
CPSC 340:
Machine Learning and Data Mining

Gradient Descent
Summer 2021

1



In This Lecture
1. Analyzing Least Squares (10 minutes)
2. Change of Basis (15 minutes)
3. Gradient Descent (15 minutes)
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ANALYZING LEAST SQUARES
Coming Up Next
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Least Squares Cost
• Cost of solving “normal equations” XTXw = XTy?
• Forming XTy vector costs O(__).

– It has ‘d’ elements, and each is an inner product between ‘n’ numbers.
• Forming matrix XTX costs O(__).

– It has d2 elements, and each is an inner product between ‘n’ numbers.
• Solving a d x d system of equations costs O(d3).

– Cost of Gaussian elimination on a d-variable linear system.
– Other standard methods have the same cost.

• Overall cost is O(________).
– Which term dominates depends on ‘n’ and ‘d’.
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Least Squares Issues
• Issues with least squares model:

– Solution might not be ______.
– It is sensitive to ______.
– It always uses all features.
– What is we had a million features?

• Difficult to store XTX (WHY?)
• O(nd2 + d3) time cost will be huge

– It might predict outside range of yi values.
– It assumes a linear relationship between xi and yi.
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Non-Uniqueness of Least Squares Solution
• Why isn’t solution unique?

– Imagine having two features that are identical for all examples.
– I can increase weight on one feature, and decrease it on the other,

without changing predictions.

– Thus, if (w1,w2) is a solution then (w1+w2, 0) is another solution.
– This is special case of features being “collinear”:

• One feature is a linear function of the others.
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Q: Will this break my model?



Why don’t we have a y-intercept?
– Linear model is �𝑦𝑦i = wxi instead of �𝑦𝑦i = wxi + w0 with y-intercept w0.
– Without an intercept, if xi = 0 then we must predict �𝑦𝑦i = 0.
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Adding a Bias Variable
• Simple trick to add a y-intercept (“bias”) variable:

– Make a new matrix “Z” with a _________________.

• Now use “Z” as your features in linear regression.
– We’ll use ‘v’ instead of ‘w’ as regression weights when we use features ‘Z’.

• So we can have a non-zero y-intercept by changing features.
– This means we can ignore the y-intercept in our derivations, which is cleaner.

9



CHANGE OF BASIS
Coming Up Next
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Motivation: Non-Linear Progressions in Athletics

• Are top athletes going faster, higher, and farther?

http://www.at-a-lanta.nl/weia/Progressie.html
https://en.wikipedia.org/wiki/Usain_Bolt
http://www.britannica.com/biography/Florence-Griffith-Joyner
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Limitations of Linear Models
• On many datasets, yi is not a linear function of xi.

• Can we use least square to fit non-linear models?
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Non-Linear Feature Transforms
• Can we use linear least squares to fit a quadratic model?

• You can do this by changing the features (change of _______):

• Fit new parameters ‘v’ under “change of basis”: solve ZTZv = ZTy.
• It’s a linear function of w, but a quadratic function of xi.
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Non-Linear Feature Transforms
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General Polynomial Features (d=1)
• We can have a polynomial of degree ‘p’ by using these features:

• There are polynomial basis functions that are numerically nicer:
– E.g., Lagrange polynomials (see CPSC 303).
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General Polynomial Features

• If you have more than one feature, you can include interactions:
– With p=2, in addition to (xi1)2 and (xi2)2 you could include xi1xi2.
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“Change of Basis” Terminology
• Instead of “nonlinear feature transform”, in machine learning

it is common to use the expression “change of basis”.
– The zi are the “coordinates in the new basis” of the training example.

• “Change of basis” means something different in math:
– Math: basis vectors must be linearly independent (in ML we don’t care).
– Math: change of basis must span the same space (in ML we change space).

