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In This Lecture
• Regularization Intro (10 minutes)
• L2-regularization (10 minutes)
• L1-regularization (10 minutes)
• Standardization (10 minutes)
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REGULARIZATION INTRO
Coming Up Next

DA

When you don’t regularize your model

(This is probably the MOST important topic in this course)
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“Feature” Selection vs. “Model” Selection?
• Model selection: “which model should I use?”

– KNN vs. decision tree, depth of decision tree, degree of polynomial basis.
• Feature selection: “which features should I use?”

– Using feature 10 or not, using xi2 as part of basis.

• These two tasks are highly-related:
– It’s a different “model” if we add xi2 to linear regression.
– But the xi2 term is just a “feature” that could be “selected” or not.
– Usually, “feature selection” means choosing from some “original” features.

• You could say that “feature” selection is a special case of “model” selection.

Model Selection
Feature 

Selection
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Is It Good to Throw Features Away?
• (Yes/No), because linear regression can overfit with large ‘d’.

– Even though it’s “just” a hyper-plane.

• Consider using d=n, with completely random features.
– With high probability, you will be able to get a training error of 0.
– But the features were random, this is completely overfitting.

• You could view “number of features” as a hyper-parameter.
– Model gets more complex as you add more features.
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Controlling Complexity

• Usually, “true” mapping from xi to yi is complex.
– Might need high-degree polynomial.
– Might need to combine many features, and don’t know “relevant” ones.

• But complex models can overfit.
• So what do we do???

• Our main tools:
– Model averaging: average over multiple models to decrease variance.
– Regularization (today): add a penalty on the complexity of the model. 6



Would you rather?
• Consider the following dataset and 3 linear regression models:

Q: Which one is the “best” model?? 
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Would you rather?
• Consider the following dataset and 3 linear regression models:

• What if you are forced to choose between red and green?
– And assume they have the same training error.

• You should pick green.
– Since slope is smaller, small change in xi has a ____________ in prediction yi.

• Green line’s predictions are (more/less) sensitive to having ‘w’ exactly right.
– Since green ‘w’ is less sensitive to data, test error might be lower. 
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“Regularization”
• “Regularization”: reducing a property of parameters

– e.g. L2-norm of w, L1-norm of w, number of non-zeros in w, etc.
– Optimization must take this term into account when minimizing

• Assumption: we can express our goal as minimizing some quantity.
– for linear models, small norm of w => low complexity

• Naive Bayes with Laplace smoothing: 
an instance of regularization
– reduce heterogeneity of p(xij | yi) to control model complexity
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Size of Regression Weights are Overfitting

• The regression weights wj with degree-7 are huge in this example.
• The degree-7 polynomial would be less sensitive to the data,

if we “regularized” the wj so that they are small.
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L2-REGULARIZATION
Coming Up Next

Should you regularize your model?
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L2-Regularization
• Standard regularization strategy is L2-regularization:

• Intuition: large slopes wj tend to lead to overfitting.

• Objective balances getting low error vs. having small slopes ‘wj’.
– “You can increase the training error if it makes ‘w’ much smaller.”
– Nearly-always reduces overfitting.

– Regularization parameter λ > 0 controls __________of regularization.
• Large λ puts large penalty on slopes.
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L2-Regularization
• Standard regularization strategy is L2-regularization:

• In terms of fundamental trade-off:
– Regularization (increases/decreases) training error.
– Regularization (increases/decreases) approximation error.

• How should you choose λ?
– Theory: as ‘n’ grows λ should be in the range O(1) to (√n).
– Practice: optimize validation error or cross-validation error.

• This almost always decreases the test error.

Q: Does this mean 
optimization bias is not a problem anymore? 13



L2-Regularization “Shrinking” Example
• Solution to a “least squares with L2-regularization” for different λ:

• We get least squares with λ = 0.
– But we can achieve similar training error with smaller ||w||.

