CPSC 340:
Machine Learning and Data Mining

Gradient Descent
Summer 2021



In This Lecture

1. Analyzing Least Squares (10 minutes)
2. Change of Basis (15 minutes)
3. Gradient Descent (15 minutes)



ANALYZING LEAST SQUARES



Least Squares Cost ¥’

Cost of solving “normal equations”{ XTXw = XTy? "{ ’X

Atn vl A’\ dxn nx)
Forming XTy vector costs O(nd). ) =
o\x
— It has ‘d’ elements, and each is an inner product bet‘Ween%“ﬁuPﬁbﬁErs

beweey
Forming matrix XTX costs O(nd). Aot probast
— It has d? elements, and each is an inner product between ‘n’ Humbers.

Solving a d x d system of equations costs O(d?3).
— Cost of Gaussian elimination on a d-variable linear system.
— Other standard methods have the same cost.

Overall cost is O(nd*+ & ). O Campre X and y(fj i)

— Which term dominates depends on ‘n’ and@’. so\\fi
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Least Squares Issues

* |ssues with Least squares model:
— Solution might not be Jw :

— It always uses all features.

— What i£ we had a million features?
e Difficult to store XIX (WHY?)
« O(nd? + d2) time cdst will be huge

— It might predict outside range of y; values.
— It assumes a linear relationship between x; and ..



Non-Unigueness of Least Squares Solution

« Why isn’t solution unique?
Imagine having two features that are identical for all examples.
| can increase weight on one feature, and decrease it on the other,

without changing predictions. A _ _
I3 V'PW|XU +W,ZXI[ "(Wl‘*Wz)X”"’ 0)(”

L
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Thus, if (wy,w,) is a solution then (w;+w,, 0) is another solution.
This is special case of features being “collinear”:

e One feature is a linear function of the others.

| Q: Will this break my model?

NO

Convext



why don’t we have a y-intercept?

— Linear model is y; = wx; instead of y, = wx; + wy with y-intercept wg.
— Without an intercept, if x; = 0 then we must predict y, = 0.
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Adding a Bias Variable

- Simple trick to add a y-intercept (“bias”) variable: 2= X:l. X‘\
M

— Make a new matrix “Z"” with a Cb\uwvx & Ores

A
-0.1 Z_ 'I ‘0,1
_ > 0.
X [ 0-;1 | 03

0.2

A~ W
h ( \l
ﬂqusl X
 Now use “Z"” as your features in linear regression.
— We'll use ‘v’ instead of ‘w’ as regression weights when we use features ‘Z’.
y \/2/, 32-"’ Wo +lel
;o g
W W .: \g—MW.

« S0 we can have a non-zero y-intercept by changing features.
— This means we can ignore the y-intercept in our derivations, which is cleaner.
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Coming Up Next

CHANGE OF BASIS
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Motivation: Non-Linear Progressions in Athletics

- Are top athletes going faster, higher, and farther?
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Limitations of Linear Models

« On many datasets, y, is not a linear function of x.
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« Can we use least square to fit non-linear models?
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Non-Linear Feature Transforms

Can we use linear least squares to fit a quadratic model?
é 2
\/l. - W, M)(' + WZXI'

R S

You can do this by changing the features (change of \)0\5% ):

- 6,27 "1 02 (62)* )
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Fit new parameters ‘v’ under “change of basis”: solve Z7Zv =ZTy.
It’s a linear function of w, but a quadratic function of Xx;.
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Non-Linear Feature Transforms
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General Polynomial Features (d=1)

We can have a polynomial of degree ‘p’ by using these features:

Xo )\\ xl ... XP
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There are polynomial basis functions that are numerically nicer:
— E.g., Lagrange polynomials (see CPSC 303).



General Polynomial Features
Degree 7/

« If you have more than one feature, you can include interactions:
— With p=2, in addition to (x;;)? and (X;;)? you could include X;;X;.
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“Change of Basis” Terminology

Instead of “nonlinear feature transform”, in machine learning
it is common to use the expression “change of basis”.

— The z, are the “coordinates in the new basis” of the training example.

“Change of basis” means something different in math:
— Math: basis vectors must be linearly independent (in ML we don’t care).
— Math: change of basis must span the same space (in ML we change space).

Unfortunately, saying “change of basis” in ML is common.
— When | say “change of basis”, just think “nonlinear feature transform”.



