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Machine Learning and Data Mining

Non-Parametric Feature Transforms
Summer 2021



Admin

« Midterm is tomorrow.

— Manually-graded portion on Gradescope
« 55 minutes
« Handwritten or typeset

— Auto-graded potion on Canvas
* 45 minutes
» Multiple choice

— The two portions are equally weighted

 Please don’t ask broad questions on Piazza tomorrow
— If you have issues with exams, etc., make a private post

« Assignment 4 is due Monday, June 7, 2021



In This Lecture

1. Standardization (5 minutes)
2. Gaussian RBF (20 minutes)
3. Linear Classifiers Intro (20 minutes)



Last Time: Regularization

LO-regularization (AIC, BIC, Mallow’s Cp, Adjusted R%, ANOVA):
— Adds penalty on the number of non-zeros to select features.

()= D=yl + Al

L2-regularization (ridge regression):
— Adding penalty on the L2-norm of ‘w’ to decrease overfitting:

Flo)= =yl + 24,2

L1-regularization (LASSO):
— Adding penalty on the L1-norm decreases overfitting and selects features:

][\(W>: “Xw‘yul"' ;)/'wu;



STANDARDIZATION



Features with Different Scales

e Consider continuous features with different scales:

Egg (#) | Milk (mL) Fish (g)
0 250 0 1

1 250 200 1
0 0 0 0.5
2 250 150 0

« Should we convert to some standard ‘unit’?
— It doesn’t matter for decision trees or naive Bayes.
- They only look at one feature at a time.
— It doesn’t matter for least squares:
* w;*(100 mL) gives the same model as w;*(0.1 L) with a different w;.



Features with Different Scales

e Consider continuous features with different scales:

Egg (#) | Milk (mL) Fish (g)
0 250 0 1

1 250 200 1
0 0 0 0.5
2 250 150 0

« Should we convert to some standard ‘unit’?
— It matters for k-nearest neighbours:
- “Distance” will be affected more by large features than small features.

— It matters for regularized least squares:
- Penalizing (w))* means different things if features ‘j’ are on different scales.



Standardizing Features

-~
—

e It is common to standardize continuous features: -

— For each feature: a\verqic of
1. Compute mean and standard deviation: K column 5
( ) )
Xi;~M;

—'Zx @,

2. Subtract mean and divide by standard deviation (“z-score")

Replace X ith XA

&;

— Now changes in ‘w;" have similar effect for any feature ‘j'.
« How should we standardize test data?
— Wrong approach: use mean and standard deviation of test data.
— Training and test mean and standard deviation might be very different.
— Right approach: use mean and standard deviation of training data.



Standardizing Features

-~
—

« It is common to standardize continuous features: -

— For each feature: a\ver«47e of
1. Compute mean and standard deviation: K column 5
( ) )
Xi;~M;

-'Zx @,

2. Subtract mean and divide by standard deviation (“z-score")

Replace X ith XA

&;

— Now changes in ‘w;" have similar effect for any feature ‘j'.
- If we're doing 10-fold cross-validation:
— Compute M; and o; based on the 9 training folds (e.g., average over 9/10s of data).
— Standardize the remaining (“validation”) fold with this “training” W; and o;.
— Re-standardize for different folds.



Standardizing Target

In regression, we sometimes standardize the targets vy..
— Puts targets on the same standard scale as standardized features:

Ref’l““— >/i wiTh )/i —~ Ay

%

With standardized target, setting w = 0 predicts __
— High regularization makes us predict closer to the average value.

Again, make sure you standardize test data with the training stats.

Other common transformations of y; are logarithm/exponent:

Use l"ﬂ(YJ or 5)(r (A'/y,)

— Makes sense for geometric/exponential processes.
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GAUSSIAN RADIAL BASIS FUNCTION



Weighted Sum of “Basis Functions”

- Features for linear models with “change of basis” are functions

“basis function” -‘\._J : |Kﬁ l&

5| = \;\)o-‘:a(xi\{. w‘.‘:&('.\-t. WJ’;‘XiH' --- 4 N‘}P(X.) “on-the-fly” transformation
1 2 3 P | .
3‘ - \‘12 + \lzz 1 \/32 + - + VF\.\Z ‘ “offline” transformation

- We've been using linear models with polynomial bases:

7‘: WOEJrW,A/ "'Wz_’] + W;E +W/T

' | Xil (Y“ )z Xu )} ( X"I)H

Weighted sum of basis functions




Parametric vs. Non-Parametric Transforms

- We've been using linear models with polynomial bases:

y;:WoEJ—W"/ +%m+%E +u{,@

—

, | Xi (Y A >(,, ( X"I)H

 But polynomials are not the only possible bases:
— Exponentials, logarithms, trigonometric functions, etc.
— The right basis will vastly improve performance.
— If we use the wrong basis, our accuracy is limited even with lots of data.
— But the right basis may not be obvious.
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Parametric vs. Non-Parametric Transforms

« Alternative: non-parametric bases:
— Size of basis (number of features) grows with ‘n’.
— Model gets more complicated as you get more data.