• Unfortunately, saying “change of basis” in ML is common.
– When I say “change of basis”, just think “nonlinear feature transform”.
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Linear Basis vs. Nonlinear Basis
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(You’ll use this in A3)



Change of Basis Notation (MEMORIZE)
• Linear regression with original features:

– We use ‘X’ as our “n by d” data matrix, and ‘w’ as our parameters.
– We can find _-dimensional ‘w’ by minimizing the squared error:

• Linear regression with nonlinear feature transforms:
– We use ‘Z’ as our “n by k” data matrix, and ‘v’ as our parameters.
– We can find _-dimensional ‘v’ by minimizing the squared error:

• Notice that in both cases the target is still ‘y’.
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Degree of Polynomial and Fundamental Trade-Off

• As the polynomial degree increases, the training error goes down.

• But approximation error goes up: we start overfitting with large ‘p’.
• Usual approach to selecting degree: validation or cross-validation (A3)

http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf
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Beyond Polynomial Transformations
• Polynomials are not the only possible transformation:

– Exponentials, logarithms, trigonometric functions, etc.
– The right non-linear transform will vastly improve performance.
– But when you have a lot of features, the right basis may not be 

obvious.
• The above bases are parametric model:

– The size of the model does not depend on the number of training 
examples ‘n’.

– As ‘n’ increases, you can estimate the model more accurately.
– But at some point, more data doesn’t help because model is too 

simple.
• Alternative is non-parametric models:

– Size of the model grows with the number of training examples.
– Model gets more complicated as you get more data.
– You can model very complicated functions where you don’t know 

the right basis.
xkcd 21

https://m.xkcd.com/2048/


GRADIENT DESCENT INTRO
Coming Up Next
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Mount Vesuvius “Zorbing”



Optimization Terminology
• When we minimize or maximize a function we call it “optimization”.

– In least squares, we want to solve the “optimization problem”:
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Discrete vs. Continuous Optimization
• We have seen examples of continuous optimization:

– ______________:
• Domain is the real-valued set of parameters ‘w’.
• Objective is the sum of the squared training errors.

• We have seen examples of discrete optimization:
– ______________: 

• Domain is the grid (finite set) of unique rules {j, t}.
• Objective is the number of classification errors (or infogain).

• We have also seen a mixture of discrete and continuous:
– ___________: clusters are discrete and means are continuous.
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Stationary/Critical Points
• A ‘w’ with 𝛻𝛻 f(w) = 0 is called a stationary point or critical point.

– The _____ is zero so the tangent plane is “flat”.
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Stationary/Critical Points
• A ‘w’ with 𝛻𝛻 f(w) = 0 is called a stationary point or critical point.

– The slope is zero so the tangent plane is “flat”.

– If we’re minimizing, we would ideally like to find a global minimum.
• But for some problems the best we can do is find a stationary point where 𝛻𝛻 f(w)=0. 26



Motivation: Large-Scale Least Squares
• Recall: normal equations find ‘w’ with ∇ f(w) = 0 in O(nd2 + d3) time.

– Very slow if ‘d’ is large.

• Alternative when ‘d’ is large is gradient descent methods.
– Probably the most important class of algorithms in machine learning.
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n=2504, d=84.4 million!!!



What is Gradient Descent?
• Goal: navigate the parameter space and

find a locally optimal parameter value

28Parameter space

Thicker colour:
Lower objective value

The blue point is a 
__________

Q: Is there any information we can use 
to move in a “good” way?

Let’s say we start here



What is Gradient Descent?
• Goal: navigate the parameter space and

find a locally optimal parameter value

29Parameter space

Thicker colour:
Lower objective value

The blue point is a 
minimizer

1. Negative gradient is a ________
2. Negative gradient is the 
direction and magnitude of
___________________



Gradient Descent for Finding a Local Minimum 
• Gradient descent is an iterative optimization algorithm:

– It starts with a “guess” w0.
– It uses the gradient ∇ f(w0) to generate a better guess w1.
– It uses the gradient ∇ f(w1) to generate a better guess w2.
– It uses the gradient ∇ f(w2) to generate a better guess w3.

