CPSC 340: Machine Learning and Data Mining

Gradient Descent Summer 2021

In This Lecture

- 1. Analyzing Least Squares (10 minutes)
- 2. Change of Basis (15 minutes)
- 3. Gradient Descent (15 minutes)

ANALYZING LEAST SQUARES Coming Up Next

Least Squares Cost $X^1 + Y$

- Cost of solving "normal equations" $\left(X^T X w = X^T y\right)$
- Forming X^Ty vector costs $O(n d)$. – It has 'd' elements, and each is an inner product between for the Mumbers.
- Forming matrix X^TX costs $O(n\lambda^2)$. – It has d^2 elements, and each is an inner product between 'n' hum
- Solving a d x d system of equations costs $O(d^3)$.
	- Cost of Gaussian elimination on a d-variable linear system.
	-
- Other standard methods have the same cost.
Overall cost is $O(\underline{n}\underline{\lambda^2}+\underline{\lambda^3}-)$. (1) Campule Xtx and Xty C(nd²) • Overall cost is $O(n\lambda^2 + \lambda^3)$. – Which term dominates depends on 'n' and 'd'. Solve livear equations $O(d^3)$

Least Squares Issues

- Issues with least squares model:
	- Solution might not be <u>wige</u>.
	- It is sensitive to onthers
	- It always uses all features.
	- What is we had a million features?
		- Difficult to store XTX (WHY?)
		- O(nd² + d^3) time cost will be huge
	- $-$ It might predict outside range of y_i values.
	- $-$ It assumes a linear relationship between ${\mathsf x}_{\mathsf i}$ and ${\mathsf y}_{\mathsf i}$.

Non-Uniqueness of Least Squares Solution

- Why isn't solution unique?
	- Imagine having two features that are identical for all examples.
	- I can increase weight on one feature, and decrease it on the other, without changing predictions. $\gamma_i = w_i x_{i1} + w_2 x_{i1} = (w_1 + w_2) x_{i1} + 0 x_{i1}$
	- $COPY$ – Thus, if (w_1, w_2) is a solution then (w_1+w_2 , 0) is another solution.
	- This is special case of features being "collinear":
		- One feature is a linear function of the others.

Why don't we have a y-intercept?

- Linear model is $\hat{y}_i = \mathbf{w} \mathbf{x}_i$ instead of $\hat{y}_i = \mathbf{w} \mathbf{x}_i + \mathbf{w}_0$ with y-intercept \mathbf{w}_0 .
- Without an intercept, if $x_i = 0$ then we must predict $\hat{y}_i = 0$.

Why don't we have a y-intercept? – Linear model is $\hat{y}_i = wx_i$ instead of $\hat{y}_i = wx_i + w_0$ with y-intercept w_0 . y -intercept y_0 . – Without an intercept, if $x_i = 0$ then we must predict $\hat{y}_i = 0$. $\hat{y}_i = w^{\mathsf{T}} x_i + W_0$ Even "least squares" A better y-intercipt solution must go through origin.

Adding a Bias Variable

- Simple trick to add a y-intercept ("bias") variable:
	- Make a new matrix "Z" with a _<u>C لمسر له صرح _</u>____.

$$
X = \begin{bmatrix} -0.1 \\ 0.3 \\ 0.2 \end{bmatrix} \qquad Z = \begin{bmatrix} 1 & -0.1 \\ 1 & 0.3 \\ 1 & 0.2 \end{bmatrix}
$$

- Now use "Z" as your features in linear regression.
	- We'll use 'v' instead of 'w' as regression weights when we use features 'Z'.
 $y_i = \bigvee_{w_0} \frac{1}{n} + \bigvee_{w_1} \frac{1}{n} = \bigvee_{w_1} \frac{1}{n} + \bigvee_{w_1} \frac{1}{n} = \bigvee_{w_1} \frac{1}{n} + \bigvee_{w_1} \frac{1}{n} = \bigvee_{w_1} \frac{1}{n} + \bigvee_{w_1} \frac{1}{n} = \$
- So we can have a non-zero y-intercept by changing features.
	- This means we can ignore the y-intercept in our derivations, which is cleaner.