— Can model complicated functions where you don’t know the right basis.
- With enough data.
— Classic example is “Gaussian RBFs” (“Gaussian” == “normal distribution”).

yi = Wol: +V":B t WJB * ng —WHB

Weighted sum of basis functions




“Local Bumps”

“basis function” -F' : IKﬁ ‘K , i'-'- ‘,1, v, N

« Gaussian RBF’s basis functions are ‘“local bumps”
— Each training example xi defines its own Local bump
— d=1: bell-curve centered at X;

>

-F(Xi) =1

Q: How many local bumps are there?




Gaussian RBFs: A Sum of “Bumps”

= wf ]+ e[T] +w [S] U]
I

\_

\/—

‘)0'7"0"’\"”" basis repr tsenls Function as sum of 3%«’ Po(ynom}qf;,
- +
W"‘b +w,{5 ’ + Wzlgg WﬁE} '}V"E
_/

N |

Gﬂmssiam R‘}Vs rc‘sresen’r ?vwoii\’n aS Sum m(‘ lg{gl /’Lumfs

Q: How do we predict y; for a test example Xx;?




Prediction with Gaussian RBF Regression

y= woh twp] S R

. £ ) £ 1,00 £,06) £,6)
X| ‘
; I B0+ W (L0 Wybyl14)
Gi= WA + W) + Wada 0+ Wt 14D+ Wy
um W 3 \owv\ u
b\:::ﬂlo \J;x‘:; ‘\‘DSco:eq: \D“Seo‘:e . SCOSQ "

« Prediction is weighted combination of “bump scores”
 These “bump scores” are defined by training examples

— ah instance of “learned features”
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“Change of Basis” for Gaussian RBFs

\:umr SCore

ezo'\ Xi\ [ based on X; (ewmde )

<&\
“ xi'%s
= __% bump score
‘\ 1 \QOSEA on X.\

ReF "
1 "'eortwes

Q: Why are there 1s on the diagonal?

Q: Does polynomial basis give us “learned features” too?

-2 |
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Gaussian RBFs: Universal Approximator

« Gaussian RBFs are universal approximators (compact subets of RY)
— Enough bumps can approximate any continuous function to arbitrary precision.
— Achieve optimal test error as ‘n’ goes to infinity.



Visualizing RBF Regression

« To predict y; from %,
A 1. get f; values (heights) from curves
2. add them together

e At %(X)
L
X1 X X5 X

G= LMo + LE) + LRE
4= LA + LEG) * LK

' Q: What happens if these change?
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Visualizing RBF Regression

« To predict y; from %,
1. get f; values (heights) from curves
2. add them together

£

Q: What do we predict when %; is far
away from other examples?

21



Gaussian RBFs: A Sum of “Bumps”

« More-realistic version (green is regression line, red is each basis):

. v : File Edit View Insert Tools Desktop Window Help >
File Edit View Insert Tools Desktop Window Help E — ‘ TR .
NEEAS AN ODR LG 0E D NEde h AU RL-C 08B aD

Polynomial Basis with Degree 5 0 Gaussian RBFs with Sigma=0.500000

S T e iR o
C SR T i
4 = e i

e T

B 05
2_
-1
1 -
0L A5}

.F.Gws*g}m MF: \
Q\\,wom‘mlg \ &;s on ”Pust::n(i "f

—eal O ko don' 4,
? °  obwmt whyt L\aﬁmg 5 o it dyiq 5

Nea g) and are won k (C}’ fo 20 ey
df>e¢[9{>s of ({a‘fmy fron M)
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GAUSSIAN RBF
IN HIGHER DIMENSIONS



HX'\_XL“

distonce (Xi, X2)

Recall: Distance

Q( —X1) = —XL\\

L Q("’Xh/\/\ o\\smoe,(X X1)

Feature space
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Gaussian RBFs: Formal Detaills

What is a radial basis functions (RBFs)?
— A set of non-parametric bases that depend on distances to training points.

