CPSC 340:
Machine Learning and Data Mining

In This Bonus Lecture

« Regression-versions of classifiers (10 minutes)
« Recommender Systems (20 minutes)
« Games (20 minutes)

REGRESSION-VERSIONS OF
CLASSIFIERS WE'VE COVERED

Adapting Counting/Distance-Based Methods

« We can adapt our classification methods to perform regression:

Adapting Counting/Distance-Based Methods

We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.

\

’_a(“' e
Fenr 7 113D -
i Not
‘r/)’35 2 necesswi/\/
— A —
N, (calepty™ "omadD A
(slegor/= "waman " \/‘5 -
o
il
b ot v

. .""i""'ﬁ'«h) continugus.
\)I/QS
. : d Feqression
Feyresston Feyressin model Y d
Mo ée.‘ \ model 2 — .

s
N

0

Adapting Counting/Distance-Based Methods

« We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.

— Probabilistic models: fit p(x; | y;) and p(y;) with Gaussian or other model.
- Take CPSC 440/540.

Adapting Counting/Distance-Based Methods

« We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y;) and p(y;) with Gaussian or other model.

— Non-parametric models:

* KNN regression:
— Find ‘k’ nearest neighbours of A)f,
— Return the mean of the corresponding vy..

1.0F
0.5}
ool °*
0.5

-1.0f |

KNeighborsRegressor (k = 5, weights = 'uniform’)
T ‘ T T T

1
— prediction
see data

Adapting Counting/Distance-Based Methods

« We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y;) and p(y;) with Gaussian or other model.

— Non-parametric models:
« KNN regression.

KNeighborsRegressor (k = 5, weights = 'uniform’)
T ‘ T T T

« Could be weighted by distance. Lo ——
. . . eee data
— Close points ‘j’ get more “weight” wj;. 0.5
ool °*
-0.5}
-1.0}
1 2 3 4
KNeighborsRegressor (k = 5, weights = 'distance’)
1oF™ I I I = predictil)n
0.5f
0.0}
-0.5}
-1.0f .
0 1 2 3 4 5

Adapting Counting/Distance-Based Methods

« We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y;) and p(y;) with Gaussian or other model.

— Non-parametric models:
« KNN regression.
- Could be weighted by distance.
- ‘Nadaraya-Waston’: weight all y, by distance to x..

—true

Adapting Counting/Distance-Based Methods

« We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y;) and p(y;) with Gaussian or other model.
— Non-parametric models:

KNN regression.
Could be weighted by distance.
‘Nadaraya-Waston’: weight all y, by distance to x..

‘Locally linear regression’: for each x;, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)

d=2,q=0.5

¥
50 100 150 200 250

.l° Call, l,
model

I 5 1ID 1.5
) 10

"
W14

Adapting Counting/Distance-Based Methods

« We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y;) and p(y;) with Gaussian or other model.
— Non-parametric models:
« KNN regression.
- Could be weighted by distance.

- ‘Nadaraya-Waston”: weight all y; by distance to x..

- ‘Locally linear regression’: for each x;, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)

— Ensemble methods:
- Can improve performance by averaging predictions across regression models.

11

Adapting Counting/Distance-Based Methods
« We can adapt our classification methods to perform regression.

« Applications:

— Regression forests for fluid simulation:
* https://www.youtube.com/watch?v=kGB7Wd9CudA

— KNN for image completion:
« http://graphics.cs.cmu.edu/projects/scene-completion
« Combined with “graph cuts” and “Poisson blending”.
« See also “PatchMatch”: https://vimeo.com/5024379

— KNN regression for “voice photoshop”:
 https://www.youtube.com/watch?v=I314XLZ59iw
« Combined with “dynamic time warping” and “Poisson blending”.

