CPSC 340:
Machine Learning and Data Mining

Convex Functions
Summer 2021



Admin

Assignment 3: due Friday
Assignment 4: out Friday, due next Friday
Midterm: coming up Tuesday

Practice midterm out
— See “Midterm Prep Megathread”

This lecture is the last lecture for midterm material
Second lecture will be a bonus lecture



In This Lecture

« Convex Functions (20 minutes)
« Least Squares with Qutliers (25 minutes)



Last Time: Gradient Descent for Least Squares

T
« The least squares objective and gradient: XTXW ’X )
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Normal Equations vs. Gradient Descent

- Least squares via normal equations vs. gradient descent:
— Normal equations cost O(nd? + of).

— Gradient descent costs O(Ndt) to run for ‘t’ iterations.
« Each of the ‘t’ iterations costs O(nd).

— Normal equations only solve linear least squares problems.
« Gradient descent solves many other problems.



Beyond Gradient Descent

- Gradient descent can be faster when ‘d’ is very large:
— If solution is “good enough” for a ‘t’ less than minimum(d,d4/n).
— Proportional to “condition number” of XTX (no direct ‘d" dependence).

« There are many variations on gradient descent.
— Methods employing a “line search” to choose the step-size.
— “Conjugate” gradient and “accelerated” gradient methods.
— Newton’s method (which uses second derivatives).
— Quasi-Newton and Hessian-free Newton methods.

— Stochastic gradient (later in course). 4é— [}(MM/((MSWV

« This course focuses on gradient descent and stochastic gradient:
— They're simple and give reasonable solutions to most ML problems.
— But the above can be faster for some applications.



CONVEX FUNCTIONS
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 Is finding a ‘w’ with Vf(w) = 0 good enough?
— Yes, for convex functions.
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« A function is convex if the _O\Vv&4 M&b\ﬂt Owwne~ IS @ convex set.

— All values between any two points above function stay above function.




Cconvex Functions
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— Normal equations find a global minimum because least squares is convex.

Q: How do you know if a function is convex? 5




« Some useful tricks for showing a function is convex: Y/

How do we know If a function is convex?
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How do we know If a function is convex?

Some useful tricks for showing a function is convex:
— 1l-variable, twice-differentiable function is convex iff f”(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.

We showed  tThat f(W)=e™ s ConveX, SO ()= (0™ is convex.
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How do we know If a function is convex?

Some useful tricks for showing a function is convex:

— 1l-variable, twice-differentiable function is convex iff f”(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.

— Norms and squared norms are convex. L\o with pz!
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How do we know If a function is convex?

« Some useful tricks for showing a function is convex:
— 1l-variable, twice-differentiable function is convex iff f”(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.
— Norms and squared norms are convex.
— The sum of convex functions is a convex function.
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How do we know If a function is convex?

Some useful tricks for showing a function is convex:

— 1l-variable, twice-differentiable function is convex iff f”(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.

— Norms and squared norms are convex.

— The sum of convex functions is a convex function.
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How do we know If a function is convex?

« Some useful tricks for showing a function is convex:
— 1l-variable, twice-differentiable function is convex iff f"(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.
— Norms and squared norms are convex.
— The sum of convex functions is a convex function.
— The max of convex functions is a convex function.
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How do we know If a function is convex?

Some useful tricks for showing a function is convex:

— 1-variable, twice-differentiable function is convex iff f”(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.

— Norms and squared norms are convex.

— The sum of convex functions is a convex function.

— The max of convex functions is a convex function.

— Composition of a convex function and a linear function is convex.
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How do we know If a function is convex?

Some useful tricks for showing a function is convex:

— l-variable, twice-differentiable function is convex iff f”(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.

— Norms and squared norms are convex.

— The sum of convex functions is a convex function.

— The max of convex functions is a convex function.

— Composition of a convex function and a linear function is convex.

But: not true that multiplication of convex functions is convex:

— If f(x)=x (convex) and g(x)=x2(convex), f(x)g(x) = x3 (not convex).
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How do we know If a function is convex?

« Some useful tricks for showing a function is convex:
— 1-variable, twice-differentiable function is convex iff f”(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.
— Norms and squared norms are convex.
— The sum of convex functions is a convex function.
— The max of convex functions is a convex function.
— Composition of a convex function and a linear function is convex.