Linear Basis vs. Nonlinear Basis

(You'll use this in A3)

USWI )/heuf R&)/fﬁj/m’\ Lf”l€ar' fC(jV(SSfDW wiTh OI/\CM}{ of basis
Tf Aln -+ Tr:ain?
Vi Xad b Fay, T Ve X T 6 2
— US& /Z\ and [\/\ WLO find /V\
est’ . st

— Use X ond ‘' to FMA,} [—\/ge, /5(\ to find //ZV\}



Change of Basis Notation (MEMORIZE)

- Linear regression with original features:
— We use ‘X’ as our “n by d” data matrix, and ‘w’ as our parameters.
— We can find d-dimensional ‘W’ by minimizing the squared error:

{ ()= L=yl

« Linear regression with nonlinear feature transforms:
— We use ‘Z’ as our “n by I,<- data matrix, and ‘v’ as our parameters.
— We can find K-dimensional ‘v’ by minimizing the squared error:

F()= EIHZV‘yHZ

* Notice that in both cases the target is still ‘y’.

19



Degree of Polynomial and Fundamental Trade-Off

« As the polynomial degree increases, the training error goes down.
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« But approximation error goes up: we start overfitting with large ‘p’.
« Usual approach to selecting degree: validation or cross-validation (A3)



Beyond Polynomial Transformations

 Polynomials are not the only possible transformation:
— Exponentials, logarithms, trigonometric functions, etc.
— The right non-linear transform will vastly improve performance.

Fo/ PE_H_DJ_‘_C_ Ja'fa

> o s e mr’yh* use
o C 0N Y SsinGy)
‘ ¢ in ()
U 0) '
YOU‘ CoN }\ave Aiffe/*""’} '&ff‘ L'SM[X") _J
ol bases |
. =V Z
(¥, SM(Q/,) A 7' !
2° )('7» S'v"('éxz) = W, S (X,)
_ M S’)n(éx") J 21

Xde mf rl"’io L C


https://m.xkcd.com/2048/

Mount Vesuvius “Zorbing”

Coming Up Next

GRADIENT DESCENT INTRO
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Optimization Terminology

« When we minimize or maximize a function we call it “optimization”.

— In least squares, we want to solve the “optimization problem”:
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Discrete vs. Continuous Optimization

« We have seen examples of continuous optimization:

« Domain is the real-valued set of parameters ‘w’.
- Objective is the sum of the squared training errors.

« We have seen examples of discrete optimization:
_ (}-Ms\\\ms—kwwﬁls

« Domain is the grid (finite set) of unique rules {j, t}.
« Objective is the number of classification errors (or infogain).

e We have also seen a mixture of discrete and continuous:
- K—W‘Q(N\S : clusters are discrete and means are continuous.



Stationary/Critical Points

« A'w withV f(w) = 0 is called a stationary point or critical point.

— The _5\_o¥L is zero so the tangent plane is “flat”.
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Stationary/Critical Points

« A'w withV f(w) = 0 is called a stationary point or critical point.
— The slope is zero so the tangent plane is “flat”.
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— If we're minimizing, we would ideally like to find a global minimum.
« But for some problems the best we can do is find a stationary point where 7 f(w)=0. 26



Motivation: Large-Scale Least Squares

Recall: normal equations find ‘w’ with vV f(w) = 0 in O(nd? + d3) time.
T _ T
(XX = Xy

— Very slow if ‘d’ is large.

1000 Genomes Project

1000 Genomes Release Variants Individuals Populations VCF Alignments Supporting Data
Phase 3 844 million 2504 26 VCF Alignments Supporting Data

Phase 1 37.9 million 1002 14 VCF Alignments Supporting Data

Pilot 14.8 million 179 4 VCF Alignments Supporting Data

n=2504, d=84.4 million!!l

Alternative when ‘d’ is large is gradient descent methods.
— Probably the most important class of algorithms in machine learning.

217



wWhat Is Gradient Descent?

« Goal: navigate the parameter space and
find a locally optimal parameter value

Let’'s say we start here

-

LR —R

Thicker colour:
Lower objective value

Q: Is there any information we can use
to move in a “good” way?

The blue point is a

Mivamizer~.

Parameter space 28



wWhat Is Gradient Descent?

« Goal: navigate the parameter space and
find a locally optimal parameter value

2. Negative gradient is the ¢ _w d
direction and magnitude of £ R —K
Sffﬂ‘iﬁi__o\_'-i%& ———————— Thicker colour:

Lower objective value

The blue point is a
minimizer

Parameter space 29



Gradient Descent for Finding a Local Minimum

- Gradient descent is an iterative optimization algorithm:
— It starts with a “guess” we
— It uses the gradient V f(w®) to generate a better guess wl.
— It uses the gradienfﬁ_) to generate a better guess w-.
— It uses the gradient V f(w?) to generate a better guess w?.

— The limit of wt' as ‘t’ goes to « has Vf(wt!) = 0.

« It converges to a global optimum if ‘f’ is “convex”.