…
– The limit of wt as ‘t’ goes to ∞ has ∇ f(wt) = 0.

• It converges to a global optimum if ‘f’ is “convex”.
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Gradient Descent for Finding a Local Minimum 
• Gradient descent is based on a simple observation:

– Give parameters ‘w’, the direction of largest decrease is −𝛻𝛻 f(w).
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Gradient Descent for Finding a Local Minimum 
• Gradient descent is based on a simple observation:

– Give parameters ‘w’, the direction of largest decrease is −𝛻𝛻 f(w).
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MORE FORMAL DISCUSSION OF 
GRADIENT DESCENT
Coming Up Next

36



Gradient Descent for Finding a Local Minimum 
– We start with some initial guess, w0.
– Generate new guess by moving in the negative gradient direction:

• This decreases ‘f’ if the “step size” 𝛼𝛼0 is small enough.
• Usually, we decrease 𝛼𝛼0 if it increases ‘f’ (see A3 “optimizers.py”).

– Repeat to successively refine the guess:

– Stop if not making progress or 
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Gradient Descent in 2D Regression

Feature space Parameter space
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Q: What do these boundaries mean?



Gradient Descent in 2D Regression
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Gradient Descent in 2D Regression
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Gradient Descent in 2D Regression
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Gradient Descent in 2D Regression
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“Parameter Trajectory” According to Gradient Descent

• Under weak conditions, algorithm converges to a ‘w’ with ∇ f(w) = 0.
– ‘f’ is bounded below, ∇ f can’t change arbitrarily fast, small-enough constant αt.
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• −∇𝑓𝑓 𝑤𝑤𝑡𝑡 has ________ and __________ of steepest decrease
– But this magnitude is unreliable!

• 𝛼𝛼𝑡𝑡 must be “tuned” carefully for gradient descent to work
– Too large, we might _______________________________
– Too small, we might _______________________________
– Industry standard: optimize learning rate or use adaptive learning rate

Step Size Considerations
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Q: Why is t in 𝛼𝛼𝑡𝑡 ?

parameter space parameter space



The “Learning Curve”

• Number of iterations on the x-axis
• Objective value on the y-axis
• Helps visualize and compare performance of algorithms

45
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Gradient Descent for Least Squares
• The least squares objective and gradient:

• Gradient descent iterations for least squares:

• Cost of gradient descent iteration is O(__) (no need to form XTX).
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Normal Equations vs. Gradient Descent
• Least squares via normal equations vs. gradient descent:

– Normal equations cost O(nd2 + d3).
– Gradient descent costs O(___) to run for ‘t’ iterations.

• Each of the ‘t’ iterations costs O(nd).

– Normal equations only solve linear least squares problems.
• Gradient descent solves many other problems.
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Beyond Gradient Descent
• Gradient descent can be faster when ‘d’ is very large:

– If solution is “good enough” for a ‘t’ less than minimum(d,d2/n).
– Proportional to “condition number” of XTX (no direct ‘d’ dependence).

• There are many variations on gradient descent.
– Methods employing a “line search” to choose the step-size.
– “Conjugate” gradient and “accelerated” gradient methods.
– Newton’s method (which uses second derivatives).
– Quasi-Newton and Hessian-free Newton methods.
– Stochastic gradient (later in course).

• This course focuses on gradient descent and stochastic gradient:
– They’re simple and give reasonable solutions to most ML problems.
– But the above can be faster for some applications.
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Summary
• Least Squares: Solution might not be unique because of collinearity.

– But any solution is optimal because of “convexity”.
• Non-linear transforms:

– Allow us to model non-linear relationships with linear models.
• Gradient descent:

– Find a local minimum using gradients to navigate parameter space

• Next time: the bane of existence for gradient-based methods 
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Review Questions
• Q1: What is the dimensionality of the parameter space when we add a y-

intercept to linear regression?