Coming Up Next

CHANGE OF BASIS

Motivation: Non-Linear Progressions in Athletics

• Are top athletes going faster, higher, and farther?

100m PROGRESSION MEN AND WOMEN (mean of top ten

HIGH JUMP PROGRESSION MEN AND WOMEN (mean of top ten)

SHOT PUT PROGRESSION MEN (7.26 kg) AND WOMEN (4 kg) (mean of top ten)

http://www.at-a-lanta.nl/weia/Progressie.html https://en.wikipedia.org/wiki/Usain_Bolt http://www.britannica.com/biography/Florence-Griffith-Joyner

Limitations of Linear Models

• On many datasets, ${\mathbf y}_{\mathsf i}$ is not a linear function of ${\mathsf x}_{\mathsf i}$.

• Can we use least square to fit non-linear models?

Non-Linear Feature Transforms

• Can we use linear least squares to fit a quadratic model?

$$
\hat{y}_i = w_0 + w_1 x_i + w_2 x_i^2
$$

• You can do this by changing the features (change of $\frac{1}{2}$):

$$
X = \begin{bmatrix} 0.2 \\ -0.5 \\ 4 \end{bmatrix} \qquad Z = \begin{bmatrix} 1 & 0.2 & (0.2)^2 \\ 1 & -0.5 & (-0.5)^2 \\ 1 & 1 & (1)^2 \\ 4 & (4)^2 & (4)^2 \end{bmatrix}
$$

- Fit new parameters 'v' under "change of basis": solve $Z^{T}Zv = Z^{T}y$.
- It's a linear function of w, but a quadratic function of x_i .

$$
\hat{y}_i = \hat{v}^T Z_i = \underbrace{v_i z_i}_{w_{o,1}} + \underbrace{v_2 z_{i2}}_{w_i} + \underbrace{v_3 z_{i3}}_{w_i}.
$$

Non-Linear Feature Transforms

General Polynomial Features (d=1)

- There are polynomial basis functions that are numerically nicer:
	- E.g., Lagrange polynomials (see CPSC 303).

• If you have more than one feature, you can include interactions: – With p=2, in addition to $(x_{i1})^2$ and $(x_{i2})^2$ you could include $x_{i1}x_{i2}$.

"Change of Basis" Terminology

- Instead of "nonlinear feature transform", in machine learning it is common to use the expression "change of basis".
	- The z_i are the "coordinates in the new basis" of the training example.
- "Change of basis" means something different in math:
	- Math: basis vectors must be linearly independent (in ML we don't care).
	- Math: change of basis must span the same space (in ML we change space).
- Unfortunately, saying "change of basis" in ML is common.
	- When I say "change of basis", just think "nonlinear feature transform".

Linear Basis vs. Nonlinear Basis

(You'll use this in A3)

Usual lineur Regression $|_{\Gamma}$ ain: $- V_{se} / X_{and}$ Y^{\prime} to find $'_{w^{\prime}}$

Test:
- Use X and 'w' to Find y

Train:

\n
$$
-V_{se} / \chi^{c} + o_{final} / 2^{T}
$$
\n
$$
-V_{se} / 2^{T} \quad \text{and} \quad V_{se} + V_{end} / V_{se}
$$
\n
$$
T_{es} + V_{se} / V_{se} / V_{se} + V_{end} / V_{de}
$$
\n
$$
-V_{se} / V_{se} / V_{de}
$$
\n
$$
-V_{se} / V_{de} / V_{de}
$$
\n
$$
-V_{se} / V_{de}
$$
\n
$$
-V_{se} / V_{de}
$$
\n
$$
-V_{se} / V_{de}
$$

Linear regression with change of basis

Change of Basis Notation (MEMORIZE)

- Linear regression with original features:
	- We use 'X' as our "n by d" data matrix, and 'w' as our parameters.
	- We can find d -dimensional 'w' by minimizing the squared error:

$$
\int \left(\frac{1}{2}x\right) = \frac{1}{\lambda} \left|\left| \frac{1}{2}x - \frac{1}{2}x\right|\right|^2
$$

- Linear regression with nonlinear feature transforms:
	- We use 'Z' as our "n by \underline{k} " data matrix, and 'v' as our parameters.
	- We can find K -dimensional 'v' by minimizing the squared error:

$$
f(v) = \frac{1}{2} ||2v - y||^2
$$

• Notice that in both cases the target is still 'y'.

