
CPSC 340:
Machine Learning and Data Mining

Fun Examples
(Bonus Lecture)
Summer 2021

1



In This Bonus Lecture
• Regression-version of classifiers (10 minutes)
• Recommender Systems (20 minutes)
• Games (20 minutes)

2



REGRESSION-VERSION OF
CLASSIFIERS WE’VE COVERED
Coming Up Next

3



Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:

http://www.at-a-lanta.nl/weia/Progressie.html
4



Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

http://www.at-a-lanta.nl/weia/Progressie.html
5



Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.
– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

• Take CPSC 440/540.

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
6



Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.
– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.
– Non-parametric models: 

• KNN regression:
– Find ‘k’ nearest neighbours of xi.
– Return the mean of the corresponding yi.

http://scikit-learn.org/stable/modules/neighbors.html
7



Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.
– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.
– Non-parametric models: 

• KNN regression.
• Could be weighted by distance.

– Close points ‘j’ get more “weight” wij.

http://scikit-learn.org/stable/modules/neighbors.html
8



Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.
– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.
– Non-parametric models: 

• KNN regression.
• Could be weighted by distance.
• ‘Nadaraya-Waston’: weight all yi by distance to xi.

http://www.mathworks.com/matlabcentral/fileexchange/35316-kernel-regression-with-variable-window-width/content/ksr_vw.m
9



Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.
– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.
– Non-parametric models: 

• KNN regression.
• Could be weighted by distance.
• ‘Nadaraya-Waston’: weight all yi by distance to xi.
• ‘Locally linear regression’: for each xi, fit a linear model weighted by distance.

(Better than KNN and NW at boundaries.)

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd423.htm
10



Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.
– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.
– Non-parametric models: 

• KNN regression.
• Could be weighted by distance.
• ‘Nadaraya-Waston’: weight all yi by distance to xi.
• ‘Locally linear regression’: for each xi, fit a linear model weighted by distance.

(Better than KNN and NW at boundaries.)
– Ensemble methods:

• Can improve performance by averaging predictions across regression models.

11



Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression.

• Applications:
– Regression forests for fluid simulation:

• https://www.youtube.com/watch?v=kGB7Wd9CudA
– KNN for image completion:

• http://graphics.cs.cmu.edu/projects/scene-completion
• Combined with “graph cuts” and “Poisson blending”.
• See also “PatchMatch”: https://vimeo.com/5024379

– KNN regression for “voice photoshop”:
• https://www.youtube.com/watch?v=I3l4XLZ59iw
• Combined with “dynamic time warping” and “Poisson blending”.

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd423.htm
12

https://www.youtube.com/watch?v=kGB7Wd9CudA
http://graphics.cs.cmu.edu/projects/scene-completion
https://vimeo.com/5024379
https://www.youtube.com/watch?v=I3l4XLZ59iw


RECOMMENDER SYSTEMS
Coming Up Next

13



Motivation: Product Recommendation
• A customer comes to your website looking to buy at item:

• You want to find similar items that they might also buy:

14



User-Product Matrix

15



Amazon Product Recommendation
• Amazon product recommendation method:

• Return the KNNs across columns.
– Find ‘j’ values minimizing ||xi – xj||.
– Products that were bought by similar sets of users.

• But first divide each column by its norm, xi/||xi||.
– This is called normalization.
– Reflects whether product is bought by many people or few people.

16



Amazon Product Recommendation
• Consider this user-item matrix:

• Product 1 is most similar to Product 3 (bought by lots of people).
• Product 2 is most similar to Product 4 (also bought by John and Yoko).
• Product 3 is equally similar to Products 1, 5, and 6.

– Does not take into account that Product 1 is more popular than 5 and 6.



Amazon Product Recommendation
• Consider this user-item matrix (normalized):

• Product 1 is most similar to Product 3 (bought by lots of people).
• Product 2 is most similar to Product 4 (also bought by John and Yoko).
• Product 3 is most similar to Product 1.

– Normalization means it prefers the popular items.



Cost of Finding Nearest Neighbours
• With ‘n’ users and ‘d’ products, finding KNNs for one item costs O(__).

– Not feasible if ‘n’ and ‘d’ are in the millions+.

• It’s faster if the user-product matrix is sparse: O(z) for z non-zeroes.
– But ‘z’ is still enormous in the Amazon example.



Closest-Point Problems
• We’ve seen a lot of “closest point” problems:

– K-nearest neighbours classification.
– K-means clustering.
– Density-based clustering.
– Hierarchical clustering.
– KNN-based outlier detection.
– Outlierness ratio.
– Amazon product recommendation.

• How can we possibly apply these to Amazon-sized datasets?



But first the easy case: “Memorize the Answers”
• Easy case: you have a limited number of possible test examples.