12

https://www.youtube.com/watch?v=kGB7Wd9CudA
http://graphics.cs.cmu.edu/projects/scene-completion
https://vimeo.com/5024379
https://www.youtube.com/watch?v=I3l4XLZ59iw

RECOMMENDER SYSTEMS

Motivation: Product Recommendation

- A customer comes to your website looking to buy at item:

Machine Learning: A Probabilistic Perspective

Hardcover — Aug 24 2012
by Kevin P. Murphy (Author)

Look inside ¥

~ 4 customer reviews

WY

See all 3 formats and editions

Kindle Edition
CDN$ 117.34

Hardcover
CDNS$ 123.52

Read with Our Free App 10 Used from CDNS$ 110.00
15 New from CDN$ 99 86

Machine Learning
A Probabilistic Perspective Save up to 50%
Kevin P. Murphy on Dummies See more»

 You want to find similar items that they might also buy:

Customers Who Bought This Item Also Bought Page 1 of 20

Foundations of
Machine Learning

Pattern Recognition and Learning From Data The Elements of Statistical ~ Probabilistic Graphical Foundations of Machine

Machine Leamning » Yaser 5. Abu-Mostafa Learning: Data Mining, Models: Principles and Learning (Adaptive
(Information Science and.. Yrrdrvirdy a8 Inference, and Prediction,... Technigues (Adaptive. . Computation and...
Christopher Bishop Hardcover Trevor Hastie » Daphne Koller Mehryar Mohri
Wil wrir 115 Wi 50 Firdrrsy 28 Wi dririv s

Hardcover Hardcover Hardcover Hardcover
$60.76 ~/Prime 562 82 «/Prime $91.66 ~Prime $66 .68 «/Prime

Column X;) (j"‘VQS
o\ wserS Yot

bow gt praduct ’f‘_

User-Product Matrix
')(,';, Meang

J
USer ‘i {oovlﬂh'/'
] | Tem /)' !

><: P — - / Users
.\ _B‘L’\ e

| x;)-:O Mmeaqus voerli(
W has Nof by iFon "
?(oéu\ds
: [1\
6w x| ques M bowght by wser i,

15

Amazon Product Recommendation

« Amazon product recommendation method:

1//V5,\(_
/I\(Jron(T

« Return the KNNs across columns.
— Find ‘j’ values minimizing [[x' — XJ[|.
— Products that were bought by similar sets of users.

- But first divide each column by its norm, x'/[|x[l.
— This is called normalization.

Q: Why is normalization helpful here?

16

Amazon Product Recommendation

« Consider this user-item matrix:

Prdudn) Product 2 Prohot 3 Prydnct 4 doct 5 Praact [
John Y rfﬁ i l\ ﬁ;/"’j \ \ﬁ\ |
_Padd |] © ’ V O ' 0
X—’ (Zfory | ¥, G ! |
Rim, | | 0 0 l (
' / [O 0

I
|
YD’W'%\
« Product 1 is most similar to Product 3 (bought by lots of people).

« Product 2 is most similar to Product 4 (also bought by John and Yoko).

 Product 3 is equally similar to Products 1, 5, and 6.
— Does not take into account that Product 1 is more popular than 5 and 6.

Amazon Product Recommendation

« Consider this user-item matrix (normalized):

Fv’bAuc‘l ’ Pf‘o Jntf 2 Prm‘mf m pﬁ'"/"‘ﬂ[5’ Fﬂ'd"‘f [

John Y Yrs ’/Jz‘ Vi /5 ,O V5
| e D i 0 (e O
K= G| s 0 /e i 43 s
R'M?,) '/y? 0 y\m v / V3 ,/\E

)
Yolko_ Yz Vi 0 e © O

Kr>” — -
« Product 1 is most similar to Product 3 (bought by lots of people).

« Product 2 is most similar to Product 4 (also bought by John and Yoko).
« Product 3 is most similar to Product 1.

— Normalization means it prefers the popular items.

Cost of Finding Nearest Neighbours

With ‘n’ users and ‘d’ products, finding KNNs for one item costs O(pé).
— Not feasible if ‘n’ and ‘d’ are in the millions+.

It’s faster if the user-product matrix is sparse: O(z) for z non-zeroes.
— But ‘z’ is still enormous in the Amazon example.

Closest-Point Problems

« We've seen a lot of “closest point” problems:
— K-nearest neighbours classification.
— K-means clustering.
— Density-based clustering.
— Hierarchical clustering.
— KNN-based outlier detection.
— Qutlierness ratio.
— Amazon product recommendation.

« How can we possibly apply these to Amazon-sized datasets?