Degree of Polynomial and Fundamental Trade-Off

• As the polynomial degree increases, the training error goes down.

- But approximation error goes up: we start overfitting with large 'p'.
- Usual approach to selecting degree: validation or cross-validation (A3)

Beyond Polynomial Transformations

- Polynomials are not the only possible transformation:
	- Exponentials, logarithms, trigonometric functions, etc.
	- The right non-linear transform will vastly improve performance.

Mount Vesuvius "Zorbing"

GRADIENT DESCENT INTRO Coming Up Next

Optimization Terminology

- When we minimize or maximize a function we call it "optimization".
	- In least squares, we want to solve the "optimization problem":

Discrete vs. Continuous Optimization

- We have seen examples of continuous optimization:
	- $-$ linear regressor
		- Domain is the real-valued set of parameters 'w'.
		- Objective is the sum of the squared training errors.
- We have seen examples of discrete optimization: - <u>decision</u> stumps :
	- Domain is the grid (finite set) of unique rules {j, t}.
	- Objective is the number of classification errors (or infogain).
- We have also seen a mixture of discrete and continuous: K-rens : clusters are discrete and means are continuous.

Stationary/Critical Points

- A 'w' with $\nabla f(w) = 0$ is called a stationary point or critical point.
	- The **Slope** is zero so the tangent plane is "flat".

Stationary/Critical Points

- A 'w' with $\nabla f(w) = 0$ is called a stationary point or critical point.
	- The slope is zero so the tangent plane is "flat".

- If we're minimizing, we would ideally like to find a global minimum.
	- But for some problems the best we can do is find a stationary point where $\nabla f(w)=0$. 26

Motivation: Large-Scale Least Squares

• Recall: normal equations find 'w' with $\nabla f(w) = 0$ in $O(nd^2 + d^3)$ time.

$$
(x^{\tau}x)_{\nu} = x^{\tau}y
$$

– Very slow if 'd' is large.

n=2504, d=84.4 million!!!

- Alternative when 'd' is large is gradient descent methods.
	- Probably the most important class of algorithms in machine learning.

What is Gradient Descent?

• Goal: navigate the parameter space and find a locally optimal parameter value

What is Gradient Descent?

• Goal: navigate the parameter space and find a locally optimal parameter value

- Gradient descent is an iterative optimization algorithm:
	- It starts with a "guess" w^0 .
	- It uses the gradient $\nabla f(w^0)$ to generate a better guess w^1 .
	- It uses the gradient $\nabla f(w^1)$ to generate a better guess w².
	- It uses the gradient $\nabla f(w^2)$ to generate a better guess w^3 . …
	- The limit of w^t as 't' goes to ∞ has $\nabla f(w^t) = 0$.
- It converges to a global optimum if 'f' is "convex".

- Gradient descent is based on a simple observation:
	- Give parameters 'w', the direction of largest decrease is $-\nabla f(w)$.

- Gradient descent is based on a simple observation:
	- Give parameters 'w', the direction of largest decrease is $-\nabla f(w)$.

- Gradient descent is based on a simple observation:
	- Give parameters 'w', the direction of largest decrease is −V f(w).

- Gradient descent is based on a simple observation:
	- Give parameters 'w', the direction of largest decrease is $-\nabla f(w)$.

- Gradient descent is based on a simple observation:
	- Give parameters 'w', the direction of largest decrease is $-\nabla f(w)$.

MORE FORMAL DISCUSSION OF GRADIENT DES CENT

Coming Up Next

- We start with some initial guess, w^0 .
- Generate new guess by moving in the negative gradient direction:

$$
w' = w' - \alpha^{o} \sqrt{f(w')}
$$

new guess old guess step size
"learning rate"

- This decreases 'f' if the "step size" α^0 is small enough.
- Usually, we decrease α^0 if it increases 'f' (see A3 "optimizers.py").
- Repeat to successively refine the guess:

$$
w^{t+1} = w^t - \alpha^t \nabla f(w^t) \quad \text{for } t = 1, 2, 3, \ldots
$$

– Stop if not making progress or $|| \nabla f(\mathbf{w}^t) || \leq \epsilon$

37

- Under weak conditions, algorithm converges to a 'w' with $\nabla f(w) = 0$.
	- 'f' is bounded below, ∇ f can't change arbitrarily fast, small-enough constant α^t .