• ||Xw –y || increases with λ, and ||w|| decreases with λ.
– Though individual wj can increase or decrease with lambda.
– Because we use the L2-norm, the large ones decrease the most.

λ w1 w2 w3 w4 w5
0 -1.88 1.29 -2.63 1.78 -0.63
1 -1.88 1.28 -2.62 1.78 -0.64
4 -1.87 1.28 -2.59 1.77 -0.66
16 -1.84 1.27 -2.50 1.73 -0.73
64 -1.74 1.23 -2.22 1.59 -0.90
256 -1.43 1.08 -1.70 1.18 -1.05
1024 -0.87 0.73 -1.03 0.57 -0.81
4096 -0.35 0.31 -0.42 0.18 -0.36

||Xw – y||2 ||w||2
285.64 15.68
285.64 15.62
285.64 15.43
285.71 14.76
286.47 12.77
292.60 8.60
321.29 3.33
374.27 0.56
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Regularization Path
• Regularization path is a plot of the optimal weights ‘wj’ as ‘λ’ varies:

• Starts with least squares with λ= 0, and wj converge to 0 as λ grows.
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L2-regularized Least Squares Normal Equations
• When using L2-regularized squared error, we can solve for ∇ f(w) = 0.
•

Loss before: 
• Loss after:

• Gradient before: 
• Gradient after:

• Linear system before: 
• Linear system after: 
• But unlike XTX, the matrix (XTX + λI) is always invertible:

– Multiply by its inverse for unique solution:
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Gradient Descent for L2-Regularized Least Squares

• The L2-regularized least squares objective and gradient:

• Gradient descent iterations for L2-regularized least squares:

• Cost of gradient descent iteration is still O(nd).
– Can show number of iterations decrease as λ increases (not obvious).
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Why use L2-Regularization?
• It’s a weird thing to do, but Mark says “always use regularization”.

– “Almost always decreases test error” should already convince you.

• But here are 6 more reasons:
1. Solution ‘w’ is unique. 
2. XTX does not need to be invertible (no collinearity issues).
3. Less sensitive to changes in X or y.
4. Gradient descent converges faster (bigger λ means fewer iterations).
5. Stein’s paradox: if d ≥ 3, ‘shrinking’ moves us closer to ‘true’ w.
6. Worst case: just set λ small and get the same performance.
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Regularizing the y-Intercept?
• Should we regularize the y-intercept?

• No! Why encourage it to be closer to zero? (It could be anywhere.)
– You should be allowed to shift function up/down globally.

• Yes! It makes the solution unique and it easier to compute ‘w’.

• Compromise: regularize by a smaller amount than other features.
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L1-REGULARIZATION
Coming Up Next

20

Lasso, pronounced 
“la sue”



Previously: Search and Score
• We talked about search and score for feature selection:

– Define a “score” and “search” for features with the best score.
• Usual scores count the number of non-zeroes (“L0-norm”):

• But it’s hard to find the ‘w’ minimizing this objective.
• We discussed forward selection, but requires fitting O(__) models.
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Previously: Search and Score
• What if we want to pick among millions or billions of features?

• If ‘d’ is large, forward selection is too slow (A4):
– For least squares, need to fit O(d2) models at cost of O(nd2 + d3).
– Total cost O(nd4 + d5).

• The situation is worse if we aren’t using basic least squares:
– For robust regression, need to run gradient descent O(d2) times.
– With regularization, need to search for lambda O(d2) times. 
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L1-Regularization
• Instead of L0- or L2-norm, consider regularizing by the L1-norm:

• Like L2-norm, it’s convex and improves our test error.
• Like L0-norm, it encourages elements of ‘w’ to be exactly zero.

• L1-regularization simultaneously regularizes and selects features.
– Very fast alternative to search and score.
– Sometimes called “LASSO” regularization.

