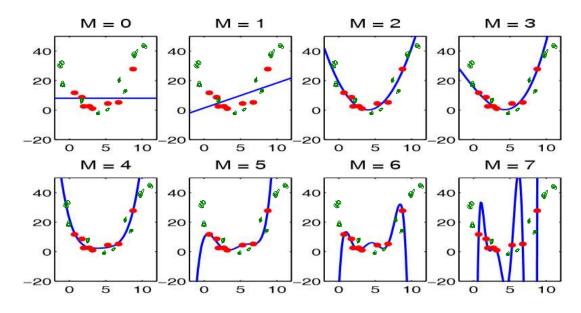
- Linear regression with nonlinear feature transforms:
 - We use 'Z' as our "n by k" data matrix, and 'v' as our parameters.
 - We can find _-dimensional 'v' by minimizing the squared error:

$$f(v) = \frac{1}{2} || 2v - y||^2$$

· Notice that in both cases the target is still 'y'.

Degree of Polynomial and Fundamental Trade-Off

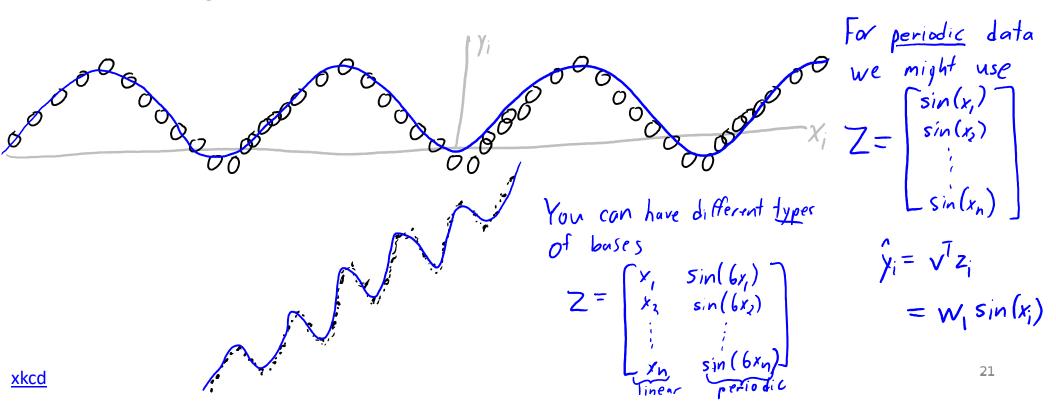
As the polynomial degree increases, the training error goes down.

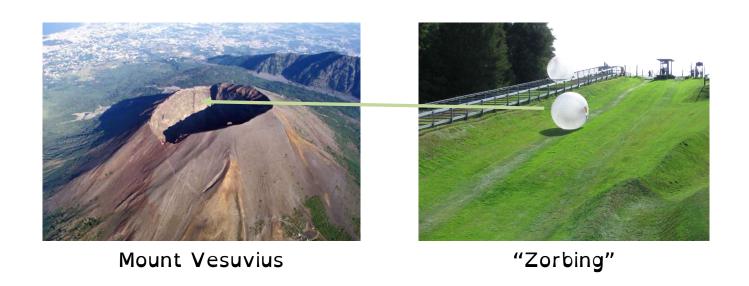


- But approximation error goes up: we start overfitting with large 'p'.
- Usual approach to selecting degree: validation or cross-validation (A3)

Beyond Polynomial Transformations

- Polynomials are not the only possible transformation:
 - Exponentials, logarithms, trigonometric functions, etc.
 - The right non-linear transform will vastly improve performance.



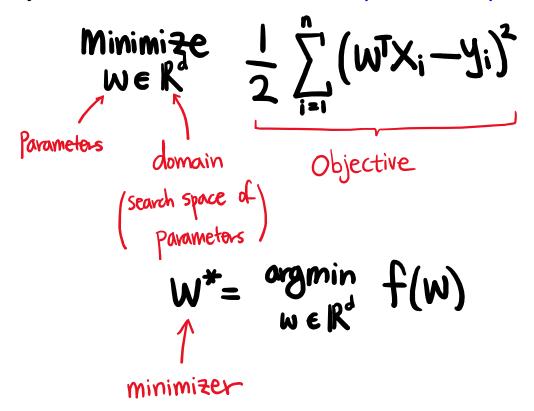


Coming Up Next

GRADIENT DESCENT INTRO

Optimization Terminology

- When we minimize or maximize a function we call it "optimization".
 - In least squares, we want to solve the "optimization problem":