– E.g., you will always choose an existing product (not arbitrary features).

• In this case, just memorize the answers:
– For each test example, compute all KNNs and store pointers to answers.
– At test time, just return a set of pointers to the answers.

• The answers are called an inverted index, queries now cost O(k).
– Needs an extra O(nk) storage, which is fine for small ‘k’.



GRID-BASED PRUNING
Coming Up Next

22



“Grid-Based Pruning”
• A classic method for fast collision detection in physics simulation
• I have 1 million objects. Are objects 1 and 2 running into each other?

• Expensive: check all pairs of objects (O(__)) and check their positions.

23
Q: Can we avoid unnecessary checks?

Frosh Nam Hee

“CyBeer Pong”

https://www.dropbox.com/s/zh25nmauhd2xpu0/FinalVideo.mp4?dl=0


• Smarter collision detection: check for “rough” distances first

• Idea: organize space into a coarse “grid” 
and check only cups within same cell
– Instance of spatial discretization

• Still O(n2) checks in worst case, but works well in practice

Grid-Base Pruning for Collisions

24

ball

table

cups

1 2 3 4

Q: Do we need to check ball vs. every cup?



Grid-Based Pruning
• Instead of collision detection, let’s find examples within L2-distance of ‘ε’ of point xi.

Feature space

point xi

Q: Do we need to check xi vs. every other point?

ε

• Idea: organize feature space into a coarse grid and check only points in same cell (?)

To get the whole radius, must 
check all adjacent cells!



Implementing Grid-Based Pruning

26

Feature space

point xi

ε

We need to pre-compute the grid for each value of 𝜖𝜖 beforehand.

Q: Which data structure can 
represent these grids efficiently?

grid[(3, 2)] = {x5, x38}

grid = dict()

grid[(2, 3)] = {x7, x14}



Grid-Based Pruning
• Which squares do we need to check?

Points in same square can 
have distance less than ‘ε’.



Grid-Based Pruning
• Which squares do we need to check?

Points in adjacent 
squares can have 
distance less than 
distance ‘ε’.



Grid-Based Pruning
• Which squares do we need to check?

Points in non-adjacent
squares must have 
distance more than ‘ε’.



Grid-Based Pruning Discussion
• Similar ideas can be used for other “closest point” calculations.

– Can be used with any norm.
– If you want KNN, can use grids of multiple sizes.

• But we have the “curse of dimensionality”:
– Number of adjacent regions increases ______________:

• 2 with d=1, 8 with d=2, 26 with d=3, 80 with d=4, 252 with d=5, 3d-1 in d-dimension.



Grid-Based Pruning Discussion
• Better choices of regions:

– Quad-trees.
– Kd-trees.
– R-trees.
– Ball-trees.

• Work better than squares, but worst case is still exponential.
https://en.wikipedia.org/wiki/Quadtree
https://en.wikipedia.org/wiki/R-tree
http://www.astroml.org/book_figures/chapter2/fig_balltree_example.html



Approximate Nearest Neighbours
• Approximate nearest neighbours:

– Idea: allow errors in the nearest neighbour calculation to gain speed.

• A simple and very-fast approximate nearest neighbour method:
– Only check points within the same square.
– Works if neighbours are in the same square.
– But misses neighbours in adjacent squares.

• A simple trick to improve the approximation quality:
– Use more than one grid.
– So “close” points have more “chances” to be in the same square.



Approximate Nearest Neighbours



Approximate Nearest Neighbours
• Using multiple sets of regions improves accuracy.



Approximate Nearest Neighbours
• Using multiple sets of regions improves accuracy.



MACHINE LEARNING FOR GAMES
Coming Up Next

36



Motivation: “AI” in Games

• An AI must judge the situation (“state” of the game)
– Go: the board looks like this, and the opponent has captured 5 stones...
– Dota 2: opponent team’s hero A is level 6 with items 1, 2, 3, my team’s heroes have...
– StarCraft: opponent has unit A, building B, and a group of units are moving...

• ...and make a good decision (“action” of the agent)
– Go: place stone in position (x,y)
– Dota 2: cast my hero B’s ability Q on opponent hero A
– StarCraft: build unit C, move my units to location (x,y)

37

Playing Go Playing StarCraft II Playing Dota 2

Q: Can we make this a supervised learning problem?



“Optimal Control”
• Optimal control: a popular mathematical framework for computer games

• Assumption: for every situation (“state”), there is a correct move (“action”)
– A “controller” (or a “policy”) is a mapping of ___________________
– Our goal is to use machine learning to produce a controller

• Let’s assume that games follow a Markov Decision Process (MDP)
– At each “timestep” in the game, you are given the current game state
– You decide on the best action for that timestep
– The game incorporates your action and runs its engine (aka “taking a step”)
– Then you move onto the next timestep in the game.