30



Gradient Descent for Finding a Local Minimum

 Gradient descent is based on a simple observation:
— Give parameters ‘w’, the direction of largest decrease is -V f(w).
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Gradient Descent for Finding a Local Minimum

 Gradient descent is based on a simple observation:
— Give parameters ‘w’, the direction of largest decrease is -V f(w).

F)

Lina wi th
S‘Of?e V£ (W)

' minimiz e 7
§|orc Vf (wo) IS (
negative so we con decrease £(w)

[o\/ maKMg 'w' more /oosifive
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Gradient Descent for Finding a Local Minimum

 Gradient descent is based on a simple observation:
— Give parameters ‘w’, the direction of largest decrease is -V f(w).
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Gradient Descent for Finding a Local Minimum

 Gradient descent is based on a simple observation:
— Give parameters ‘w’, the direction of largest decrease is -V f(w).

f)
F(w’)
2 W
o v:/o wl W" W} WH



Gradient Descent for Finding a Local Minimum

 Gradient descent is based on a simple observation:
— Give parameters ‘w’, the direction of largest decrease is -V f(w).

F)

w

/VM '“se 5lore VTP(W‘O B of/ﬂ%

F

S0 we move in The negutive  dice cfion
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MORE FORMAL DISCUSSION OF
GRADIENT DESCENT



Gradient Descent for Finding a Local Minimum

— We start with some initial guess, w°®.
— Generate new guess by moving in the negative gradient direction:
|l — 0 _ © 0
W ~Ww X Y4 (w )J
“— v o

e eSS old guess  Step size BWAL“‘LN?”\M“
o (15

’ |e.amiv\3 Voe.
» This decreases ‘f’ if the “step size” a° is small enough.
« Usually, we decrease ¥ if it increases ‘f’ (see A3 “optimizers.py”).
— Repeat to successively refine the guess:

Whl.:wt_o(tv{:(wt) ]FOr 1= )) 7)3)“.

— Stop if not making progress or ||V (W)l < £

\/\/‘\/ L_)) Some Sﬁ\qn Sc G/qf.

Arrrp)(/'[m“fe ’OCQI minimuym
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Gradient Descent in 2D Regression

Q: What do these boundaries mean?

0.0
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Gradient Descent in 2D Regression

iteration 0

—71.5 1

—10.0 -

—12.5 1

10

Parameter space
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Gradient Descent in 2D Regression
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Gradient Descent in 2D Regression

iteration 2
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Gradient Descent in 2D Regression
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“Parameter Trajectory” According to Gradient Descent
W
A

w?
. \;r s
7 mm:>>

R
K" ijo\r)f g

gwcss w

0

W
I
« Under weak conditions, algorithm converges to a ‘w’ with V f(w) = 0.

— ‘f’ is bounded below, V f can’t change arbitrarily fast, small-enough constant ot.
43



Step Size Considerations
W = wt — xt VWY

Q: Why is tin at?

of steepest decrease

— But this magnitude is unreliable!

N

Ol > —e———
parameter space parameter space

aF must be “tuned” carefully for gradient descent to work
— Too large, we might NOL con

— Industry standard: optimize learning rate or use adaptive learning rate

44



The “Learning Curve”

« Number of iterations on the x-axis
 Objective value on the y-axis
* Helps visualize and compare performance of algorithms

45



Gradient Descent for Least Squares

« The least squares objective and gradient:
_ 2 v
Fla) =4I =yl VG =X (X -y)
« Gradient descent iterations for Least squares:
11 _ € T
Wt w 'o(t X (th'y>
w

VF( )

« Cost of gradient descent iteration is O(__) (no need to form XTX).
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Normal Equations vs. Gradient Descent

- Least squares via normal equations vs. gradient descent:
— Normal equations cost O(nd? + d3).

— Gradient descent costs O(_ ) to run for ‘t’ iterations.
« Each of the ‘t’ iterations costs O(nd).

— Normal equations only solve linear least squares problems.
« Gradient descent solves many other problems.

417



Beyond Gradient Descent

- Gradient descent can be faster when ‘d’ is very large:
— If solution is “good enough” for a ‘t’ less than minimum(d,d?/n).
— Proportional to “condition number” of XTX (no direct ‘d’ dependence).

« There are many variations on gradient descent.
— Methods employing a “line search” to choose the step-size.
— “Conjugate” gradient and “accelerated” gradient methods.
— Newton’s method (which uses second derivatives).
— Quasi-Newton and Hessian-free Newton methods.
— Stochastic gradient (later in course).

« This course focuses on gradient descent and stochastic gradient:
— They're simple and give reasonable solutions to most ML problems.
— But the above can be faster for some applications.



summary

Least Squares: Solution might not be unique because of collinearity.
— But any solution is optimal because of “convexity”.