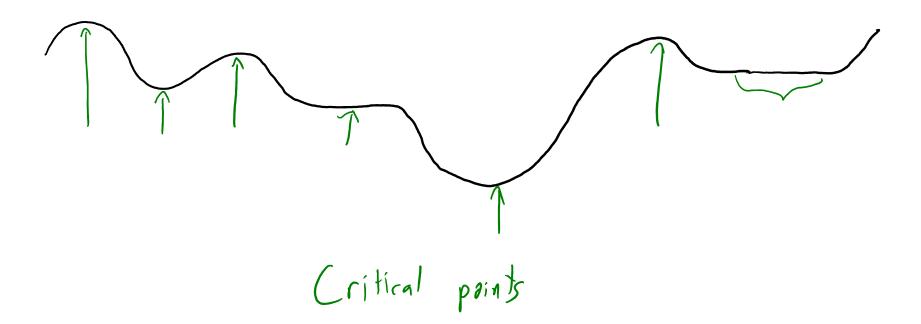


Discrete vs. Continuous Optimization

- We have seen examples of continuous optimization:
 - ____:
 - Domain is the real-valued set of parameters 'w'.
 - Objective is the sum of the squared training errors.
- We have seen examples of discrete optimization:
 - ____:
 - Domain is the grid (finite set) of unique rules {j, t}.
 - Objective is the number of classification errors (or infogain).
- We have also seen a mixture of discrete and continuous:
 - ______: clusters are discrete and means are continuous.

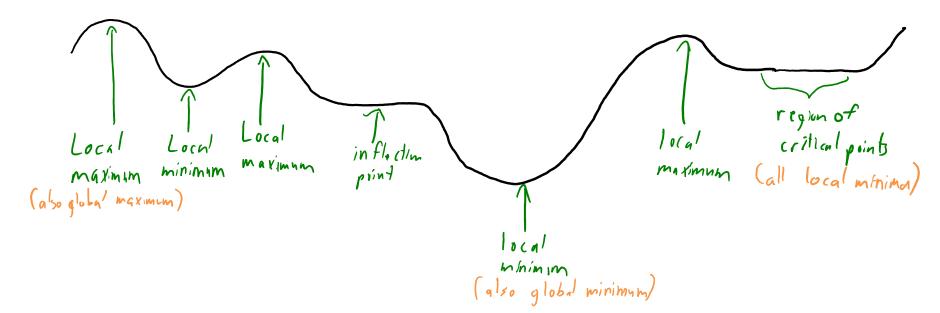
Stationary/Critical Points

- A 'w' with ∇ f(w) = 0 is called a stationary point or critical point.
 - The _____ is zero so the tangent plane is "flat".



Stationary/Critical Points

- A 'w' with ∇ f(w) = 0 is called a stationary point or critical point.
 - The slope is zero so the tangent plane is "flat".



- If we're minimizing, we would ideally like to find a global minimum.
 - But for some problems the best we can do is find a stationary point where ∇ f(w)=0.

Motivation: Large-Scale Least Squares

Recall: normal equations find 'w' with ∇ f(w) = 0 in O(nd² + d³) time.

$$(\chi^{\tau}\chi)_{w} = \chi^{\tau}\gamma$$

Very slow if 'd' is large.

1000 Genomes Project

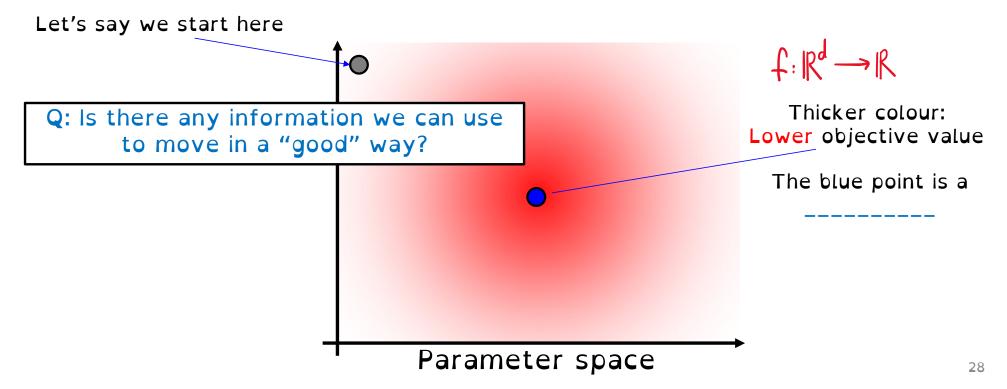
1000	Genomes Release	Variants	Individuals	Populations	VCF	Alignments	Supporting Data
	Phase 3	84.4 million	2504	26	VCF	Alignments	Supporting Data
	Phase 1	37.9 million	1092	14	VCF	Alignments	Supporting Data
	Pilot	14.8 million	179	4	VCF	Alignments	Supporting Data

n=2504, d=84.4 million!!!

