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In This Lecture
• Regularization Intro (10 minutes)
• L2-regularization (10 minutes)
• L1-regularization (10 minutes)
• Standardization (10 minutes)
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REGULARIZATION INTRO
Coming Up Next

DA

When you don’t regularize your model

(This is probably the MOST important topic in this course)
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“Feature” Selection vs. “Model” Selection?
• Model selection: “which model should I use?”

– KNN vs. decision tree, depth of decision tree, degree of polynomial basis.
• Feature selection: “which features should I use?”

– Using feature 10 or not, using xi2 as part of basis.

• These two tasks are highly-related:
– It’s a different “model” if we add xi2 to linear regression.
– But the xi2 term is just a “feature” that could be “selected” or not.
– Usually, “feature selection” means choosing from some “original” features.

• You could say that “feature” selection is a special case of “model” selection.

Model Selection
Feature 

Selection
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Is It Good to Throw Features Away?
• (Yes/No), because linear regression can overfit with large ‘d’.

– Even though it’s “just” a hyper-plane.

• Consider using d=n, with completely random features.
– With high probability, you will be able to get a training error of 0.
– But the features were random, this is completely overfitting.

• You could view “number of features” as a hyper-parameter.
– Model gets more complex as you add more features.
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Controlling Complexity

• Usually, “true” mapping from xi to yi is complex.
– Might need high-degree polynomial.
– Might need to combine many features, and don’t know “relevant” ones.

• But complex models can overfit.
• So what do we do???

• Our main tools:
– Model averaging: average over multiple models to decrease variance.
– Regularization (today): add a penalty on the complexity of the model. 6



Would you rather?
• Consider the following dataset and 3 linear regression models:

Q: Which one is the “best” model?? 
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Would you rather?
• Consider the following dataset and 3 linear regression models:

• What if you are forced to choose between red and green?
– And assume they have the same training error.

• You should pick green.
– Since slope is smaller, small change in xi has a ____________ in prediction yi.

• Green line’s predictions are (more/less) sensitive to having ‘w’ exactly right.
– Since green ‘w’ is less sensitive to data, test error might be lower. 
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“Regularization”
• “Regularization”: reducing a property of parameters

– e.g. L2-norm of w, L1-norm of w, number of non-zeros in w, etc.
– Optimization must take this term into account when minimizing

• Assumption: we can express our goal as minimizing some quantity.
– for linear models, small norm of w => low complexity

• Naive Bayes with Laplace smoothing: 
an instance of regularization
– reduce heterogeneity of p(xij | yi) to control model complexity
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Size of Regression Weights are Overfitting

• The regression weights wj with degree-7 are huge in this example.
• The degree-7 polynomial would be less sensitive to the data,

if we “regularized” the wj so that they are small.
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L2-REGULARIZATION
Coming Up Next

Should you regularize your model?
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L2-Regularization
• Standard regularization strategy is L2-regularization:

• Intuition: large slopes wj tend to lead to overfitting.

• Objective balances getting low error vs. having small slopes ‘wj’.
– “You can increase the training error if it makes ‘w’ much smaller.”
– Nearly-always reduces overfitting.

– Regularization parameter λ > 0 controls __________of regularization.
• Large λ puts large penalty on slopes.
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L2-Regularization
• Standard regularization strategy is L2-regularization:

• In terms of fundamental trade-off:
– Regularization (increases/decreases) training error.
– Regularization (increases/decreases) approximation error.

• How should you choose λ?
– Theory: as ‘n’ grows λ should be in the range O(1) to (√n).
– Practice: optimize validation error or cross-validation error.

• This almost always decreases the test error.

Q: Does this mean 
optimization bias is not a problem anymore? 13



L2-Regularization “Shrinking” Example
• Solution to a “least squares with L2-regularization” for different λ:

• We get least squares with λ = 0.
– But we can achieve similar training error with smaller ||w||.

• ||Xw –y || increases with λ, and ||w|| decreases with λ.
– Though individual wj can increase or decrease with lambda.
– Because we use the L2-norm, the large ones decrease the most.