 Also not true that composition of convex with convex is convex:
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Example: Convexity of Linear Regression

- Consider linear regression objective with squared error:
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Convexity in Higher Dimensions

Twice-differentiable ‘d’-variable function is convex iff:

— Eigenvalues of Hessian V2 f(w) are _J_\gvl-_—g-gégd_'v;__,____ for all ‘w’.
« aka 2 f(w) is positive semi-definite

True for least squares where V2 f(w) = XTX for all ‘w’.
— It may not be obvious that this matrix has non-negative eigenvalues.

Unfortunately, sometimes it is hard to show convexity this way.
— Usually easier to just use some of the rules as we did on the last slide.
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ROBUST REGRESSION



Least Squares with Qutliers

« Height vs. weight of NBA players:
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Least Squares with Qutliers

« Consider least squares problem with outliers in ‘y’:
x & ouller ot dosr't folliw Hpeny

_”/\is (> \A/Lq‘ll wée

B / M least Squnares
to do

http://setosa.io/ev/ordinary-least-squares-regression



http://setosa.io/ev/ordinary-least-squares-regression

Least Squares with Qutliers

« Consider least squares problem with outliers in ‘y’:
x & outlier Tt doesi't follsn "//c/lC!
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 Least squares is very sensitive to outliers.
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Least Squares with Qutliers

- Squaring error shrinks sma\ errors, and magnifies _\0_\2,_ errorfs:

A‘ojo'u\ff érfocs Sg_v\ach

errors

Lead’ Symn/ej S
minimiZes

ver tical Juf‘awN
S_(lvm./ei,

\MK \ll'\[l(l'l,"" ).\",“,‘|J‘,

« Qutliers (large error) influence ‘w’ much more than other points.

https://seeing-theory.brown.edu/regression-

analvsis/index.html


https://seeing-theory.brown.edu/regression-analysis/index.html

Least Squares with Qutliers

Squaring error shrinks small errors, and magnifies large errors:
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QOutliers (large error) influence ‘w’ much more than other points.

— Good if outlier means ‘plane crashes’, bad if it means ‘data entry error’.

l

\_/’V—_/ .
sum of Thee IS
SrV\or//&F
Tham
For the
7 \
COrrec7

Jne .



Robust Regression

Robust regression objectives focus less on large errors (outliers).
For example, use absolute error instead of squared error:

V)= é wx; = )/'"

.
—
l

Now decreasing ‘small’ and ‘large’ errors is equally important.
Instead of minimizing L2-norm, minimizes L)L-\/\WW\ of residuals:

Lean §c[V\‘Ve): Leqs"' absolate error: f —
)= 2xn-yl? fw)= =yl [ 2y
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Least Squares with Qutliers
"Loss ! “o\ojewve," — oﬁimi%mm
« Absolute error is more robust to outliers:
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Regression with the L1-Norm

- Unfortunately, minimizing the absolute error is harder.

— We don’t have “normal equations” for minimizing the L1-norm.
— Absolute value is _ \oa—4i o _ at 0.

||
L vvfr,-“y,-

-——0—:% _‘r.'
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— Generally, harder to minimize non-smooth than smooth functions.
- Unlike smooth functions, the gradient may not get smaller near a minimizer.

Q: What can we do to apply gradient descent?
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Smooth Approximations to the L1-Norm

« There are differentiable approx1mat|ons to absolute value.

— Common example is Huber loss: :u,mq
eV
. Ci=W X I\ [z(
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- [\/\ 2

h(r) =" 2 T I e -.6 0 E\/\/‘/
£>] ‘( " —— aabse lute error
[2 ogs V&\- X X\N -X'y=0

away from zero.
+£
— Note that ‘h’ is differentiable: i |r <€ ll\(Y) V; else: ‘n(ﬂ\ i
Wber U-bs G = XThid= o

_ This ‘f’ is convex but s setting Vf(x) = 0 does not give a J\Mw- 535_%—&»«

§gmroc\ error Neav Zc.
I(’ Y‘| 7 o

o’c}\ekuse.

- But we can minimize the Huber loss using gradient descent. 32



Very Robust Regression

Non=convey €rrors
are much more
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 Non-convex errors can be very robust:
— Not influenced by outlier groups.
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Very Robust Regression

Non=convey ¢rvors
are much more

54 wared erro s
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 Non-convex errors can be very robust:
— Not influenced by outlier groups. K_D @V\“f) "ve/y robucd " yv\i()h'/' Vick
— But non-convex, so finding Yic loce] wimi
global minimum is hard. s lecal munimum,

— Absolute value is “most robust”
convex loss function.