- Alternative when 'd' is large is gradient descent methods.
 - Probably the most important class of algorithms in machine learning.

What is Gradient Descent?

 Goal: navigate the parameter space and find a locally optimal parameter value



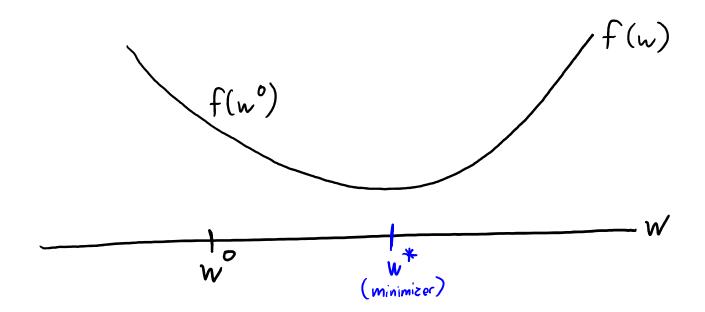
What is Gradient Descent?

 Goal: navigate the parameter space and find a locally optimal parameter value

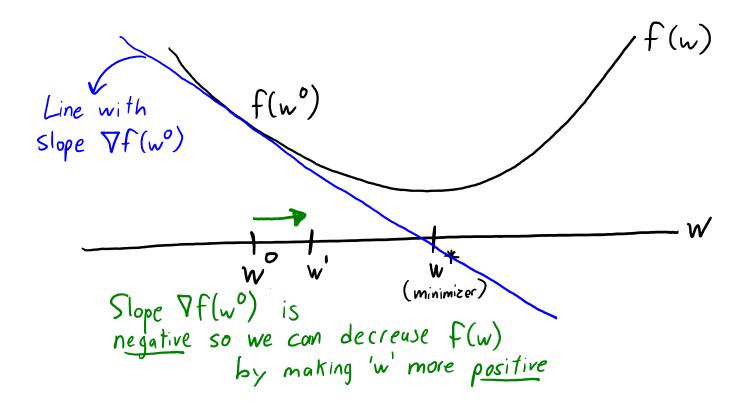
1. Negative gradient is a 2. Negative gradient is the ↑ $f: \mathbb{R}^d \longrightarrow \mathbb{R}$ direction and magnitude of Thicker colour: Lower objective value The blue point is a minimizer Parameter space

- Gradient descent is an iterative optimization algorithm:
 - It starts with a "guess" w⁰.
 - It uses the gradient ∇ f(w⁰) to generate a better guess w¹.
 - It uses the gradient ∇ f(w¹) to generate a better guess w².
 - It uses the gradient ∇ f(w²) to generate a better guess w³. ...
 - The limit of w^t as 't' goes to ∞ has $\nabla f(w^t) = 0$.
- It converges to a global optimum if 'f' is "convex".

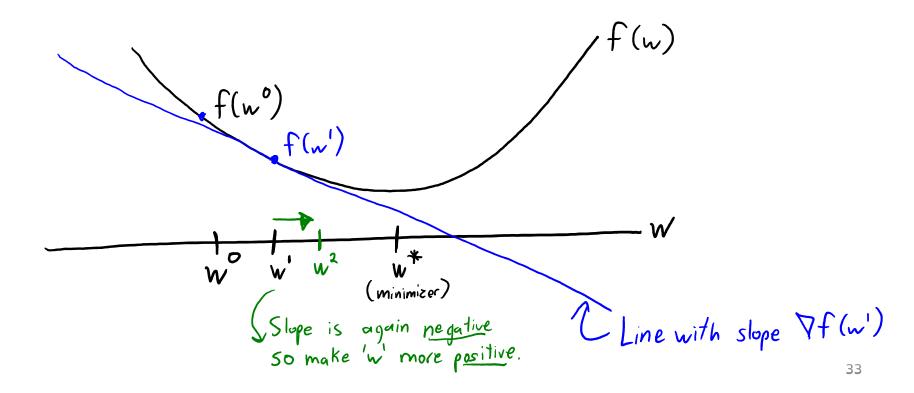
- Gradient descent is based on a simple observation:
 - Give parameters 'w', the direction of largest decrease is $-\nabla$ f(w).