- α_t^{t} must be "tuned" carefully for gradient descent to work
	- Too large, we might Nut canverse
	- Too small, we might <u>be too</u> show.
	- Industry standard: optimize learning rate or use adaptive learning rate

- Number of iterations on the x-axis
- Objective value on the y-axis
- Helps visualize and compare performance of algorithms 45

Gradient Descent for Least Squares

• The least squares objective and gradient:

$$
f(\omega) = \frac{1}{2} ||\chi_{\omega} - \gamma||^2 \qquad \nabla f(\omega) = \chi^{\mathsf{T}}(\chi_{\omega} - \gamma)
$$

• Gradient descent iterations for least squares:

$$
w^{t+1} = w^t - \alpha^t \times (X_w^t - y)
$$

• Cost of gradient descent iteration is $O(_)$ (no need to form X^TX).

$$
B_{o}H_{\text{hence}}(x \text{ is } comp \text{ uHing } \nabla f(\mathbf{u},t) = \chi^{T}(\chi_{\mathbf{u}}t - \gamma)
$$

Normal Equations vs. Gradient Descent

- Least squares via normal equations vs. gradient descent:
	- Normal equations cost $O(nd^2 + d^3)$.
	- Gradient descent costs $O(\underline{\ }$) to run for 't' iterations.
		- Each of the 't' iterations costs O(nd).
	- Normal equations only solve linear least squares problems.
		- Gradient descent solves many other problems.

Beyond Gradient Descent

- Gradient descent can be faster when 'd' is very large:
	- If solution is "good enough" for a 't' less than minimum(d,d2/n).
	- $-$ Proportional to "condition number" of X^TX (no direct 'd' dependence).
- There are many variations on gradient descent.
	- Methods employing a "line search" to choose the step-size.
	- "Conjugate" gradient and "accelerated" gradient methods.
	- Newton's method (which uses second derivatives).
	- Quasi-Newton and Hessian-free Newton methods.
	- Stochastic gradient (later in course).
- This course focuses on gradient descent and stochastic gradient:
	- They're simple and give reasonable solutions to most ML problems.
	- But the above can be faster for some applications.

Summary

- Least Squares: Solution might not be unique because of collinearity.
	- But any solution is optimal because of "convexity".
- Non-linear transforms:
	- Allow us to model non-linear relationships with linear models.
- Gradient descent:
	- Find a local minimum using gradients to navigate parameter space
- Next time: the bane of existence for gradient-based methods

Review Questions

• Q1: What is the dimensionality of the parameter space when we add a yintercept to linear regression?

• Q2: Why can gradient descent only find local minima?

• Q3: In what situation is gradient descent the best choice for optimization, even when 'd' is small?

• Q4: Given training data, how can we tune the learning rate?

• We can adapt our classification methods to perform regression:

- We can adapt our classification methods to perform regression:
	- Regression tree: tree with mean value or linear regression at leaves.

- We can adapt our classification methods to perform regression:
	- Regression tree: tree with mean value or linear regression at leaves.
	- $-$ Probabilistic models: fit p(x $_{\rm i}$ | y $_{\rm i}$) and p(y $_{\rm i}$) with Gaussian or other model.
		- Take CPSC 440/540.

- We can adapt our classification methods to perform regression:
	- Regression tree: tree with mean value or linear regression at leaves.
	- $-$ Probabilistic models: fit p(x $_{\rm i}$ | y $_{\rm i}$) and p(y $_{\rm i}$) with Gaussian or other model.
	- Non-parametric models:
		- KNN regression:
			- Find 'k' nearest neighbours of $\mathsf{\check{x}_i}.$
			- $-$ Return the mean of the corresponding y_i .

- We can adapt our classification methods to perform regression:
	- Regression tree: tree with mean value or linear regression at leaves.
	- $-$ Probabilistic models: fit p(x $_{\rm i}$ | y $_{\rm i}$) and p(y $_{\rm i}$) with Gaussian or other model.
	- Non-parametric models:
		- KNN regression.
		- Could be weighted by distance.
			- Close points 'j' get more "weight" wij.