Replace x> o tey k) wilh  z= (wisxll/))g(ll xi“lel)), . )7(//4—‘)/,\//))

A Fo G fwos Y /

h Feq’/wrej

— Have ‘n’ features, with feature ‘)’ depending on distance to example ‘.
« Typically the feature will decrease as the distance increases:

3(”x,*x;//)

— I
xl X)
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Gaussian RBFs: Formal Detaills

 What is a radial basis functions (RBFs)?
— Most common choice of ‘g’ is Gaussian RBF:

9 R— 'K 3(63 = exp (“ ’F)

1
.~ I
xl X)

Q: What does g(e) look like if o is small?
What does it look like if o is large?
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o and Curve width

« How does ¢ affect the model complexity?

— As o increases, the model complexity
(increases/decreases)

- Low sensitivity to change in feature values
=> low complexity of model

o=10.0
27



Gaussian RBFs: Formal Detaills

 What is a radial basis functions (RBFs)?
— The training and testing matrices when using RBFs:

chlq(e X::

To MQ/@ P{eJlLfiorﬁ on X::’

r

- S,

\

——

4

—
—

—~—/
d

by 2 -

—

CoUlxxll) Ulyal) - 9(lu, ~xll)
9(“&-,(//7 3(”11')(1/’7'”' 9(,”)(2")(,‘”)

: T /
L 9(”x,,'x.”) () - 9(")(,,7“//)

" 7

-

5 =) N r__ n .—-}
t Wse 2 =
- U-x) ¢ Nowber of

! fe«fu/&"

L— W‘L/ s Nnumber
"\ of

fra; n M9 (’xar\r/ei



Non-Parametric Basis: RBFs

 Least squares with Gaussian RBFs for different o values:

1)

0

1.5

1.5}

-2

-2

iy

CO\AU G(Jc‘ @_ﬁj le, 'I'nfar ‘oaslsl

b — oy, Al - gL~ xall)

| — ) — ‘

- | —x— S f

Q: What do we predict when %; is far
away from other examples?




RBFs and Regularization

Gaussian Radial basis functions (RBFs) predictions:
N

fi= w2+ merp (- P2 )1 s

_ % 1 v |
— X- .
= WJ {f(. 202 >
3! ¢

— Flexible bases that can model any continuous function.
— But with ‘n’ data points RBFs have ‘n’ basis functions.

How do we avoid overfitting with this huge number of features?
— We regularize ‘w’ and use validation error to choose o and A

”)(i" /,‘//

2 44

)
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RBFs, Regularization, and Validation

A model that is hard to beat:

— RBF basis with L2-regularization and cross-validation to choose o and A
— Flexible non-parametric basis, magic of regularization, and tuning for test error.

’FO( cach valie of % and @ '
- (,omrvdﬂ Z On 7er'm,'m data (O,V]J (;) )

- (OM‘W\*P ‘09}’/' \/ Vi (Z Z'f'/,) ’) Z \/ 8 -
— Cmv»rv\fe 2 on vqqu%Of‘ <‘7L (wvu) 7wah7 1 e . -

/1, Jufo. ol()*anmf ':.;'" ":' ..b-r
~ Make rleJ‘cﬂonf \/ txn n o Lt 78 F
— Cow\rde \,a| Aq‘}wr\ ervor ’ ?/H Al s i U




RBFs, Regularization, and Validation

A model that is hard to beat:

— RBF basis with L2-regularization and cross-validation to choose ¢ and A
— Flexible non-parametric basis, magic of regularization, and tuning for test error!

RBF Basis (sigma = 2.000000)

— Expensive at test

RBF Basis (sigma = 0.500000)

RBF Basis (sigma = 0.125000)

(AWQ)/ 'From i

Frain foi nts.
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Hyper-Parameters of Gaussian RBFs

« In this setting we have 2 hyper-parameters (o and A).

« More complicated models have even more hyper-parameters.
— Searching all values is unviable (increases risk).

 Simplest approaches:
— Exhaustive search: discretize and try all combinations
— Random search: try random values.

33



Hyper-Parameter Optimization

« Other common hyper-parameter optimization methods:

— Exhaustive search with pruning:
« If it “looks” like test error is getting worse as you decrease ), stop decreasing it.