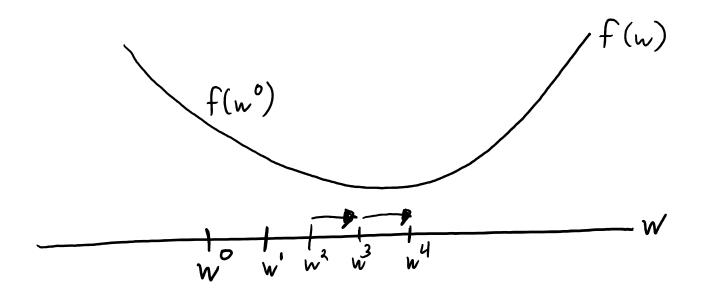
- Gradient descent is based on a simple observation:
 - Give parameters 'w', the direction of largest decrease is $-\nabla$ f(w).



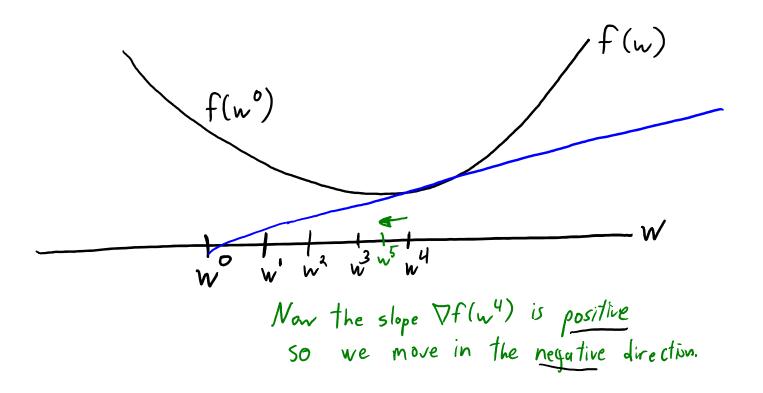
- Gradient descent is based on a simple observation:
 - Give parameters 'w', the direction of largest decrease is $-\nabla$ f(w).



- Gradient descent is based on a simple observation:
 - Give parameters 'w', the direction of largest decrease is $-\nabla$ f(w).



- Gradient descent is based on a simple observation:
 - Give parameters 'w', the direction of largest decrease is $-\nabla$ f(w).



Coming Up Next

MORE FORMAL DISCUSSION OF GRADIENT DESCENT

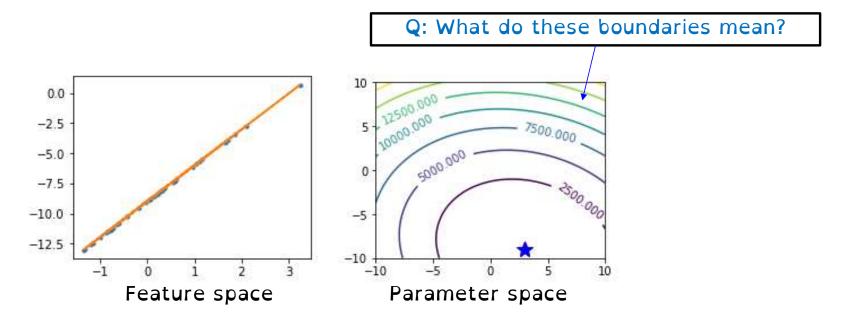
Gradient Descent for Finding a Local Minimum

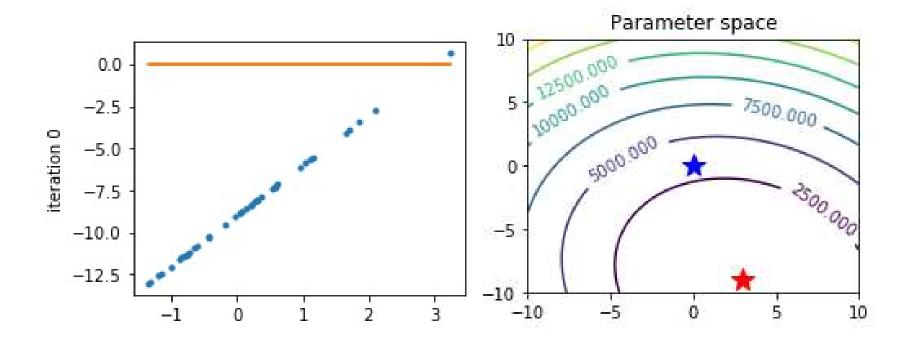
- We start with some initial guess, w⁰.
- Generate new guess by moving in the negative gradient direction:

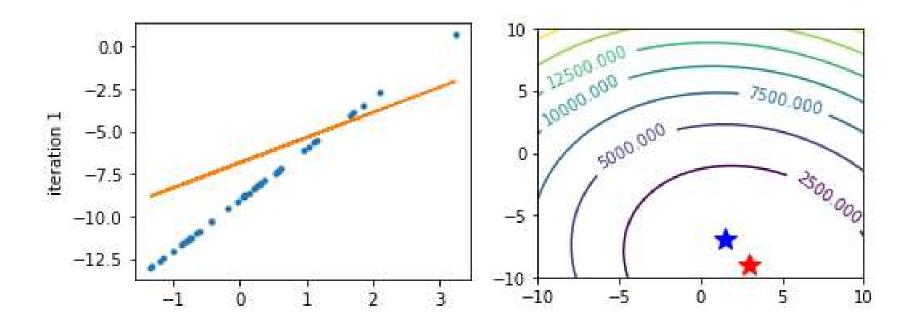
- This decreases 'f' if the "step size" α^0 is small enough.
- Usually, we decrease α^0 if it increases 'f' (see A3 "optimizers.py").
- Repeat to successively refine the guess:

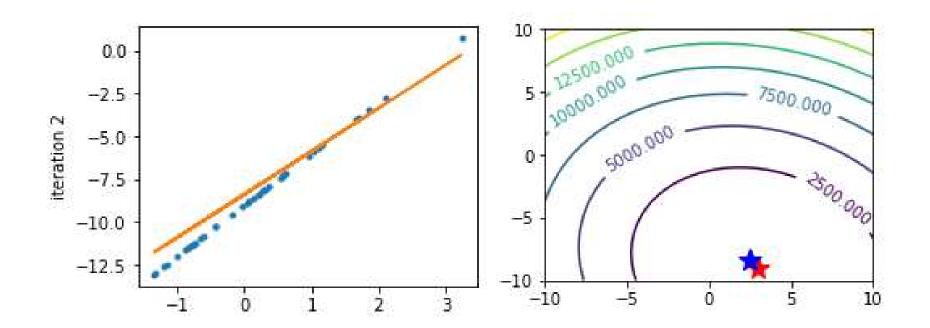
$$\mathbf{w}^{t+1} = \mathbf{w}^t - \mathbf{x}^t \nabla f(\mathbf{w}^t) \quad \text{for } t = 1, 2, 3, \dots$$

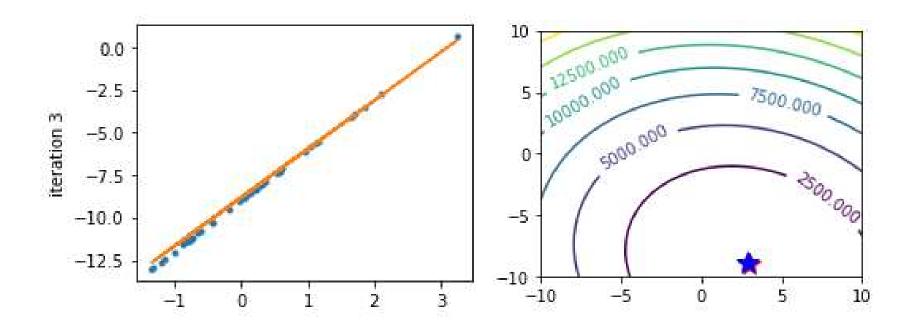
- Stop if not making progress or $||\nabla f(w^t)|| \le \varepsilon$ Some small scalar. Approximate local minimum