• least absolute shrinkage and selection operator
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L2-Regularization vs. L1-Regularization
• Regularization path of wj values as ‘λ’ varies:

• L1-Regularization sets values to exactly 0 (WHY?)
24

L2-regularization L1-regularization



Regularizers and Sparsity
• L1-regularization gives sparsity but L2-regularization doesn’t.

– But don’t they both shrink features towards zero?

• What is the penalty for setting wj = 0.00001?

• L0-regularization: penalty of λ.
– A constant penalty for any non-zero value.
– Encourages you to set wj exactly to zero, but otherwise doesn’t care if wj is small or not.

• L2-regularization: penalty of (λ/2)(0.00001)2 = 0.0000000005λ.
– The penalty gets smaller as you get closer to zero.
– The penalty asymptotically vanishes as wj approaches 0 (no incentive for “exact” zeroes).

• L1-regularization: penalty of λ|0.00001| = 0.00001λ.
– The penalty stays is proportional to how far away wj is from zero.
– There is still something to be gained from making a tiny value exactly equal to 0.
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L2-Regularization vs. L1-Regularization
• L2-Regularization:

– Insensitive to changes in data.
– Decreased variance:

• Lower test error.
– Closed-form solution.
– Solution is unique.
– All ‘wj’ tend to be non-zero.
– Can learn with linear number of 

irrelevant features.
• E.g., only O(d) relevant features.

• L1-Regularization:
– Insensitive to changes in data.
– Decreased variance:

• Lower test error.
– Requires iterative solver.
– Solution is not unique.
– Many ‘wj’ tend to be zero.
– Can learn with exponential number of 

irrelevant features.
• E.g., only O(log(d)) relevant features.

Paper on this result by Andrew Ng
26

http://www.andrewng.org/portfolio/feature-selection-l1-vs-l2-regularization-and-rotational-invariance/


L1-Regularization Applications
• Used to give super-resolution in imaging black holes.

– Sparsity arises in a particular basis.

https://iopscience.iop.org/article/10.1088/1742-6596/699/1/012006/pdf 27



L1-loss vs. L1-regularization
• Don’t confuse the L1 loss with L1-regularization!

– L1-loss is robust to outlier data points.
• You can use this instead of removing outliers.

– L1-regularization is robust to irrelevant features.
• You can use this instead of removing features.

• And note that you can be robust to outliers and irrelevant features:

• Can we smooth and use “Huber regularization”?
– Huber regularizer is still robust to irrelevant features.
– But it’s the non-smoothness that sets weights to exactly 0.
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L*-Regularization
• L0-regularization (AIC, BIC, Mallow’s Cp, Adjusted R2, ANOVA):

– Adds penalty on the number of non-zeros to select features.

• L2-regularization (ridge regression):
– Adding penalty on the L2-norm of ‘w’ to decrease overfitting:

• L1-regularization (LASSO):
– Adding penalty on the L1-norm decreases overfitting and selects 

features:
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L0- vs. L1- vs. L2-Regularization
Sparse ‘w’
(Selects
Features)

Speed Unique ‘w’ Coding Effort Irrelevant
Features

L0-Regularization Yes Slow No Few lines Not Sensitive
L1-Regularization Yes* Fast* No 1 line* Not Sensitive
L2-Regularization No Fast Yes 1 line A bit sensitive

• L1-Regularization isn’t as sparse as L0-regularization.
– L1-regularization tends to give more false positives (selects too many).
– And it’s only “fast” and “1 line” with specialized solvers (optimizers.py).

• Cost of L2-regularized least squares is O(nd2 + d3).
– Changes to O(ndt) for ‘t’ iterations of gradient descent (same for L1).

• “Elastic net” (L1- and L2-regularization) is sparse, fast, and unique.
• Using L0+L2 does not give a unique solution.
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Ensemble Feature Selection
• We can also use ensemble methods for feature selection.

– Usually designed to reduce false positives or reduce false negatives.
• False positive: irrelevant feature is selected
• False negative: relevant feature is excluded

• In this case of L1-regularization, we want to reduce false positives.
– Unlike L0-regularization, continuous tension between performance/selection

• “Irrelevant” features can be included before “relevant” wj reach best value.