But first the easy case: “Memorize the Answers”

« Easy case: you have a limited number of possible test examples.
— E.g., you will always choose an existing product (not arbitrary features).

| | | Lo eadh vl L K,
* In this case, just memorize the answers: = [pr-opve, b wntine

— For each test example, compute all KNNs and store pointers to answers.
— At test time, just return a set of pointers to the answers. cosk o
(ey kv
: : , \e)
« The answers are called an inverted index, queries now cost O(k). e~#%
i i i i, S W.“
— Needs an extra O(nk) storage, which is fine for small ‘k’.

Q: What if we had continuous features?

GRID-BASED PRUNING

“Grid-Based Pruning”

« A classic method for fast collision detection in physics simulation
- | have . Are objects 1 and 2 running into each other?

%8 —— Frosh Nam Hee

Player 2's Name:

X

annnn

| Shin_|

Cadeskulptar mas ult By Scalt Ricner anc i Eazed

Disrt| ., @ € Codesbnr -GoogeC.. [€ CyBeerPong - Google. @ E) Camlasia Studa - Unite.. | EY Recording... |

“CyBeer Pong”

- Expensive: check all pairs in ‘n’ objects (O(QA)) and check their positions.

Q: Can we avoid unnecessary checks?

23

https://www.dropbox.com/s/zh25nmauhd2xpu0/FinalVideo.mp4?dl=0

Grid-Base Pruning for Collisions

- Smarter collision detection: check for “rough” distances first

"sasssssssnssnssssndasnnnnnnnnnnnnnnandunnnnnnnnnnnnnnnnndannnnnnnnnnnnnnnnndannnnnnnnnnnnnnnnadunnnnnnnnnnnnnnnnndonnnnnnnnnnnnnnnnns

Q: Do we need to check ball vs. every cup?

- Idea: organize space into a coarse “grid”
and check only cups within same cell
— Instance of spatial discretization

« Still O(n?) checks in worst case, but works well in practice

24

Grid-Based Pruning

« Instead of collision detection, let’s find examples within L2-distance of ‘e’ of point x..

c o
e !
' elo To get the whole radius, must
L e0i@ . check all adjacent cells!
FTPRIMTG T
o i i A }E'
.. ;

Feature space

Q: Do we need to check x; vs. every other point?

- Idea: organize feature space into a coarse grid and check only points in same cell (?)

Implementing Grid-Based Pruning

We need to pre-compute the grid for each value of ¢ beforehand.

grid[(2, 3)] = {x7, X145}

NN NN NN NN NN NN NN NN NN NN NN AN NN NSRS EEEEEE

Feature space

gridl(3, 2)] = {xs, X34}

Q: Which data structure can
represent these grids efficiently?

grid = dict()

26

Grid-Based Pruning

 Which squares do we need to check?

Points in same square can
have distance Less than ‘¢’.

Grid-Based Pruning

 Which squares do we need to check?

Points in adjacent
squares can have
distance less than
distance ‘¢’.

Grid-Based Pruning

 Which squares do we need to check?

éiﬂlf/w\(f V4 é

‘ B S |

Points in non-adjacent
squares must have
distance more than ‘¢’.

Grid-Based Pruning Discussion

« Similar ideas can be used for other “closest point” calculations.
— Can be used with any norm.
— If you want KNN, can use grids of multiple sizes.

- But we have the “curse of dimensionality”:

« 2 with d=1, 8 with d=2, 20 with d=3, 80 with d=4, 252 with d=5, 39-1 in d-dimension.
-

L]

i
]

i

|

I

Grid-Based Pruning Discussion

- Better choices of regions:

— Quad-trees. - —
| [° [

— Kd-trees. e | B P T a
— R-trees. e ot :?%C°+ iL
— Ball-trees. j ' 1 BT

] l R

inan il s P e

o
& %l .
a mi o | of

« Work better than squares, but worst case is still exponential.

Approximate Nearest Neighbours

* Only check points within the same square.

— Works if neighbours are in the same square.
— But misses neighbours in adjacent squares.

A simple trick to improve the approximation quality:
— Use more than one grid.
— S0 “close” points have more “chances” to be in the same square.

Approximate Nearest Neighbours

Gr'ul E o —1 |
—1 .” ;l:__ -.:5,.:. .

Approximate Nearest Neighbours

- Using multiple sets of regions improves accuracy.

Grid 20 ‘ ‘?1

il e,

e - 1-'.F’; .I:- o

5% -
W ':’5
r

Approximate Nearest Neighbours

« Using multiple sets of regions improves accuracy.