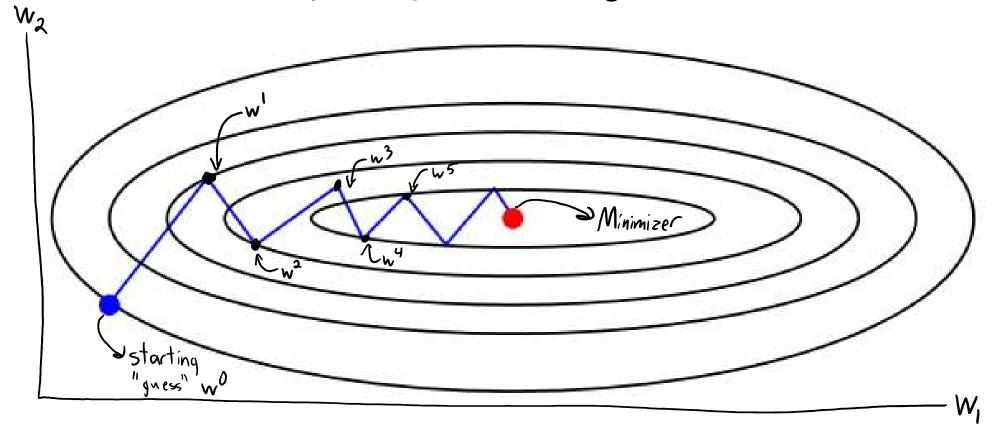








"Parameter Trajectory" According to Gradient Descent



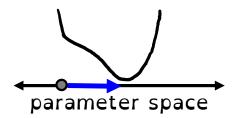
- Under weak conditions, algorithm converges to a 'w' with ∇ f(w) = 0.
 - 'f' is bounded below, ∇ f can't change arbitrarily fast, small-enough constant α^t .

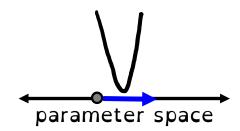
Step Size Considerations

$$W^{t+1} = W^t - X^t \nabla f(w^t)$$

Q: Why is t in α^t ?

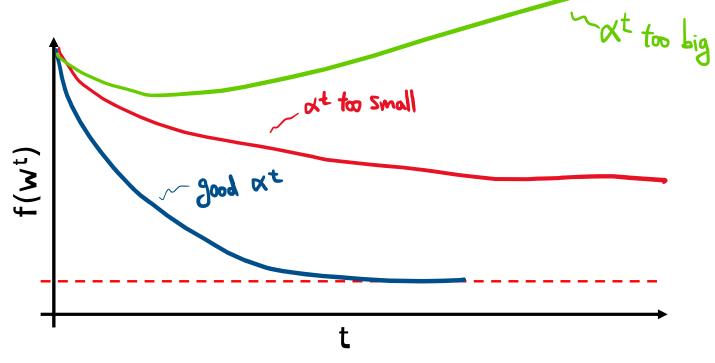
- $-\nabla f(w^t)$ has _____ and ____ of steepest decrease
 - But this magnitude is unreliable!





- α_t must be "tuned" carefully for gradient descent to work
 - Too large, we might ______
 - Too small, we might
 - Industry standard: optimize learning rate or use adaptive learning rate

The "Learning Curve"



- Number of iterations on the x-axis
- Objective value on the y-axis
- Helps visualize and compare performance of algorithms

Gradient Descent for Least Squares

The least squares objective and gradient:

$$f(u) = \frac{1}{2} \| \chi_{n} - \gamma \|^{2} \qquad \nabla f(u) = \chi^{T} (\chi_{n} - \gamma)$$

Gradient descent iterations for least squares:

$$w^{t+1} = w^{t} - \alpha^{t} \chi^{T} (\chi_{w}^{t} - \chi)$$

$$\nabla f(w^{t})$$

Cost of gradient descent iteration is O(__) (no need to form X^TX).

Bothleneck is computing
$$\nabla f(nt) = X^7(\chi_n t - \gamma)$$

Normal Equations vs. Gradient Descent

- Least squares via normal equations vs. gradient descent:
 - Normal equations cost O(nd² + d³).
 - Gradient descent costs O(___) to run for 't' iterations.
 - Each of the 't' iterations costs O(nd).
 - Normal equations only solve linear least squares problems.
 - Gradient descent solves many other problems.

Beyond Gradient Descent

- Gradient descent can be faster when 'd' is very large:
 - If solution is "good enough" for a 't' less than minimum(d,d²/n).
 - Proportional to "condition number" of X^TX (no direct 'd' dependence).
- There are many variations on gradient descent.
 - Methods employing a "line search" to choose the step-size.
 - "Conjugate" gradient and "accelerated" gradient methods.
 - Newton's method (which uses second derivatives).
 - Quasi-Newton and Hessian-free Newton methods.
 - Stochastic gradient (later in course).
- This course focuses on gradient descent and stochastic gradient:
 - They're simple and give reasonable solutions to most ML problems.
 - But the above can be faster for some applications.