• A bootstrap approach to reducing false positives:
– Apply the method to bootstrap samples of the training data.
– Only take the features selected in all bootstrap samples.



Ensemble Feature Selection

• Example: bootstrapping plus L1-regularization (“BoLASSO”).
– Reduces false positives.
– It’s possible to show it recovers “correct” features with weaker conditions.

• Can replace “intersection” with “selected frequency” if has false negatives too.



Summary
• Regularization:

– Adding a penalty on model complexity.
• L2-regularization: penalty on L2-norm of regression weights ‘w’.

– Almost always improves test error.
• L1-regularization: penalty on L1-norm of regression weights ‘w’.

– Simultaneous regularization and feature selection.
– Robust to having lots of irrelevant features.

• Feature standardization:
– Change the unit of every feature into “z-score”

• Next time: non-parametric feature transform and linear classifiers
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Review Questions
• Q1: In what ways can standardizing the features help reduce a linear model’s complexity?

• Q2: Why is L1-regularization able to perform feature selection while L2-regularization cannot?

• Q3: Why are we allowed to use (XTX + 𝜆𝜆𝜆𝜆)−1 in the solution to L2-regularized least squares?

• Q4: What happens to colinear features when L1-regularization is used?

• Q5: What parameters are we “learning” for standardization?
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L2-Regularization
• Standard regularization strategy is L2-regularization:

• Equivalent to minimizing squared 
error but keeping L2-norm small.
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Regularization/Shrinking Paradox
• We throw darts at a target:

– Assume we don’t always hit the exact center.
– Assume the darts follow a symmetric pattern 

around center. 
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Regularization/Shrinking Paradox
• We throw darts at a target:

– Assume we don’t always hit the exact center.
– Assume the darts follow a symmetric pattern 

around center. 
• Shrinkage of the darts :

1. Choose some arbitrary location ‘0’.
2. Measure distances from darts to ‘0’.
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Regularization/Shrinking Paradox
• We throw darts at a target:

– Assume we don’t always hit the exact center.
– Assume the darts follow a symmetric pattern 

around center. 
• Shrinkage of the darts :

1. Choose some arbitrary location ‘0’.
2. Measure distances from darts to ‘0’.
3. Move misses towards ‘0’, by small

amount proportional to distance from 0.
• If small enough, darts will be closer to center on average.
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Regularization/Shrinking Paradox
• We throw darts at a target:

– Assume we don’t always hit the exact center.
– Assume the darts follow a symmetric pattern 

around center. 
• Shrinkage of the darts :

1. Choose some arbitrary location ‘0’.
2. Measure distances from darts to ‘0’.
3. Move misses towards ‘0’, by small

amount proportional to distance from 0.
• If small enough, darts will be closer to center on average.

Visualization of the related higher-dimensional paradox that the mean of data coming from a Gaussian 
is not the best estimate of the mean of the Gaussian in 3-dimensions or higher: https://www.naftaliharris.com/blog/steinviz39

https://www.naftaliharris.com/blog/steinviz


Regularizers and Sparsity
• L1-regularization gives sparsity but L2-regularization doesn’t.

– But don’t they both shrink variables to zero?
• Consider problem where 3 vectors can get minimum training error:

• Without regularization, we could choose any of these 3.
– They all have same error, so regularization will “break tie”.

• With L0-regularization, we would choose w2:
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Regularizers and Sparsity
• L1-regularization gives sparsity but L2-regularization doesn’t.

– But don’t they both shrink variables to zero?
• Consider problem where 3 vectors can get minimum training error:

• With L2-regularization, we would choose w3:

• L2-regularization focuses on decreasing largest (makes wj similar).
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Regularizers and Sparsity
• L1-regularization gives sparsity but L2-regularization doesn’t.