1T

MACHINE LEARNING FOR GAMES

llAIl’ in

‘:Ci: Google Deep

Challenge

Playing Go Playing StarCraft I Playing Dota 2

« An Al must judge the situation (“state” of the game)
— Go: the board looks like this, and the opponent has captured 5 stones...

— Dota 2: opponent team’s hero A is level 6 with items 1, 2, 3, my team’s heroes have...
— StarCraft: opponent has unit A, building B, and a group of units are moving...

- ..and make a good decision (“action” of the agent)
— Go: place stone in position (x,y)
— Dota 2: cast my hero B’s ability Q on opponent hero A
— StarCraft: build unit C, move my units to location (x,y)

Q: Can we make this a supervised learning problem?

37

“Optimal Control”

Optimal control: a popular mathematical framework for computer games

Assumption: for every situation (“state”), there is a correct move (“action”)

— A “controller” (or a “Eolicy") is @ mapping of
— Qur goal is to use machine learning to produce an automated controller

Let’'s assume that games follow a Markov Decision Process (MDP)

At each “timestep” in the game, you are given the current game state
You decide on the best action for that timestep

The game incorporates your action and runs its engine (aka “taking a step”)
Then you move onto the next timestep in the game.

action: “put X at center”

—

process opponent action

timestep 1

timestep 2

action: “put X at top-left”

—

process opponent action

X o
X

0]

timestep 3

38

Classic Approaches to Gameplay

 Hard-coded policies (fast but labour-intensive)

— Game developer sits down to make a complicated,
hard-coded decision tree.

— €e.9. “World of Warcraft” raid boss
if ‘my_hp’' < 20%: use_special_ability()

« Simulation-based control (expensive)

— At each timestep, play the game multiple times
with different strategies, then choose the best one

— €.g. chess, go, card games, board games
— Requires knowledge of what the opponent might do

39

CONTROLLER LEARNING

Toy Example “Pong”

my paddle

opponent’s paddle

ball |
(assume we're up against

the computer)

 Goal: beat the opponent!

« The situation (“state” of the game) is captured by:

— position of my paddle (scalar)]
— position of opponent’s paddle (scalar)

— position of ball (2d vector)

— velocity of ball (2d vector)

- The decision (“action” of the agent) IS:
— {UP, DOWN, STAY} « categorical label

— continuous features

Imitation Learning for Pong

- Idea: gather play data from human players (experts),
— Look at winners’ play data
— Learn “winners’ action” at each state

BallXPos | BallYPos | BallXVel | BallYVel m
0 16 25 30 2 0) STAY
125 126 50 192 1 -2) DOWN
137 10 10 21 2 1) P
“state features” ““action lLabels”

« Also called “imitation learning” or “policy cloning”
— Assumes that both human experts and automated agents are policies
Q: What kind of models can we train on this data? M,(_b(,_bit,_

Q: Are these examples IID? What can go wrong? = L

““State Value Function”
A |

| |

my paddle your paddle my paddle your paddle
Q: Is this a good state? Q: Is this a good state?
1'% 4.9
s -

« Some states are inherently “better” than others
« State value function measures which states are better

« The “true values” can be computed with dynamic programming
— Expensive but accurate

“Action Value Function”
o

| |

my paddle your paddle

Q: Is “DOWN” a good action here? | p,2-
Q: Is “UP” a good action here? q.4

Some actions are inherently “better” than others
Action value function measures which actions are better
However, actions are ﬁ_o\’ce-ﬂga(au \\AM(W“—(,W‘”‘\

— We need to compute the value of action in a specific state

The “true values” can be computed with dynamic programming
— Expensive but accurate

Action Value Learning for Pong

- |Idea: gather play data from human players (experts),
— Compute action value by using expensive solution
— Learn the mapping of state-action —» value

yPos | Yourpos | GailXPos | BallYPos | BallXVel | ailyVel | Action
0 16 25 30 2 0 STAY) 10.5
125 126 50 192 1 -2 DOWN) 2.3
137 10 10 21 2 1 UP) 0.1
5.0
“‘state features” ““action labels” “action values”

« Also called “Q-Learning” if done without an expert

Q: What kind of models can we train on this data?