- We can adapt our classification methods to perform regression:
	- Regression tree: tree with mean value or linear regression at leaves.
	- $-$ Probabilistic models: fit p(x $_{\rm i}$ | y $_{\rm i}$) and p(y $_{\rm i}$) with Gaussian or other model.
	- Non-parametric models:
		- KNN regression.
		- Could be weighted by distance.
		- 'Nadaraya-Waston': weight all y_i by distance to x_i.

- We can adapt our classification methods to perform regression:
	- Regression tree: tree with mean value or linear regression at leaves.
	- $-$ Probabilistic models: fit p(x $_{\rm i}$ | y $_{\rm i}$) and p(y $_{\rm i}$) with Gaussian or other model.
	- Non-parametric models:
		- KNN regression.
		- Could be weighted by distance.
		- 'Nadaraya-Waston': weight all y_i by distance to x_i.
		- 'Locally linear regression': for each x_i , fit a linear model weighted by distance. (Better than KNN and NW at boundaries.)

- We can adapt our classification methods to perform regression:
	- Regression tree: tree with mean value or linear regression at leaves.
	- $-$ Probabilistic models: fit p(x $_{\rm i}$ | y $_{\rm i}$) and p(y $_{\rm i}$) with Gaussian or other model.
	- Non-parametric models:
		- KNN regression.
		- Could be weighted by distance.
		- 'Nadaraya-Waston': weight all y_i by distance to x_i.
		- 'Locally linear regression': for each x_i , fit a linear model weighted by distance. (Better than KNN and NW at boundaries.)
	- Ensemble methods:
		- Can improve performance by averaging predictions across regression models.

- We can adapt our classification methods to perform regression.
- Applications:
	- Regression forests for fluid simulation:
		- <https://www.youtube.com/watch?v=kGB7Wd9CudA>
	- KNN for image completion:
		- <http://graphics.cs.cmu.edu/projects/scene-completion>
		- Combined with "graph cuts" and "Poisson blending".
		- See also "PatchMatch":<https://vimeo.com/5024379>
	- KNN regression for "voice photoshop":
		- <https://www.youtube.com/watch?v=I3l4XLZ59iw>
		- Combined with "dynamic time warping" and "Poisson blending".
- But we'll focus on linear models with non-linear transforms.
	- These are the building blocks for more advanced methods.

Vector View of Least Squares

• We showed that least squares minimizes:

$$
F(w) = \frac{1}{2} ||X_w - y||^2
$$

- The ½ and the squaring don't change solution, so equivalent to: $f(w) = ||x_w - y||$
- From this viewpoint, least square minimizes Euclidean distance between vector of labels 'y' and vector of predictions Xw.

Bonus Slide: Householder(-ish) Notation

• Househoulder notation: set of (fairly-logical) conventions for math.

61

with its values."

Bonus Slide: Householder(-ish) Notation

• Househoulder notation: set of (fairly-logical) conventions for math:

Our ultimate least squares notation:
\n
$$
\{ (w) = \frac{1}{2} ||X_w - y||^2
$$
\nBut if we agree on notation we can quickly understand:
\n
$$
g(x) = \frac{1}{2} ||A_x - b||^2
$$
\n
$$
\int f(w) \text{ use random notation we get things like:}
$$
\n
$$
H(\beta) = \frac{1}{2} ||R\beta - P_n||^2
$$
\n
$$
\frac{1}{3} \text{ this the same model?}
$$

When does least squares have a unique solution?

- We said that least squares solution is not unique if we have repeated columns.
- But there are other ways it could be non-unique:
	- One column is a scaled version of another column.
	- One column could be the sum of 2 other columns.
	- One column could be three times one column minus four times another.
- Least squares solution is unique if and only if all columns of X are "linearly independent".
	- No column can be written as a "linear combination" of the others.
	- Many equivalent conditions (see Strang's linear algebra book):
		- X has "full column rank", X^TX is invertible, X^TX has non-zero eigenvalues, $det(X^TX) > 0$.
	- Note that we cannot have independent columns if $d > n$.