— Coordinate search:
« Optimize one hyper-parameter at a time, keeping the others fixed.
« Repeatedly go through the hyper-parameters

— Stochastic local search:
« Generic global optimization methods (simulated annealing, genetic algorithms, etc.).

— Bayesian optimization (Mike’s PhD research topic):
» Use RBF regression to build model of how hyper-parameters affect validation error.
« Try the best guess based on the model.



LINEAR CLASSIFIERS INTRO



Motivation: Identifying Important Emails

How can we automatically identify ‘important’ emails?

| » Mark .. Issam, Ricky (10) inbox A2, tutorials, marking = 10:41 am
COMPOSE
Holger, Jim (2) ists Intro to Computer Science 10:20 am
inbox () » Issam Laradji inbox  Convergence rates forcu = 9:49 am
Starred
<!mpor§nt > * sameh, Mark, sameh (3) Inbox  Graduation ProjectDema = 8:01 am
Sent Mal » Mark .. sara, Sara (11) Label propagation = 7:57am

Neafbs (41

A binary classification problem (“important” vs. “not important”).
— Labels are approximated by whether you took an “action” based on mail.
— High-dimensional feature set (that we’ll discuss later).

Gmail uses regression for this binary classification problem.

36



Binary Classification Using Regression?

 Recall: we had classification problems in Part 1:

— Food allergies, spam filtering, character recognition,
Netflix recommendation, etc.

« Binary classification: 2 classes in label y

- Usually, we encode y, = {0, 1}

« For linear classifiers, we encode y, = {-1, +1}
— e.g. +1 means “important”, -1 means otherwise.



Visualizing Binary Classification

- Assumption: somewhere along the feature space,
there’s a boundary that (roughly) splits +1s and -1s.

- |f a perfect boundary exists, the data is called
“linearly separable”



Visualizing Binary Classification

- Assumption: somewhere along the feature space,
there’s a boundary that (roughly) splits +1s and -1s.

O
O
O
O
O

()]

9}

O

o

(9]

5 True decision boundary

3 |

< >

Feature space I

D o 00000




Visualizing Binary Classification

- Assumption: somewhere along the feature space,

there’s a boundary that (roughly) splits +1s and -1s.
t Decision stump with
“>" rule
+1 | @ @ - @
< E | >
Feature space I
L ® 0000




Visualizing Binary Classification

- Assumption: somewhere along the feature space,
there’s a boundary that (roughly) splits +1s and -1s.

N

+
[

Label space

<
Feature space




Visualizing Binary Classification

- Assumption: somewhere along the feature space,
there’s a boundary that (roughly) splits +1s and -1s.

A
N

+
[

Label space

<
Feature space
“linear classifier”

yi=sign(w'x;)




Decision Boundaries in 2D

decision tree KNN linear classifier

® class -1 w class -1 - w  class =1
& class +1 & class +1 @ class +1

Feature space Feature space Feature space
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Decision Boundaries in 2D

linear classifier

Feature space

Linear classifier would be a ;= w'x; function coming out of screen:
— The boundary is at y,=0.
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LOSSES FOR BINARY CLASSIFIERS



Should we use least squares for classification?
{("") :%\;”Xw'/’lz 17

+
=

Label space

<
Feature space

Q: Do these points deserve
to have error=0 and others don’t?
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Should we use least squares for classification?

Given example (x;, -1)

X
4 V. .
(\N Xi ‘3\)
S
0 sign(wTx;) is correct sign(wTx;) is incorrect
< Jicti T>
! 1 0 prediction wTx;

NOT GOOD!



Issues with Least Squares Error

wWhen least squares penalizes
my example far from 0

- - -
-

¥ WHY ARE YOU BOOING ME?
I'M RIGHT.

« X; far from 0 means w'x; willbe
« sign(w'x;) is correct but (w'x, — y;)%is huge

— Penalizes for examples that are “too correct”
« Also, which examples get O error is arbitrary
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Should we use least squares for classification?