KNN Ve gresina TN'M ‘G.W\r\. \\\:w regres

45

what If We Have Experts?

- Vanilla imitation learning: impossible without an expert.
— Also requires lots of gameplay when state space is large

- Idea: instead of a human expert, let’s use a game-playing bot
— Make LOTS of random actions and record their values
— Do it over MANY rounds of Pong

« Learn the action values. Then we have a controller! (WHAT?!)

40

Action Value for Optimal Control

“new state” x,;;

|

““'state” x ﬂ —
‘]] ~ value(x,, UP) UP
value(x,, DOWN) >
-

all “actions” {UP, DOWN, STAY}
“action values”

Taking “argmax” of action value gives you the best action for current timestep.
Next timestep, you receive a MNw e

With the new state, take “argmax” of action value again, and repeat.
If getting action values is fast, then the controller will be fast!

Q: WIll this controller be perfect?

“Reinforcement Learning”

- Earlier: instead of a human expert, let’s use a game-playing bot
— Make LOTS of random actions and record their values
— Do it over MANY rounds of Pong

Q: Are random actions that useful?

« Instead of random actions, lets use the “argmax” of action value idea

48

“Reinforcement Learning”

« We can iteratively improve the learned action values like this:

“state” x, ll ll

— When in this state, do “UP"” sometimes and make random actions sometimes
— Do it over MANY rounds of Pong
— Learn action values with new data, and repeat

Q: How is this better than using random actions?

- Coverage of state space is crucial:
— Using “good actions” will lead to _ _ _(‘yeb A pw (exploitation)

— Using random actions will lead to _J_d_cxs‘ J—m____ (exploration)
« This is an (watered-down) instance of “reinforcement Learning” (RL)
« Core ideas of RL:

— iteratively improve a controller

— let it play the game better every time

49

Coming Up Next

DYNAMICS LEARNING

S50

Another Example: “Super Mario

HORLD T
1-1

IME
393

- The decision (“action” of the agent) is:
— {LEFT, RIGHT, UP, DOWN, SPECIAL, JUMP, NONE}

Brothers”

Q: How should we represent the game state?

Sl

State Representation

(L) ((21) [(31) .. [(m1) .. (mn) |
grayscale 45 44 43 12 35

intensity
mn X 1 vector

m-0y-n image

52

““‘current state” “nNnext state”

Q: What does the state look like
after | use the “JUMP” action?

« A particular action at a particular state Leads to a new state
— Usually written as x,,; = f(x,, Uy or s,,; = f(s;, a,)
— called “dynamics” or “model” of the game

Q: Can we predict the consequence of an action
without actually taking the step?

53

Dynamics Learning

“state” x;

“new state” x4,

““action” u;

¢ |dea:

— Look at gameplay data, including
“state”, “action”, and “new state” at every timestep

— Predict “new state” from “state” and “action”

state features next state features
label

25 13 42 JUMP 26 13 44
20 13 44 NONE 26 13 44

26 13 44 LEFT 24 13 46

Dynamics Learning

“state” x,
“new state” X,
“action” u,

X 4

ackie oy st fow ot Mo U
Stote {estures \obel Stote (cotwves \obel | Sesured P
suve| one-hot ‘o"\:
LEFT | octions 5 0\
NN | ——— : \ -
; . ; . J
4 1 o L A

% (X, S&N\Nzl) , (X,‘Shmu ’l) , '",(X,‘)M.w)

Q: What kind of models can we train on this data?

Learned Dynamics Can Be “Chained”!
“state” x;
]“new state” X;4q
““action” u;

— : Contoller Xt — Xt-\-\ —)(t+1__9xt+3

—> @ dynamics J / / U / J/

Ut U £+

« Some people call this “thinking”
» Some people call this “dreaming”

wWhy Learn Dynamics?

Q: What does the state look like
after | use the “JUMP” action?

- Using linear regression, | get O(Q"_lf\fé) time to predict a new state
— (d + k) features means | have (d + k) weights
— | predict d different state features

— For complicated games, often faster than running the game
« Rendering, physics handling, relocating objects, computing opponent action, etc.

« Simulation-based control methods can use learned dynamics to
speed up computation [W Y Wy e \;\T}_,j VX T Boess
— e.g. model predictive control (MPC) \lul/)
— Learned dynamics abstracts away the opponent’s strategy! .