L, error m)gﬁ do
someThing like This.
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BRITTLE REGRESSION



Motivation for Considering Worst Case

https://xkcd.com/937/
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“Brittle” Regression

What if you really care about getting the outliers right?

— For example, if in worst case the plane can crash.
In this case you could use something like the infinity-norm:

Ji\(vv> - H )(w‘ y"o@

Y
X
X x
X
XXX

X)(X

Very sensitive to outliers (“brittle”), but worst case will be better.

X where ”r”ob.: i’VW'H(gIr,,;
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Log-Sum-Exp Function

— We can again use a smooth approximation and fit it with gradient descent.

Convex and smooth approximation to max function is log-sum-exp function:

nxgzd w Joy( D e (2) )

— We'll use this several times in the course.
— Notation alert: when | write “log” | always mean “natural” logarithm: log(e) = 1.

Intuition behind log-sum-exp:

— Yiexp(z;) ® maxexp(z;), as largest element is magnified exponentially (if no ties).
l i

— And notice that log(exp(z)) = z.
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Log-Sum-Exp Function Examples

« Log-sum-exp function as smooth approximation to max:
Ve
m\ﬂygzlg o lO(:)(éi@XF(Zi>>

If there aren’t “close” values, it’s really close to the max.
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Part 3 Key Ideas: Linear Models, Least Squares

« Focus of Part 3 is linear models:
— Supervised learning where prediction is linear combination of features:

A\
\/i = W, xil +W2X'L ‘* te +WJXIJ
= W'X;
- Regression:
— Target y, is numerical, testing (y; == y;) doesn’t make sense.

W ol T4t &Ny\\*

Q{?ﬁﬂf 3] 'nro\..)k qey ‘oo'mi.

2 T 2 ] _ 2
* SquaTEd error. ii:Z\-(Wyi \/.) or "’zl/Xw y//

— Can find optimal ‘w’ by solving “normal equations”.
40



Part 3 Key ldeas: Change of Basis, Gradient Descent

- Change of basis: replaces features x; with non-linear transforms z;:
— Add a bias variable (feature that is always one).
— Polynomial basis.
— Other basis functions (logarithms, trigonometric functions, etc.).

- For large ‘d’ we often use gradient descent:
— lIterations only cost O(nd).
— Converges to a critical point of a smooth function.
— For convex functions, it finds a global optimum.



Part 3 Key Ideas: Error Functions, Smoothing

Error functions:

« Squared error is sensitive to outliers.

- Absolute (L;) error and Huber error are more robust to outliers.

- Brittle (L) error is more sensitive to outliers.

L, and L error functions are convex but non-differentiable:
« Finding ‘w’ minimizing these errors is harder than squared error.
we can approximate these with differentiable functions:
 L; can be approximated with Huber.

L, can be approximated with Log-sum-exp.

With these smooth (convex) approximations,
we can find global optimum with gradient descent.



End of Scope for Midterm Material.

(we're not done Part 3, but nothing after
this point will be tested on the midterm)
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- Convex functions: “‘%(&‘V(’VD\—WWJ)

— Set of functions with property that Vf(w) = 0 implies ‘w’ is a global min.
— Can (usually) be identified using a few simple rules.
 Least squares with outliers:
— Reduce influence of outliers, or magnify influence of outliers
— Use L; and L error functions, which are convex but non-smooth

— Use smooth approximations with gradient descent to optimize
» e.g. Huber loss, log-sum-exp, etc.

* Next time:
— Bonus lecture! Machine learning for Amazon and Games
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Review Questions

Q1l: Do convex functions have a unique global minimum?
Q2: Why is L;,,-norm considered non-convex even though L -norms are considered convex?
Q3: Why are there no normal equations for robust and brittle regressions?

Q4: Why is non-smoothness a problem for gradient descent?
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E question B 81 views

Norms Norms Norms: Getting from Sums to Norms
| was going over the solutions for A3 and | am still a bit confused on how to get from a sum to a norm in some situations. | know the basic ones that
give me || Xw — 1,.'||2 and stuff, but when other things are thrown in the mix | get a bit confused. For example, 7 | v; (w'z; — 3;)?

gives ||V /2(Xw — y)||>. From my understanding v is a vector and vi is the number at position | in that vector. How does the summation of these
indices result in the diagonal matrix V and not just the vector v?