– But don’t they both shrink variables to zero?
• Consider problem where 3 vectors can get minimum training error:

• With L1-regularization, we would choose w2:

• L1-regularization focuses on decreasing all wj until they are 0.
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Sparsity and Least Squares
• Consider 1D least squares objective:

• This is a convex 1D quadratic function of ‘w’ (i.e., a parabola):

• This variable does not look relevant (minimum is close to 0).
– But for finite ‘n’ the minimum is unlikely to be exactly zero.
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Sparsity and L0-Regularization
• Consider 1D L0-regularized least squares objective:

• This is a convex 1D quadratic function but with a discontinuity at 0:

• L0-regularized minimum is often exactly at the ‘discontinuity’ at 0:
– Sets the feature to exactly 0 (does feature selection), but is non-convex.
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Sparsity and L2-Regularization
• Consider 1D L2-regularized least squares objective:

• This is a convex 1D quadratic function of ‘w’ (i.e., a parabola):

• L2-regularization moves it closer to zero, but not all the way to zero.
– It doesn’t do feature selection (“penalty goes to 0 as slope goes to 0”).
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Sparsity and L1-Regularization
• Consider 1D L1-regularized least squares objective:

• This is a convex piecwise-quadratic function of ‘w’ with ‘kink’ at 0:

• L1-regularization tends to set variables to exactly 0 (feature selection).
– Penalty on slope is 𝜆𝜆 even if you are close to zero.
– Big 𝜆𝜆 selects few features, small 𝜆𝜆 allows many features.
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Sparsity and Regularization (with d=1)
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Why doesn’t L2-Regularization set variables to 0?

• Consider an L2-regularized least squares problem with 1 feature:

• Let’s solve for the optimal ‘w’:

• So as λ gets bigger, ‘w’ converges to 0.
• However, for all finite λ ‘w’ will be non-zero unless yTx = 0 exactly.

– But it’s very unlikely that yTx will be exactly zero.
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Why doesn’t L2-Regularization set variables to 0?

• Small 𝜆𝜆 Big 𝜆𝜆

• Solution further from zero Solution closer to zero
(but not exactly 0)
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Why does L1-Regularization set things to 0?
• Consider an L1-regularized least squares problem with 1 feature:

• If (w = 0), then “left” limit and “right“ limit are given by:

• So which direction should “gradient descent” go in?
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Why does L1-Regularization set things to 0?
• Small λ Big λ

• Solution nonzero Solution exactly 
zero
(minimum of left parabola is past origin, but right parabola is not) (minimum of both parabola 

are past the origin)
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L2-regularization vs. L1-regularization
• So with 1 feature:

– L2-regularization only sets ‘w’ to 0 if yTx = 0.
• There is a only a single possible yTx value where the variable gets set to zero.
• And λ has nothing to do with the sparsity.

– L1-regularization sets ‘w’ to 0 if |yTx| ≤ λ.
• There is a range of possible yTx values where the variable gets set to zero.
• And increasing λ increases the sparsity since the range of yTx grows.

• Note that it’s important that the function is non-differentiable:
– Differentiable regularizers penalizing size would need yTx = 0 for sparsity.
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L1-Loss vs. Huber Loss
• The same reasoning tells us the difference between the L1 *loss* and the 

Huber loss. They are very similar in that they both grow linearly far away 
from 0. So both are both robust but…
– With the L1 loss the model often passes exactly through some points.
– With Huber the model doesn’t necessarily pass through any points.

• Why? With L1-regularization we were causing the elements of ’w’ to be 
exactly 0. Analogously, with the L1-loss we cause the elements of ‘r’ (the 
residual) to be exactly zero. But zero residual for an example means you 
pass through that example exactly.
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Non-Uniqueness of L1-Regularized Solution
• How can L1-regularized least squares solution not be unique?

– Isn’t it convex?
• Convexity implies that minimum value of f(w) is unique (if exists),

but there may be multiple ‘w’ values that achieve the minimum.

