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Admin
• Assignment 3: due Friday
• Assignment 4: out Friday, due next Friday
• Midterm: coming up Tuesday
• Practice midterm out

– See “Midterm Prep Megathread”

• This lecture is the last lecture for midterm material
• Second lecture will be a bonus lecture
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In This Lecture
• Convex Functions (20 minutes)
• Least Squares with Outliers (25 minutes)
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Last Time: Gradient Descent for Least Squares
• The least squares objective and gradient:

• Gradient descent iterations for least squares:

• Cost of gradient descent iteration is O(__) (no need to form XTX).
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Normal Equations vs. Gradient Descent
• Least squares via normal equations vs. gradient descent:

– Normal equations cost O(nd2 + d3).
– Gradient descent costs O(___) to run for ‘t’ iterations.

• Each of the ‘t’ iterations costs O(nd).

– Normal equations only solve linear least squares problems.
• Gradient descent solves many other problems.
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Beyond Gradient Descent
• Gradient descent can be faster when ‘d’ is very large:

– If solution is “good enough” for a ‘t’ less than minimum(d,d2/n).
– Proportional to “condition number” of XTX (no direct ‘d’ dependence).

• There are many variations on gradient descent.
– Methods employing a “line search” to choose the step-size.
– “Conjugate” gradient and “accelerated” gradient methods.
– Newton’s method (which uses second derivatives).
– Quasi-Newton and Hessian-free Newton methods.
– Stochastic gradient (later in course).

• This course focuses on gradient descent and stochastic gradient:
– They’re simple and give reasonable solutions to most ML problems.
– But the above can be faster for some applications.
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CONVEX FUNCTIONS
Coming Up Next
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Convex Functions
• Is finding a ‘w’ with ∇f(w) = 0 good enough?

– Yes, for convex functions.

• A function is convex if the _______________________ is a convex set.
– All values between any two points above function stay above function.
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Convex Functions
• All ‘w’ with ∇ f(w) = 0 for convex functions are ____________.

– Normal equations find a global minimum because least squares is convex.
Q: How do you know if a function is convex? 9



How do we know if a function is convex?
• Some useful tricks for showing a function is convex:

– 1-variable, twice-differentiable function is convex iff f’’(w) ≥ 0 for all ‘w’.
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How do we know if a function is convex?
• Some useful tricks for showing a function is convex:

– 1-variable, twice-differentiable function is convex iff f’’(w) ≥ 0 for all ‘w’.
– A convex function multiplied by non-negative constant is convex.
– Norms and squared norms are convex.
– The sum of convex functions is a convex function.
– The max of convex functions is a convex function.
– Composition of a convex function and a linear function is convex.

• But: not true that multiplication of convex functions is convex:
– If f(x)=x (convex) and g(x)=x2 (convex), f(x)g(x) = x3 (not convex).
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How do we know if a function is convex?
• Some useful tricks for showing a function is convex:

– 1-variable, twice-differentiable function is convex iff f’’(w) ≥ 0 for all ‘w’.
– A convex function multiplied by non-negative constant is convex.
– Norms and squared norms are convex.
– The sum of convex functions is a convex function.
– The max of convex functions is a convex function.
– Composition of a convex function and a linear function is convex.

• Also not true that composition of convex with convex is convex:
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Example: Convexity of Linear Regression
• Consider linear regression objective with squared error:

• We can use that this is a _________________ composed with _________:
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Convexity in Higher Dimensions
• Twice-differentiable ‘d’-variable function is convex iff:

– Eigenvalues of Hessian 𝛻𝛻2 𝑓𝑓(𝑤𝑤) are ________________ for all ‘w’.
• aka 𝛻𝛻2 𝑓𝑓(𝑤𝑤) is positive semi-definite

• True for least squares where 𝛻𝛻2 𝑓𝑓(𝑤𝑤) = XTX for all ‘w’.
– It may not be obvious that this matrix has non-negative eigenvalues.

• Unfortunately, sometimes it is hard to show convexity this way.
– Usually easier to just use some of the rules as we did on the last slide.
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ROBUST REGRESSION
Coming Up Next
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Least Squares with Outliers
• Height vs. weight of NBA players:

https://www.youtube.com/watch?v=i4eYWl1ewFo 23



Least Squares with Outliers
• Consider least squares problem with outliers in ‘y’:

http://setosa.io/ev/ordinary-least-squares-regression 24

http://setosa.io/ev/ordinary-least-squares-regression


Least Squares with Outliers
• Consider least squares problem with outliers in ‘y’:

• Least squares is very sensitive to outliers.
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Least Squares with Outliers
• Squaring error shrinks ____ errors, and magnifies ____ errors:

• Outliers (large error) influence ‘w’ much more than other points.

https://seeing-theory.brown.edu/regression-
analysis/index.html
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Least Squares with Outliers
• Squaring error shrinks small errors, and magnifies large errors:

• Outliers (large error) influence ‘w’ much more than other points.
– Good if outlier means ‘plane crashes’, bad if it means ‘data entry error’.
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Robust Regression
• Robust regression objectives focus less on large errors (outliers).
• For example, use absolute error instead of squared error:

• Now decreasing ‘small’ and ‘large’ errors is equally important.
• Instead of minimizing L2-norm, minimizes ___________ of residuals:
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Least Squares with Outliers
• Absolute error is more robust to outliers:
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Regression with the L1-Norm
• Unfortunately, minimizing the absolute error is harder.

– We don’t have “normal equations” for minimizing the L1-norm.
– Absolute value is ___________________ at 0.

– Generally, harder to minimize non-smooth than smooth functions.
• Unlike smooth functions, the gradient may not get smaller near a minimizer.