Furthermore, when we have a summation like Z:f-=1 Aj|w;|, it is simplified to || Aw||,. How does the lambda end up inside the L1 norm? | thought that

a summation could be simplified to a L1 norm if its terms are wrapped around the absolute value symbol. In this case the lambda is not, so how is it
able to appear inside the norm like that?

w3  midierm_exam

the instructors' answer, where instructors colfectively construct a single answer

| know that this notation seems infimidating if this is the first time you see it. Forfunately, there are really only a few "rules” you need to figure out, and
you'll find that these are use all over the place.

For those particular questions you'll want to memorize the way that the three common norms appear:
Yialrl =l i =Ir| 2, maXe(; o n}{I7i|} = ||7||o0- So when you see max, sum of non-negative values, or sum of squared values
you should think of these norms.

Mext, notice what multiplying by a diagonal matrix does: if you multiply a vector w (for example) by a diagonal matrix then you multiply each element w;
by the corresponding diagonal element. If you multiply matrix X (for example) by a diagonal matrix then you multiply each row of X by the
corresponding diagonal element.

The V2 shows up because we're multiplying the square.

The other really useful ones to know are 31, wr; = v!'rif the elements aren't necessarily non-negative, SES j—1 T Tilj = z! Az, and

Y mr=XTr

(All of the above follow from definitions, but it takes some practice to recognize these common forms. That's why we made you get some practice on
the assignments, and why we covered this notation before the midterm so that you study it before we start using it a lot. It is incredibly common the ML
world.)

m © good answer | 2 Updated & monthe agoe by Mark Schmidt



Constraints, Continuity, Smoothness

« Sometimes we need to optimize with constraints:
— Later we’ll see “non-negative least squares”.

\A/>O i(wx )R

— A vector ‘w’ satisfying w = 0 (element-wise) is said to be “feasible”.

« Two factors affecting difficulty are continuity and smoothness.
— Continuous functions tend to be easier than discontinuous functions.
— Smooth/differentiable functions tend to be easier than non-smooth.
— See the calculus review here if you haven’t heard these words in a while.



https://www.cs.ubc.ca/%7Eschmidtm/Courses/Notes/calculus.pdf

Convexity, min, and argmin

- If a function is convex, then all critical points are global optima.

- However, convex functions don’t necessarily have critical points:
— For example, f(x) = a*x, f(x) = exp(x), etc.

« Also, more than one ‘x’ can achieve the global optimum:
— For example, f(x) = ¢ is minimized by any ‘x’.



Why use the negative gradient direction?

- For a twice-differentiable ‘f’, multivariable Taylor expansion gives:

][\(Wt*') =f(ub) + V\C(wtf(wt#‘wt) "'-2! (wt“~wt)Lv/Zi(/v)(w“"wé)

'ﬁ’f Some ! belween
Wt+l Onl Wt.

- If gradient can’t change arbitrarily quickly, Hessian is bounded and:

P FLE) VWO (W w8 + OCIE -\t

lo o <l
€Come) n€9i9119/€ oS W

. . ets
— But which choice of wtt! decreases ‘f’ the most? J close to wt
« As [|w'*l-w!|| gets close to zero, the value of w't! minimizing f(w'*!) in this formula
converges to (w'l — wt) = - ot V f(wt) for some scalar ot

« So if we're moving a small amount, the optimal w'*!is:

SCQIW ﬂt'



Normalized Steps
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optimizer.py Details

E question stop following m

The minimizer function
Hi all,

I'm just curious how the minimizers given to us works. Are there any resources can give us more details about it?

the instructors' answer, where instructors collectively construct a single answer

It's just a basic gradient descent implementation with some clever guesses for the step-size.

The step-size on each iteration is initialized using the method from this classic paper (which works surprisingly well but we don't really know why except
in two dimensions):
hitp://pages.cs wisc_edu/~swright/726/handouts/barzilai-borwein_pdf

That step-size is evaluated using a standard condition ("Armijo condition™) and then it fits a polynomial regression model based on the function and
directional derivative values and tries the step-size minimizing this polynomial. Both these fricks are described in Nocedal and Wright's "Numerical
Optimization” book.

m good answer Updated 7 monthe ago by Mark Schmidt 51
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