7

VTS
oy, e = [g wr wd oW) AL

https://en.wikipedia.org/wiki/Model_predictive_control

Speeding Up Physics Simulations

Subspace Neural Physics: Fast Data-Driven Interactive

Simulation
Daniel Holden Bang Chi Duong
Ubisoft La Forge, Ubisoft Ubisoft La Forge, Ubisoft
Montreal, QC, Canada Montreal, QC, Canada
danielholden@ubisoft.com bangchi.duong.20193@outlook.com

Sayantan Datta Derek Nowrouzezahrai

McGill University McGill University
Montreal, QC, Canada Montreal, QC, Canada

sayantan.datta@mail. megill.ca derek@cim.mcgill.ca

SR L™

Figure 1: Our method simulates deformation effects, including external forces and collisions, 300X to 5000x faster than stan-
dard offline simulation.

« Cloth simulation: notoriously slow
— due to complicated interactions and physical effects

« Learned dynamics: speeds up cloth simulation 5000 times
 Passive dynamics: action is not involved in these applications .,

Speeding Up Physics Simulations

Data-driven Fluid Simulations using Regression Forests

Lubor Ladicky* T SoHyeon qung"‘i' Barbara Solenthaler! Marc Pollefeyst Markus Gross|

ETH Zurich ETH Zurich ETH Zurich ETH Zurich ~ ETHZurich
Disney Research Zurich

Figure 1: The obtained results using our regression forest method, capable of simulating millions of particles in realtime. Our promising
results suggest the applicability of machine learning technigues to physics-based simulations in time-critical settings, where running time
maiters more than the physical exaciness.

 Also applies to fluid simulation!
« Passive dynamics: action is not involved in these applications

summary

Recommender systems: find similar items to recommend
Closest-point problem: the bane of distance-based methods

— Hard to do with lots of features!

Grid-based pruning: use dictionary to speed up distances
Controller Learning: machine learning for game-playing agents
— Reinforcement learning: iterative controller learning based on sample actions

Dynamics Learning: bypass real steps to get approximate steps
— Useful for speeding up simulations

Next time:
— how to make least squares “smarter”

	CPSC 340:�Machine Learning and Data Mining
	In This Bonus Lecture
	Regression-Versions of�classifiers we’ve covered
	Adapting Counting/Distance-Based Methods
	Adapting Counting/Distance-Based Methods
	Adapting Counting/Distance-Based Methods
	Adapting Counting/Distance-Based Methods
	Adapting Counting/Distance-Based Methods
	Adapting Counting/Distance-Based Methods
	Adapting Counting/Distance-Based Methods
	Adapting Counting/Distance-Based Methods
	Adapting Counting/Distance-Based Methods
	Recommender Systems
	Motivation: Product Recommendation
	User-Product Matrix
	Amazon Product Recommendation
	Amazon Product Recommendation
	Amazon Product Recommendation
	Cost of Finding Nearest Neighbours
	Closest-Point Problems
	But first the easy case: “Memorize the Answers”
	Grid-Based Pruning
	“Grid-Based Pruning”
	Grid-Base Pruning for Collisions
	Grid-Based Pruning
	Implementing Grid-Based Pruning
	Grid-Based Pruning
	Grid-Based Pruning
	Grid-Based Pruning
	Grid-Based Pruning Discussion
	Grid-Based Pruning Discussion
	Approximate Nearest Neighbours
	Approximate Nearest Neighbours
	Approximate Nearest Neighbours
	Approximate Nearest Neighbours
	Machine Learning for Games
	Motivation: “AI” in Games
	“Optimal Control”
	Classic Approaches to Gameplay
	Controller Learning
	Toy Example: “Pong”
	Imitation Learning for Pong
	“State Value Function”
	“Action Value Function”
	Action Value Learning for Pong
	What If We Don’t Have Experts?
	Action Value for Optimal Control
	“Reinforcement Learning”
	“Reinforcement Learning”
	Dynamics Learning
	Another Example: “Super Mario Brothers”
	State Representation
	“Dynamics”
	Dynamics Learning
	Dynamics Learning
	Learned Dynamics Can Be “Chained”!
	Why Learn Dynamics?
	Speeding Up Physics Simulations
	Speeding Up Physics Simulations
	Summary