λ w1 w2 w3 w4 w5
0 -1.88 1.29 -2.63 1.78 -0.63
1 -1.88 1.28 -2.62 1.78 -0.64
4 -1.87 1.28 -2.59 1.77 -0.66
16 -1.84 1.27 -2.50 1.73 -0.73
64 -1.74 1.23 -2.22 1.59 -0.90
256 -1.43 1.08 -1.70 1.18 -1.05
1024 -0.87 0.73 -1.03 0.57 -0.81
4096 -0.35 0.31 -0.42 0.18 -0.36

||Xw – y||2 ||w||2
285.64 15.68
285.64 15.62
285.64 15.43
285.71 14.76
286.47 12.77
292.60 8.60
321.29 3.33
374.27 0.56
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Regularization Path
• Regularization path is a plot of the optimal weights ‘wj’ as ‘λ’ varies:

• Starts with least squares with λ= 0, and wj converge to 0 as λ grows.
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L2-regularized Least Squares Normal Equations
• When using L2-regularized squared error, we can solve for ∇ f(w) = 0.
•

Loss before: 
• Loss after:

• Gradient before: 
• Gradient after:

• Linear system before: 
• Linear system after: 
• But unlike XTX, the matrix (XTX + λI) is always invertible:

– Multiply by its inverse for unique solution:
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Gradient Descent for L2-Regularized Least Squares

• The L2-regularized least squares objective and gradient:

• Gradient descent iterations for L2-regularized least squares:

• Cost of gradient descent iteration is still O(nd).
– Can show number of iterations decrease as λ increases (not obvious).
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Why use L2-Regularization?
• It’s a weird thing to do, but Mark says “always use regularization”.

– “Almost always decreases test error” should already convince you.

• But here are 6 more reasons:
1. Solution ‘w’ is unique. 
2. XTX does not need to be invertible (no collinearity issues).
3. Less sensitive to changes in X or y.
4. Gradient descent converges faster (bigger λ means fewer iterations).
5. Stein’s paradox: if d ≥ 3, ‘shrinking’ moves us closer to ‘true’ w.
6. Worst case: just set λ small and get the same performance.
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Regularizing the y-Intercept?
• Should we regularize the y-intercept?

• No! Why encourage it to be closer to zero? (It could be anywhere.)
– You should be allowed to shift function up/down globally.

• Yes! It makes the solution unique and it easier to compute ‘w’.

• Compromise: regularize by a smaller amount than other features.
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L1-REGULARIZATION
Coming Up Next

20

Lasso, pronounced 
“la sue”



Previously: Search and Score
• We talked about search and score for feature selection:

– Define a “score” and “search” for features with the best score.
• Usual scores count the number of non-zeroes (“L0-norm”):

• But it’s hard to find the ‘w’ minimizing this objective.
• We discussed forward selection, but requires fitting O(__) models.
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Previously: Search and Score
• What if we want to pick among millions or billions of features?

• If ‘d’ is large, forward selection is too slow (A4):
– For least squares, need to fit O(d2) models at cost of O(nd2 + d3).
– Total cost O(nd4 + d5).

• The situation is worse if we aren’t using basic least squares:
– For robust regression, need to run gradient descent O(d2) times.
– With regularization, need to search for lambda O(d2) times. 
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L1-Regularization
• Instead of L0- or L2-norm, consider regularizing by the L1-norm:

• Like L2-norm, it’s convex and improves our test error.
• Like L0-norm, it encourages elements of ‘w’ to be exactly zero.

• L1-regularization simultaneously regularizes and selects features.
– Very fast alternative to search and score.
– Sometimes called “LASSO” regularization.

• least absolute shrinkage and selection operator
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L2-Regularization vs. L1-Regularization
• Regularization path of wj values as ‘λ’ varies:

• L1-Regularization sets values to exactly 0 (WHY?)
24

L2-regularization L1-regularization



Regularizers and Sparsity
• L1-regularization gives sparsity but L2-regularization doesn’t.

– But don’t they both shrink features towards zero?

• What is the penalty for setting wj = 0.00001?

• L0-regularization: penalty of λ.
– A constant penalty for any non-zero value.
– Encourages you to set wj exactly to zero, but otherwise doesn’t care if wj is small or not.

• L2-regularization: penalty of (λ/2)(0.00001)2 = 0.0000000005λ.
– The penalty gets smaller as you get closer to zero.
– The penalty asymptotically vanishes as wj approaches 0 (no incentive for “exact” zeroes).