• Consider L1-regularized least squares with d=2, where feature 2 is a copy of a feature 1. For a 
solution (w1,w2) we have:

• So we can get the same squared error with different w1 and w2 values that have the same 
sum. Further, if neither w1 or w2 changes sign, then |w1| + |w2| will be the same so the new w1
and w2 will be a solution.
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Splines in 1D
• For 1D interpolation, alternative to polynomials/RBFs are splines:

– Use a polynomial in the region between each data point.
– Constrain some derivatives of the polynomials to yield a unique solution.

• Most common example is cubic spline: 
– Use a degree-3 polynomial between each pair of points.
– Enforce that f’(x) and f’’(x) of polynomials agree at all point.
– “Natural” spline also enforces f’’(x) = 0 for smallest and largest x.

• Non-trivial fact: natural cubic splines are sum of:
– Y-intercept.
– Linear basis.
– RBFs with g(ε) = ε3.

• Different than Gaussian RBF because it increases with distance.

55http://www.physics.arizona.edu/~restrepo/475A/Notes/sourcea-/node35.html



Splines in Higher Dimensions
• Splines generalize to higher dimensions if data lies on a grid.

– Many methods exist for grid-structured data (linear, cubic, splines, etc.).
– For more general (“scattered”) data, there isn’t a natural generalization.

• Common 2D “scattered” data interpolation is thin-plate splines:
– Based on curve made when bending sheets of metal.
– Corresponds to RBFs with g(ε) = ε2 log(ε).

• Natural splines and thin-plate splines: special cases of “polyharmonic” splines:
– Less sensitive to parameters than Gaussian RBF.

56http://step.polymtl.ca/~rv101/thinplates/



L2-Regularization vs. L1-Regularization
• L2-regularization conceptually restricts ‘w’ to a ball.

57



L2-Regularization vs. L1-Regularization
• L2-regularization conceptually restricts ‘w’ to a ball.

• L1-regularization restricts to the L1 “ball”:
– Solutions tend to be at corners where wj are zero.

58Related Infinite Series 

https://www.youtube.com/watch?v=ineO1tIyPfM&t=596s


L1-Regularization as a Feature Selection Method
• Advantages:

– Deals with conditional independence (if linear).
– Sort of deals with collinearity:

• Picks at least one of “mom” and “mom2”.
– Very fast with specialized algorithms.

• Disadvantages:
– Tends to give false positives (selects too many variables).

• Neither good nor bad:
– Does not take small effects.
– Says “gender” is relevant if we know “baby”.
– Good for prediction if we want fast training and don’t care 

about having some irrelevant variables included.



“Elastic Net”: L2- and L1-Regularization
• To address non-uniqueness, some authors use L2- and L1-:

• Called “elastic net” regularization.
– Solution is sparse and unique.
– Slightly better with feature dependence: 

• Selects both “mom” and “mom2”.

• Optimization is easier though still non-differentiable.



L1-Regularization Debiasing and Filtering
• To remove false positives, some authors add a debiasing step:

– Fit ‘w’ using L1-regularization.
– Grab the non-zero values of ‘w’ as the “relevant” variables.
– Re-fit relevant ‘w’ using least squares or L2-regularized least squares.

• A related use of L1-regularization is as a filtering method:
– Fit ‘w’ using L1-regularization.
– Grab the non-zero values of ‘w’ as the “relevant” variables.
– Run standard (slow) variable selection restricted to relevant variables.

• Forward selection, exhaustive search, stochastic local search, etc.



Non-Convex Regularizers
• Regularizing |wj|2 selects all features.
• Regularizing |wj| selects fewer, but still has many false positives.
• What if we regularize |wj|1/2 instead?

• Minimizing this objective would lead to fewer false positives.
– Less need for debiasing, but it’s not convex and hard to minimize.

• There are many non-convex regularizers with similar properties.
– L1-regularization is (basically) the “most sparse” convex regularizer.
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