« Least squares can behave weirdly when applied to classification:

T"\l) lS h\e INEnr y(qr(ss;oy\ Motl l we \A/ab’l‘,
l/ (0‘ f)f’f‘Fed c'assnfacr)

\I‘“v‘?om“‘tn

“[\Gt ‘\W\?)(‘W\{“

¥

O
~ |

P~

-ﬁ‘b’mo we

SCC “oﬁ‘e—“

XX X X x x ¥ [ x T X x ¥

« Why? Least squares error of green line is huge!
— The green line achieves 0 training classification error.
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OU-1 Loss: What We Really Want

+
[ =

Label space

<
Feature space

yi=sign(wTx,)
““hard prediction”

““soft prediction”

e« We want to minimize classification error
based on “hard predictions”! 0



OU-1 Loss: What We Really Want

Given example (x;, -1)

X
4 \y/. :
/ (i)
S
0 sign(wTx;) is correct sign(wTx;) is incorrect
- ' : rediction wTx
v 1 0 P i

Q: What’s wrong with the 0-1 Loss?




O-1 Loss Function

 We can write using the LO-norm as |[y— Y||e-
— In classification it's reasonable that y,= y, (it's either +1 or -1).

 0-1loss is non-convex in ‘w'.
— It's easy to minimize if a perfect classifier exists (“perceptron”).
— Otherwise, finding the ‘w’ minimizing 0-1 loss is a hard problem.

— Gradient is zero everywhere: don’t even know “which way to go”.

— NOT the same type of problem we had with using the squared lLoss.

« We can minimize the squared error,
but it might give a bad model for classification.

« Motivates convex approximations to 0-1 Loss...
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Degenerate Convex Approximation to 0-1 Loss

« If y, = +1, we get the label right if wTx; > 0.
If y, = -1, we get the label right if wix; < 0, or equivalently -wTx, > 0.

« So “classifying ‘i’ correctly” is equivalent to having __ :
A -
gi=+ 1“3303‘3‘%)0
f WX 70
+1 S

()]

| I —

a error showld be O

[

o)

g

<

Feature space




Degenerate Convex Approximation to 0-1 Loss

If y, = +1, we get the label right if wix;, > 0.
If y, = -1, we get the label right if wix; < 0, or equivalently -wTx, > 0.
So “classifying ‘i’ correctly” is equivalent to having y,w'x, > 0.

One possible convex approximation to 0-1 Loss:
— Minimize how much this constraint is violated.

lets count # times \j;WTXi <O I(W)z { 0 otherwie.
o fW) = él(g;waxo): 21(0 <=ywix) (0-1 o)
MaX {o , —j-\wa;} (Cov\vex a\meimo:l:ion)

n
1=\

"indicator" ~ 1 il stmt is tve

[1] ~
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0-1 Loss: What We Really Want

Given example (x;, -1)

(\NTX'. =Y '\)z

/
/

— >
prediction wTx;




Degenerate Convex Approximation to 0-1 Loss

Qur convex approximation of the error for one example is:

W\“YZU)’\/,‘ WTX;Z

We could train by minimizing sum over all examples:

¥w>~ Zw\ax / Xz

But this has a degenerate solution:

Q: When is f(0) =

There are two standard fixes: hinge Loss and logistic Loss.
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summary

Feature standardization:

— Change the unit of every feature into “z-score”
Radial basis functions:

— Non-parametric bases that can model any function.
Binary classification using regression:

— Encode using y, in {-1,1}.

— Use sign(w'x;) as prediction.

— “Linear classifier” (a hyperplane splitting the space in half).
Least squares is a weird error for classification.

Perceptron algorithm: finds a perfect classifier (if one exists).
0-1 loss is the ideal loss, but is non-smooth and non-convex.

Next time: logistic regression and support vector machine



Gaussian RBFs: Pseudo-Code
C.c?f\ﬁh‘woﬁmf G‘qw»ia/\ Kg& 84(/!4\ cl.afd( IX] omcf/ h)l/t/“/ﬂafamefﬁf 9/'“

L: ZClros (n)n)
foc ilin In
for 2 in [n
LLili2]) = €X/)(‘ﬁprm()(£,’/) J=Xi7 :])2/’7&7)

4%

Witk Lest Jnfﬁ )(: F(NM Z l?ﬂSf(J on C‘.‘ﬂl”"'m} }‘D frm,'m/'n(/ f/mM//p{
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Can we just use least squares??

 What went wrong?
— “Good” errors vs. “bad” errors.

9

|
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Can we just use least squares??

N
e What went wrong? -Y(w)s 2 (w7x; ’y,-)z
— “Good"” errors vs. “bad” errors. =t &/ J
\
[/T"\l) {5 .H\e INEar 7(‘)“‘5‘”\ MOA l Wwe Wan‘, \;/‘\i’ hlﬁrrﬂUJl'F
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