Summary

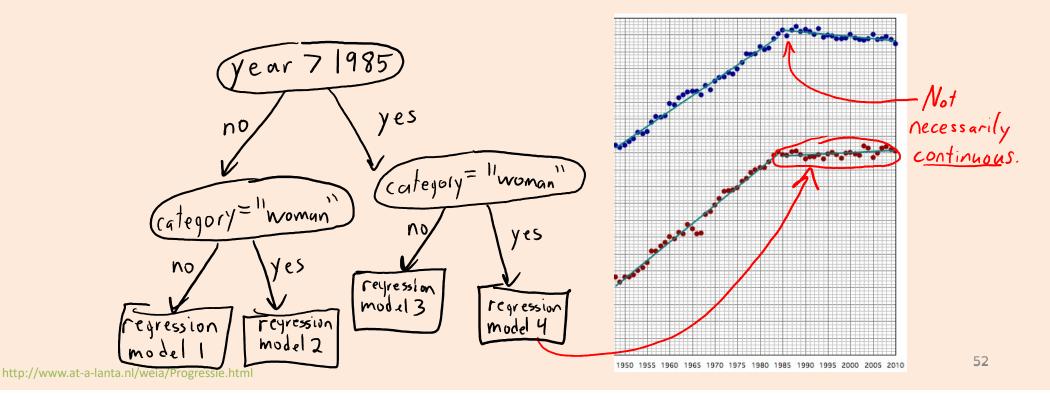
- Least Squares: Solution might not be unique because of collinearity.
 - But any solution is optimal because of "convexity".
- Non-linear transforms:
 - Allow us to model non-linear relationships with linear models.
- Gradient descent:
 - Find a local minimum using gradients to navigate parameter space
- Next time: the bane of existence for gradient-based methods

Review Questions

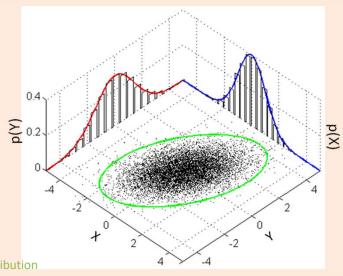
- Q1: What is the dimensionality of the parameter space when we add a y-intercept to linear regression?
- Q2: Why can gradient descent only find local minima?
- Q3: In what situation is gradient descent the best choice for optimization, even when 'd' is small?
- Q4: Given training data, how can we tune the learning rate?

• We can adapt our classification methods to perform regression:

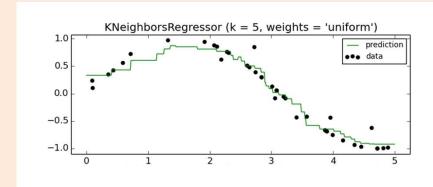
- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.



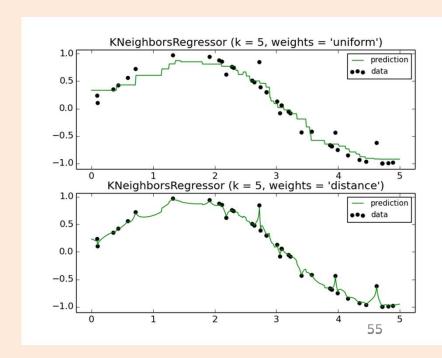
- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.
 - Probabilistic models: fit $p(x_i | y_i)$ and $p(y_i)$ with Gaussian or other model.
 - Take CPSC 440/540.



- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.
 - Probabilistic models: fit $p(x_i | y_i)$ and $p(y_i)$ with Gaussian or other model.
 - Non-parametric models:
 - KNN regression:
 - Find 'k' nearest neighbours of χ_i .
 - Return the mean of the corresponding y_i.

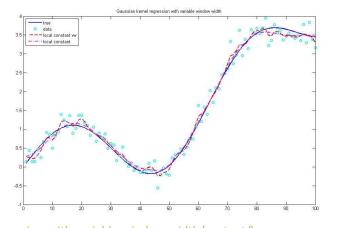


- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.
 - Probabilistic models: fit $p(x_i | y_i)$ and $p(y_i)$ with Gaussian or other model.
 - Non-parametric models:
 - KNN regression.
 - Could be weighted by distance.
 - Close points 'j' get more "weight" w_{ij}.