• Q2: Why can gradient descent only find local minima?

• Q3: In what situation is gradient descent the best choice for optimization, 
even when ‘d’ is small?

• Q4: Given training data, how can we tune the learning rate?
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Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:

http://www.at-a-lanta.nl/weia/Progressie.html
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Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

http://www.at-a-lanta.nl/weia/Progressie.html
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Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.
– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

• Take CPSC 440/540.

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
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Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.
– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.
– Non-parametric models: 

• KNN regression:
– Find ‘k’ nearest neighbours of xi.
– Return the mean of the corresponding yi.

http://scikit-learn.org/stable/modules/neighbors.html
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Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.
– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.
– Non-parametric models: 

• KNN regression.
• Could be weighted by distance.

– Close points ‘j’ get more “weight” wij.

http://scikit-learn.org/stable/modules/neighbors.html
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Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.
– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.
– Non-parametric models: 

• KNN regression.
• Could be weighted by distance.
• ‘Nadaraya-Waston’: weight all yi by distance to xi.

http://www.mathworks.com/matlabcentral/fileexchange/35316-kernel-regression-with-variable-window-width/content/ksr_vw.m
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Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.
– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.
– Non-parametric models: 

• KNN regression.
• Could be weighted by distance.
• ‘Nadaraya-Waston’: weight all yi by distance to xi.
• ‘Locally linear regression’: for each xi, fit a linear model weighted by distance.

(Better than KNN and NW at boundaries.)

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd423.htm
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Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.
– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.
– Non-parametric models: 

• KNN regression.
• Could be weighted by distance.
• ‘Nadaraya-Waston’: weight all yi by distance to xi.
• ‘Locally linear regression’: for each xi, fit a linear model weighted by distance.

(Better than KNN and NW at boundaries.)
– Ensemble methods:

• Can improve performance by averaging predictions across regression models.
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Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression.

• Applications:
– Regression forests for fluid simulation:

• https://www.youtube.com/watch?v=kGB7Wd9CudA
– KNN for image completion:

• http://graphics.cs.cmu.edu/projects/scene-completion
• Combined with “graph cuts” and “Poisson blending”.
• See also “PatchMatch”: https://vimeo.com/5024379

– KNN regression for “voice photoshop”:
• https://www.youtube.com/watch?v=I3l4XLZ59iw
• Combined with “dynamic time warping” and “Poisson blending”.

• But we’ll focus on linear models with non-linear transforms.
– These are the building blocks for more advanced methods.

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd423.htm
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https://www.youtube.com/watch?v=kGB7Wd9CudA
http://graphics.cs.cmu.edu/projects/scene-completion
https://vimeo.com/5024379
https://www.youtube.com/watch?v=I3l4XLZ59iw


Vector View of Least Squares
• We showed that least squares minimizes:

• The ½ and the squaring don’t change solution, so equivalent to:

• From this viewpoint, least square minimizes Euclidean distance between 
vector of labels ‘y’ and vector of predictions Xw.
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Bonus Slide: Householder(-ish) Notation
• Househoulder notation: set of (fairly-logical) conventions for math.
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Bonus Slide: Householder(-ish) Notation
• Househoulder notation: set of (fairly-logical) conventions for math:
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When does least squares have a unique solution?
• We said that least squares solution is not unique if we have repeated columns.
• But there are other ways it could be non-unique:

– One column is a scaled version of another column.
– One column could be the sum of 2 other columns.
– One column could be three times one column minus four times another.

• Least squares solution is unique if and only if all columns of X are “linearly independent”.
– No column can be written as a “linear combination” of the others.
– Many equivalent conditions (see Strang’s linear algebra book):

• X has “full column rank”, XTX is invertible, XTX has non-zero eigenvalues, det(XTX) > 0.
– Note that we cannot have independent columns if d > n.
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