• L1-regularization: penalty of λ|0.00001| = 0.00001λ.
– The penalty stays is proportional to how far away wj is from zero.
– There is still something to be gained from making a tiny value exactly equal to 0.
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L2-Regularization vs. L1-Regularization
• L2-Regularization:

– Insensitive to changes in data.
– Decreased variance:

• Lower test error.
– Closed-form solution.
– Solution is unique.
– All ‘wj’ tend to be non-zero.
– Can learn with linear number of 

irrelevant features.
• E.g., only O(d) relevant features.

• L1-Regularization:
– Insensitive to changes in data.
– Decreased variance:

• Lower test error.
– Requires iterative solver.
– Solution is not unique.
– Many ‘wj’ tend to be zero.
– Can learn with exponential number of 

irrelevant features.
• E.g., only O(log(d)) relevant features.

Paper on this result by Andrew Ng
26

http://www.andrewng.org/portfolio/feature-selection-l1-vs-l2-regularization-and-rotational-invariance/


L1-Regularization Applications
• Used to give super-resolution in imaging black holes.

– Sparsity arises in a particular basis.

https://iopscience.iop.org/article/10.1088/1742-6596/699/1/012006/pdf 27



L1-loss vs. L1-regularization
• Don’t confuse the L1 loss with L1-regularization!

– L1-loss is robust to outlier data points.
• You can use this instead of removing outliers.

– L1-regularization is robust to irrelevant features.
• You can use this instead of removing features.

• And note that you can be robust to outliers and irrelevant features:

• Can we smooth and use “Huber regularization”?
– Huber regularizer is still robust to irrelevant features.
– But it’s the non-smoothness that sets weights to exactly 0.
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L*-Regularization
• L0-regularization (AIC, BIC, Mallow’s Cp, Adjusted R2, ANOVA):

– Adds penalty on the number of non-zeros to select features.

• L2-regularization (ridge regression):
– Adding penalty on the L2-norm of ‘w’ to decrease overfitting:

• L1-regularization (LASSO):
– Adding penalty on the L1-norm decreases overfitting and selects 

features:
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L0- vs. L1- vs. L2-Regularization
Sparse ‘w’
(Selects
Features)

Speed Unique ‘w’ Coding Effort Irrelevant
Features

L0-Regularization Yes Slow No Few lines Not Sensitive
L1-Regularization Yes* Fast* No 1 line* Not Sensitive
L2-Regularization No Fast Yes 1 line A bit sensitive

• L1-Regularization isn’t as sparse as L0-regularization.
– L1-regularization tends to give more false positives (selects too many).
– And it’s only “fast” and “1 line” with specialized solvers (optimizers.py).

• Cost of L2-regularized least squares is O(nd2 + d3).
– Changes to O(ndt) for ‘t’ iterations of gradient descent (same for L1).

• “Elastic net” (L1- and L2-regularization) is sparse, fast, and unique.
• Using L0+L2 does not give a unique solution.
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Ensemble Feature Selection
• We can also use ensemble methods for feature selection.

– Usually designed to reduce false positives or reduce false negatives.
• False positive: irrelevant feature is selected
• False negative: relevant feature is excluded

• In this case of L1-regularization, we want to reduce false positives.
– Unlike L0-regularization, continuous tension between performance/selection

• “Irrelevant” features can be included before “relevant” wj reach best value.

• A bootstrap approach to reducing false positives:
– Apply the method to bootstrap samples of the training data.
– Only take the features selected in all bootstrap samples.



Ensemble Feature Selection

• Example: bootstrapping plus L1-regularization (“BoLASSO”).
– Reduces false positives.
– It’s possible to show it recovers “correct” features with weaker conditions.

• Can replace “intersection” with “selected frequency” if has false negatives too.



STANDARDIZATION
Coming Up Next
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Features with Different Scales
• Consider continuous features with different scales:

• Should we convert to some standard ‘unit’?
– It doesn’t matter for decision trees or naïve Bayes.

• They only look at one feature at a time.
– It doesn’t matter for least squares:

• wj*(100 mL) gives the same model as wj*(0.1 L) with a different wj.

Egg 
(#)

Milk (mL) Fish (g) Pasta
(cups)

0 250 0 1
1 250 200 1
0 0 0 0.5
2 250 150 0
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Features with Different Scales
• Consider continuous features with different scales:

• Should we convert to some standard ‘unit’?
– It matters for k-nearest neighbours:

• “Distance” will be affected more by large features than small features.
– It matters for regularized least squares:

• Penalizing (wj)2 means different things if features ‘j’ are on different scales.