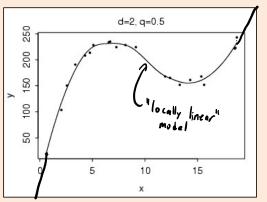


- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.
 - Probabilistic models: fit $p(x_i | y_i)$ and $p(y_i)$ with Gaussian or other model.
 - Non-parametric models:
 - KNN regression.
 - Could be weighted by distance.
 - 'Nadaraya-Waston': weight all y_i by distance to x_i.

$$\hat{y}_{i} = \underbrace{\frac{2}{2}}_{j=1} \frac{v_{ij}y_{j}}{v_{ij}}$$



- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.
 - Probabilistic models: fit $p(x_i | y_i)$ and $p(y_i)$ with Gaussian or other model.
 - Non-parametric models:
 - KNN regression.
 - Could be weighted by distance.
 - 'Nadaraya-Waston': weight all y_i by distance to x_i.
 - 'Locally linear regression': for each x_i , fit a linear model weighted by distance. (Better than KNN and NW at boundaries.)



- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.
 - Probabilistic models: fit $p(x_i | y_i)$ and $p(y_i)$ with Gaussian or other model.
 - Non-parametric models:
 - KNN regression.
 - Could be weighted by distance.
 - 'Nadaraya-Waston': weight all y_i by distance to x_i.
 - 'Locally linear regression': for each x_i , fit a linear model weighted by distance. (Better than KNN and NW at boundaries.)
 - Ensemble methods:
 - Can improve performance by averaging predictions across regression models.

- We can adapt our classification methods to perform regression.
- Applications:
 - Regression forests for fluid simulation:
 - https://www.youtube.com/watch?v=kGB7Wd9CudA
 - KNN for image completion:
 - http://graphics.cs.cmu.edu/projects/scene-completion
 - · Combined with "graph cuts" and "Poisson blending".
 - See also "PatchMatch": https://vimeo.com/5024379
 - KNN regression for "voice photoshop":
 - https://www.youtube.com/watch?v=I3I4XLZ59iw
 - · Combined with "dynamic time warping" and "Poisson blending".
- But we'll focus on linear models with non-linear transforms.
 - These are the building blocks for more advanced methods.

Vector View of Least Squares

We showed that least squares minimizes:

• The ½ and the squaring don't change solution, so equivalent to:

$$f(w) = \|\chi_w - \gamma\|$$

 From this viewpoint, least square minimizes Euclidean distance between vector of labels 'y' and vector of predictions Xw.

Bonus Slide: Householder(-ish) Notation

Househoulder notation: set of (fairly-logical) conventions for math.

Use greek letters for scalars:
$$\lambda = 1$$
, $\beta = 3.5$, $\gamma = 11$

Use first/last lowercase letters for vectors: $w = \begin{bmatrix} 0.1 \\ 0.2 \end{bmatrix}$, $\chi = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\chi = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\alpha = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $b = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$

Assumed to be column-vectors.

Use first/last uppercase letters for matrices: X, Y, W, A, B

Indices use i, j, K. Sizes use m, n, d, p, and k is obvious from context Sets use S, T, U, V

Functions use f, q, and h.

When I write x; I
mean "grab row" of
X and make a column-vector
with its values."

Bonus Slide: Householder(-ish) Notation

Is this the same model?

Househoulder notation: set of (fairly-logical) conventions for math:

Our ultimate least squares notation:
$$f(w) = \frac{1}{2} || X_w - y ||^2$$
But if we agree on notation we can quickly understand:
$$g(x) = \frac{1}{2} || A_x - b ||^2$$
If we use random notation we get things like:
$$H(\beta) = \frac{1}{2} || R_B - P_n ||^2$$

When does least squares have a unique solution?

- We said that least squares solution is not unique if we have repeated columns.
- But there are other ways it could be non-unique:
 - One column is a scaled version of another column.
 - One column could be the sum of 2 other columns.
 - One column could be three times one column minus four times another.
- Least squares solution is unique if and only if all columns of X are "linearly independent".
 - No column can be written as a "linear combination" of the others.
 - Many equivalent conditions (see Strang's linear algebra book):
 - X has "full column rank", X^TX is invertible, X^TX has non-zero eigenvalues, $det(X^TX) > 0$.
 - Note that we cannot have independent columns if d > n.