Non-linear transforms:

— Allow us to model non-linear relationships with linear models.

Gradient descent:

— Find a local minimum using gradients to navigate parameter space

Next time: the bane of existence for gradient-based methods



Review Questions

Ql: What is the dimensionality of the parameter space when we add a y-
intercept to linear regression?

Q2: Why can gradient descent only find local minima?

Q3: In what situation is gradient descent the best choice for optimization,
even when ‘d’ is small?

Q4: Given training data, how can we tune the learning rate?

S50



Adapting Counting/Distance-Based Methods

 We can adapt our classification methods to perform regression:



Adapting Counting/Distance-Based Methods

 We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at Leaves.
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Adapting Counting/Distance-Based Methods

 We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.

— Probabilistic models: fit p(x; | y;) and p(y;) with Gaussian or other model.
« Take CPSC 440/540.




Adapting Counting/Distance-Based Methods

 We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y;) and p(y;) with Gaussian or other model.

— Non-parametric models:

« KNN regression:
— Find ‘k’ nearest neighbours of A)f,
— Return the mean of the corresponding Yy..

1.0F
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Adapting Counting/Distance-Based Methods

 We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y;) and p(y;) with Gaussian or other model.

— Non-parametric models:
« KNN regression.

KNeighborsRegressor (k = 5, weights = 'uniform’)
T ‘ T T T

« Could be weighted by distance. Lo ——
e®e data
— Close points ‘j’ get more “weight” wj;. 0.5¢
oof °

—0.5¢

-1.0f |

1 2 3 4
KNeighborsRegressor (k = 5, weights = 'distance’)
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Adapting Counting/Distance-Based Methods

 We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y;) and p(y;) with Gaussian or other model.

— Non-parametric models:
« KNN regression.
« Could be weighted by distance.
- ‘Nadaraya-Waston’: weight all y, by distance to x..

—true




Adapting Counting/Distance-Based Methods

 We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y;) and p(y;) with Gaussian or other model.
— Non-parametric models:

KNN regression.
Could be weighted by distance.
‘Nadaraya-Waston’: weight all y, by distance to x..

‘Locally linear regression’: for each x;, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)

d=2,q=0.5
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Adapting Counting/Distance-Based Methods

 We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y;) and p(y;) with Gaussian or other model.
— Non-parametric models:
« KNN regression.
« Could be weighted by distance.

- ‘Nadaraya-Waston”: weight all y; by distance to x..

- ‘Locally linear regression’: for each x;, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)

— Ensemble methods:
« Can improve performance by averaging predictions across regression models.



Adapting Counting/Distance-Based Methods

 We can adapt our classification methods to perform regression.

« Applications:
— Regression forests for fluid simulation:
« https://www.youtube.com/watch?v=kGB7WdJd9CudA
— KNN for image completion:
« http://graphics.cs.cmu.edu/projects/scene-completion
« Combined with “graph cuts” and “Poisson blending”.
« See also “PatchMatch”: https://vimeo.com/5024379
— KNN regression for “voice photoshop”:

« https://www.youtube.com/watch?v=I3l4XLZ59iw
« Combined with “dynamic time warping” and “Poisson blending”.

« But we'll focus on linear models with non-linear transforms.
— These are the building blocks for more advanced methods.


https://www.youtube.com/watch?v=kGB7Wd9CudA
http://graphics.cs.cmu.edu/projects/scene-completion
https://vimeo.com/5024379
https://www.youtube.com/watch?v=I3l4XLZ59iw

Vector View of Least Squares

We showed that least squares minimizes:
- |
?(W)' 7': “X\v“’)’”

The Y2 and the squaring don’t change solution, so equivalent to:
E(w) = "XW\yH

From this viewpoint, least square minimizes Euclidean distance between
vector of labels ‘y’ and vector of predictions Xw.



Bonus Slide: Householder(-ish) Notation

Househoulder notation: set of (fairly-logical) conventions for math.
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Bonus Slide: Householder(-ish) Notation

- Househoulder notation: set of (fairly-logical) conventions for math:
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wWhen does Lleast squares have a unigue solution?

« We said that Lleast squares solution is not unique if we have repeated columns.

 But there are other ways it could be non-unique:
— One column is a scaled version of another column.
— One column could be the sum of 2 other columns.
— One column could be three times one column minus four times another.

« Least squares solution is unique if and only if all columns of X are “linearly independent”.
— No column can be written as a “linear combination” of the others.

— Many equivalent conditions (see Strang’s linear algebra book):
« X has “full column rank”, XTX is invertible, XTX has non-zero eigenvalues, det(XTX) > 0.
— Note that we cannot have independent columns if d > n.
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