Egg 
(#)

Milk (mL) Fish (g) Pasta
(cups)

0 250 0 1
1 250 200 1
0 0 0 0.5
2 250 150 0
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Standardizing Features
• It is common to standardize continuous features:

– For each feature:
1. Compute mean and standard deviation:

2. Subtract mean and divide by standard deviation (“z-score”)

– Now changes in ‘wj’ have similar effect for any feature ‘j’.
• How should we standardize test data?

– Wrong approach: use mean and standard deviation of test data.
– Training and test mean and standard deviation might be very different.
– Right approach: use mean and standard deviation of training data.
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Standardizing Features
• It is common to standardize continuous features:

– For each feature:
1. Compute mean and standard deviation:

2. Subtract mean and divide by standard deviation (“z-score”)

– Now changes in ‘wj’ have similar effect for any feature ‘j’.
• If we’re doing 10-fold cross-validation:

– Compute µj and σj based on the 9 training folds (e.g., average over 9/10s of data).
– Standardize the remaining (“validation”) fold with this “training” µj and σj.
– Re-standardize for different folds.
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Standardizing Target
• In regression, we sometimes standardize the targets yi.

– Puts targets on the same standard scale as standardized features:

• With standardized target, setting w = 0 predicts average yi:
– High regularization makes us predict closer to the average value.

• Again, make sure you standardize test data with the training stats.
• Other common transformations of yi are logarithm/exponent:

– Makes sense for geometric/exponential processes. 
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Summary
• Regularization:

– Adding a penalty on model complexity.
• L2-regularization: penalty on L2-norm of regression weights ‘w’.

– Almost always improves test error.
• L1-regularization: penalty on L1-norm of regression weights ‘w’.

– Simultaneous regularization and feature selection.
– Robust to having lots of irrelevant features.

• Feature standardization:
– Change the unit of every feature into “z-score”

• Next time: non-parametric feature transform and linear classifiers
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Review Questions
• Q1: In what ways can standardizing the features help reduce a linear model’s complexity?

• Q2: Why is L1-regularization able to perform feature selection while L2-regularization cannot?

• Q3: Why are we allowed to use (XTX + 𝜆𝜆𝜆𝜆)−1 in the solution to L2-regularized least squares?

• Q4: What happens to colinear features when L1-regularization is used?

• Q5: What parameters are we “learning” for standardization?
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L2-Regularization
• Standard regularization strategy is L2-regularization:

• Equivalent to minimizing squared 
error but keeping L2-norm small.
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Regularization/Shrinking Paradox
• We throw darts at a target:

– Assume we don’t always hit the exact center.
– Assume the darts follow a symmetric pattern 

around center. 
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Regularization/Shrinking Paradox
• We throw darts at a target:

– Assume we don’t always hit the exact center.
– Assume the darts follow a symmetric pattern 

around center. 
• Shrinkage of the darts :

1. Choose some arbitrary location ‘0’.
2. Measure distances from darts to ‘0’.
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Regularization/Shrinking Paradox
• We throw darts at a target:

– Assume we don’t always hit the exact center.
– Assume the darts follow a symmetric pattern 

around center. 
• Shrinkage of the darts :

1. Choose some arbitrary location ‘0’.
2. Measure distances from darts to ‘0’.
3. Move misses towards ‘0’, by small

amount proportional to distance from 0.
• If small enough, darts will be closer to center on average.
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Regularization/Shrinking Paradox
• We throw darts at a target:

– Assume we don’t always hit the exact center.
– Assume the darts follow a symmetric pattern 

around center. 
• Shrinkage of the darts :

1. Choose some arbitrary location ‘0’.
2. Measure distances from darts to ‘0’.
3. Move misses towards ‘0’, by small

amount proportional to distance from 0.
• If small enough, darts will be closer to center on average.

Visualization of the related higher-dimensional paradox that the mean of data coming from a Gaussian 
is not the best estimate of the mean of the Gaussian in 3-dimensions or higher: https://www.naftaliharris.com/blog/steinviz45

https://www.naftaliharris.com/blog/steinviz
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