Q: What can we do to apply gradient descent? 31



Smooth Approximations to the L1-Norm
• There are differentiable approximations to absolute value.

– Common example is Huber loss:

– Note that ‘h’ is differentiable: 

– This ‘f’ is convex but setting 𝛻𝛻f(x) = 0 does not give a _____________.
• But we can minimize the Huber loss using gradient descent. 32



Very Robust Regression

• Non-convex errors can be very robust:
– Not influenced by outlier groups.
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Very Robust Regression

• Non-convex errors can be very robust:
– Not influenced by outlier groups.
– But non-convex, so finding

global minimum is hard.
– Absolute value is “most robust”

convex loss function.
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BRITTLE REGRESSION
Coming Up Next
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Motivation for Considering Worst Case

https://xkcd.com/937/
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“Brittle” Regression
• What if you really care about getting the outliers right?

– You want best performance on ____________________.
– For example, if in worst case the plane can crash.

• In this case you could use something like the infinity-norm:

• Very sensitive to outliers (“brittle”), but worst case will be better.
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Log-Sum-Exp Function
• As with the L1-norm, the L∞-norm is ______________________:

– We can again use a smooth approximation and fit it with gradient descent.

• Convex and smooth approximation to max function is log-sum-exp function:

– We’ll use this several times in the course.
– Notation alert: when I write “log” I always mean “natural” logarithm: log(e) = 1.

• Intuition behind log-sum-exp:
– ∑𝑖𝑖 exp 𝑧𝑧𝑖𝑖 ≈ max

𝑖𝑖
exp(𝑧𝑧𝑖𝑖), as largest element is magnified exponentially (if no ties).

– And notice that log(exp(zi)) = zi.
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Log-Sum-Exp Function Examples
• Log-sum-exp function as smooth approximation to max:

• If there aren’t “close” values, it’s really close to the max.

• Comparison of max{0,w} and smooth log(exp(0) + exp(w)):
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Part 3 Key Ideas: Linear Models, Least Squares
• Focus of Part 3 is linear models:

– Supervised learning where prediction is linear combination of features:

• Regression:
– Target yi is numerical, testing ( �𝑦𝑦i == yi) doesn’t make sense.

• Squared error:

– Can find optimal ‘w’ by solving “normal equations”.
40



Part 3 Key Ideas: Change of Basis, Gradient Descent

• Change of basis: replaces features xi with non-linear transforms zi:
– Add a bias variable (feature that is always one).
– Polynomial basis.
– Other basis functions (logarithms, trigonometric functions, etc.).

• For large ‘d’ we often use gradient descent:
– Iterations only cost O(nd).
– Converges to a critical point of a smooth function.
– For convex functions, it finds a global optimum.
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Part 3 Key Ideas: Error Functions, Smoothing
• Error functions:

• Squared error is sensitive to outliers.
• Absolute (L1) error and Huber error are more robust to outliers.
• Brittle (L∞) error is more sensitive to outliers.

• L1 and L∞ error functions are convex but non-differentiable:
• Finding ‘w’ minimizing these errors is harder than squared error.

• We can approximate these with differentiable functions:
• L1 can be approximated with Huber.
• L∞ can be approximated with log-sum-exp.

• With these smooth (convex) approximations, 
we can find global optimum with gradient descent.
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End of Scope for Midterm Material.

(we’re not done Part 3, but nothing after 
this point will be tested on the midterm)
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Summary
• Convex functions:

– Set of functions with property that ∇ f(w) = 0 implies ‘w’ is a global min.
– Can (usually) be identified using a few simple rules.

• Least squares with outliers:
– Reduce influence of outliers, or magnify influence of outliers
– Use L1 and L∞ error functions, which are convex but non-smooth
– Use smooth approximations with gradient descent to optimize

• e.g. Huber loss, log-sum-exp, etc.

• Next time:
– Bonus lecture! Machine learning for Amazon and Games
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Review Questions
• Q1: Do convex functions have a unique global minimum?

• Q2: Why is L1/2-norm considered non-convex even though Lp-norms are considered convex?

• Q3: Why are there no normal equations for robust and brittle regressions?

• Q4: Why is non-smoothness a problem for gradient descent?

45



Converting to Matrix Notation
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Constraints, Continuity, Smoothness
• Sometimes we need to optimize with constraints:

– Later we’ll see “non-negative least squares”.

– A vector ‘w’ satisfying w ≥ 0 (element-wise) is said to be “feasible”.
• Two factors affecting difficulty are continuity and smoothness.

– Continuous functions tend to be easier than discontinuous functions.
– Smooth/differentiable functions tend to be easier than non-smooth.
– See the calculus review here if you haven’t heard these words in a while.

47

https://www.cs.ubc.ca/%7Eschmidtm/Courses/Notes/calculus.pdf


Convexity, min, and argmin
• If a function is convex, then all critical points are global optima.

• However, convex functions don’t necessarily have critical points:
– For example, f(x) = a*x, f(x) = exp(x), etc.

• Also, more than one ‘x’ can achieve the global optimum:
– For example, f(x) = c is minimized by any ‘x’.
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Why use the negative gradient direction?
• For a twice-differentiable ‘f’, multivariable Taylor expansion gives:

• If gradient can’t change arbitrarily quickly, Hessian is bounded and:

– But which choice of wt+1 decreases ‘f’ the most?
• As ||wt+1-wt|| gets close to zero, the value of wt+1 minimizing f(wt+1) in this formula

converges to (wt+1 – wt) = - αt ∇ f(wt) for some scalar αt.
• So if we’re moving a small amount, the optimal wt+1 is:
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Normalized Steps
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optimizer.py Details
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