38

timestep 1 timestep 2 timestep 3

X
action: “put X at center”

process opponent action

action: “put X at top-left”

process opponent action

OX

O
X

O



Classic Approaches to Gameplay
• Hard-coded policies (fast but labour-intensive)

– Game developer sits down to make a complicated, 
hard-coded decision tree.

– e.g. World of Warcraft raid boss
if ‘my_hp’ < 20%: use_special_ability()

• Simulation-based control (expensive)
– At each timestep, play the game multiple times

with different strategies, then choose the best one
– e.g. chess, go, card games, board games
– Requires knowledge of what the opponent might do

39



CONTROLLER LEARNING
Coming Up Next

40



Toy Example: “Pong”

41

• Goal: beat the opponent!
• The situation (“state” of the game) is captured by:

– position of my paddle (scalar)
– position of opponent’s paddle (scalar)
– position of ball (2d vector)
– velocity of ball (2d vector)

• The decision (“action” of the agent) is:
– {UP, DOWN, STAY} ← categorical label

my paddle

opponent’s paddle
ball

continuous features

(assume we’re up against 
the computer)



Imitation Learning for Pong
• Idea: gather play data from human players (experts),

– Look at winners’ play data
– Learn “winners’ action” at each state

42

MyPos YourPos BallXPos BallYPos BallXVel BallYVel
0 16 25 30 2 0
125 126 50 192 1 -2
137 10 10 21 2 1
... ... ... ... ... ...

Action
STAY
DOWN
UP
...

“state features” “action labels”

• Also called “imitation learning” or “policy cloning”
– Assumes that both human experts and automated agents are policies

Q: What kind of models can we train on this data? 

Q: Are these examples IID? What can go wrong?



“State Value Function”

43

• Some states are inherently “better” than others
• State value function measures which states are better
• The “true values” can be computed with dynamic programming

– Expensive but accurate

my paddle your paddle

Q: Is this a good state?

my paddle your paddle

Q: Is this a good state?



“Action Value Function”

44

• Some actions are inherently “better” than others
• Action value function measures which actions are better
• However, actions are _________________

– We need to compute the value of action in a specific state
• The “true values” can be computed with dynamic programming

– Expensive but accurate

my paddle your paddle
Q: Is “DOWN” a good action here?

Q: Is “UP” a good action here?



Action Value Learning for Pong

45

• Idea: gather play data from human players (experts),
– Compute action value by using expensive solution
– Learn the mapping of state-action → value

MyPos YourPos BallXPos BallYPos BallXVel BallYVel Action
0 16 25 30 2 0 STAY
125 126 50 192 1 -2 DOWN
137 10 10 21 2 1 UP
... ... ... ... ... ... ...

Value
10.5
2.3
30.1
-5.0

“state features” “action labels”

• Also called “Q-Learning” if done without an expert

Q: What kind of models can we train on this data? 

“action values”



What If We Don’t Have Experts?

46

• Vanilla imitation learning: impossible without an expert.
– Also requires lots of gameplay when state space is large

• Idea: instead of a human expert, let’s use a game-playing bot
– Make LOTS of random actions and record their values
– Do it over MANY rounds of Pong

• Learn the action values. Then we have a controller! (WHAT?!)



Action Value for Optimal Control

• Taking “argmax” of action value gives you the best action for current timestep.
• Next timestep, you receive a _____________.
• With the new state, take “argmax” of action value again, and repeat.
• If getting action values is fast, then the controller will be fast!

47

Game
“state” xt

{UP, DOWN, STAY}all “actions”

value(xt, UP)
value(xt, DOWN)
value(xt, STAY)

“action values”

“new state” xt+1

UP

Q: Will this controller be perfect?



“Reinforcement Learning”
• Earlier: instead of a human expert, let’s use a game-playing bot

– Make LOTS of random actions and record their values
– Do it over MANY rounds of Pong

• Instead of random actions, lets use the “argmax” of action value idea

48

Q: Are random actions that useful?



“Reinforcement Learning”
• We can iteratively improve the learned action values like this:

– When in this state, do “UP” sometimes and make random actions sometimes
– Do it over MANY rounds of Pong
– Learn action values with new data, and repeat

• Using “good actions” will lead to _________________ (exploitation)
• Using random actions will lead to _________________ (exploration)
• This is an (watered-down) instance of “reinforcement learning” (RL)
• Core ideas of RL:

– iteratively improve a controller
– let it play the game better every time

49

“state” xt

Q: How is this better than using random actions?



DYNAMICS LEARNING
Coming Up Next

50



Another Example: “Super Mario Brothers”

• The decision (“action” of the agent) is:
– {LEFT, RIGHT, UP, DOWN, SPECIAL, JUMP, NONE}

51

Q: How should we represent the game state? 



State Representation

52

m-by-n image

(1,1) (2,1) (3,1) … (m,1) … (m,n)
45 44 43 … 12 … 35grayscale 

intensity
mn x 1 vector



“Dynamics”

53

Q: What does the state look like 
after I use the “JUMP” action?

• A particular action at a particular state leads to a new state
– Usually written as xt+1 = f(xt, ut) or st+1 = f(st, at)
– called “dynamics” or “model” of the game

JUMP

“current state” “next state”

Q: Can we predict the consequence of an action 
without actually taking the step?



Dynamics Learning

• Idea:
– Look at gameplay data, including 

“state”, “action”, and “new state” at every timestep
– Predict “new state” from “state” and “action”

54

Game
“state” xt

“new state” xt+1

“action” ut

state features action 
label

next state features

25 13 42 JUMP 26 13 44

26 13 44 NONE 26 13 44

26 13 44 LEFT 24 13 46

... ... ... ... ... ... ...



Dynamics Learning

55

Game
“state” xt

“new state” xt+1

“action” ut

Q: What kind of models can we train on this data? 



Learned Dynamics Can Be “Chained”!

• Some people call this “thinking”
• Some people call this “dreaming”

56

Game
“state” xt

“new state” xt+1

“action” ut



Why Learn Dynamics?

• Using linear regression, I get O(____) time to predict a new state
– (d + k) features means I have (d + k) weights
– I predict d different state features
– For complicated games, often faster than running the game

• Rendering, physics handling, relocating objects, computing opponent action, etc.

• Simulation-based control methods can use learned dynamics to 
speed up computation
– e.g. model predictive control (MPC)
– Learned dynamics abstracts away the opponent’s strategy!

57

Q: What does the state look like 
after I use the “JUMP” action?

https://en.wikipedia.org/wiki/Model_predictive_control


Speeding Up Physics Simulations

• Cloth simulation: notoriously slow
– due to complicated interactions and physical effects

• Learned dynamics: speeds up cloth simulation 5000 times
• Passive dynamics: action is not involved in these applications 58



Speeding Up Physics Simulations

• Also applies to fluid simulation!
• Passive dynamics: action is not involved in these applications

59



Summary
• Recommender systems: find similar items to recommend
• Closest-point problem: the bane of distance-based methods

– Hard to do with lots of features!
• Grid-based pruning: use dictionary to speed up distances
• Controller learning: machine learning for game-playing agents

– Reinforcement learning: iterative controller learning based on sample actions
• Dynamics learning: bypass real steps to get approximate steps

– Useful for speeding up simulations
• Next time: 

– how to make least squares “smarter”

60


	CPSC 340:�Machine Learning and Data Mining
	In This Bonus Lecture
	Regression-Version of�classifiers we’ve covered
	Adapting Counting/Distance-Based Methods
	Adapting Counting/Distance-Based Methods
	Adapting Counting/Distance-Based Methods
	Adapting Counting/Distance-Based Methods
	Adapting Counting/Distance-Based Methods
	Adapting Counting/Distance-Based Methods
	Adapting Counting/Distance-Based Methods
	Adapting Counting/Distance-Based Methods
	Adapting Counting/Distance-Based Methods
	Recommender Systems
	Motivation: Product Recommendation
	User-Product Matrix
	Amazon Product Recommendation
	Amazon Product Recommendation
	Amazon Product Recommendation
	Cost of Finding Nearest Neighbours
	Closest-Point Problems
	But first the easy case: “Memorize the Answers”
	Grid-Based Pruning
	“Grid-Based Pruning”
	Grid-Base Pruning for Collisions
	Grid-Based Pruning
	Implementing Grid-Based Pruning
	Grid-Based Pruning
	Grid-Based Pruning
	Grid-Based Pruning
	Grid-Based Pruning Discussion
	Grid-Based Pruning Discussion
	Approximate Nearest Neighbours
	Approximate Nearest Neighbours
	Approximate Nearest Neighbours
	Approximate Nearest Neighbours
	Machine Learning for Games
	Motivation: “AI” in Games
	“Optimal Control”
	Classic Approaches to Gameplay
	Controller Learning
	Toy Example: “Pong”
	Imitation Learning for Pong
	“State Value Function”
	“Action Value Function”
	Action Value Learning for Pong
	What If We Don’t Have Experts?
	Action Value for Optimal Control
	“Reinforcement Learning”
	“Reinforcement Learning”
	Dynamics Learning
	Another Example: “Super Mario Brothers”
	State Representation
	“Dynamics”
	Dynamics Learning
	Dynamics Learning
	Learned Dynamics Can Be “Chained”!
	Why Learn Dynamics?
	Speeding Up Physics Simulations
	Speeding Up Physics Simulations
	Summary

