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Admin
• Midterm is tomorrow.

– Manually-graded portion on Gradescope
• 55 minutes
• Handwritten or typeset

– Auto-graded potion on Canvas
• 45 minutes
• Multiple choice

– The two portions are equally weighted
• Please don’t ask broad questions on Piazza tomorrow

– If you have issues with exams, etc., make a private post
• Assignment 4 is due Monday, June 7, 2021
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In This Lecture
1. Standardization (5 minutes)
2. Gaussian RBF (20 minutes)
3. Linear Classifiers Intro (20 minutes)
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Last Time: Regularization
• L0-regularization (AIC, BIC, Mallow’s Cp, Adjusted R2, ANOVA):

– Adds penalty on the number of non-zeros to select features.

• L2-regularization (ridge regression):
– Adding penalty on the L2-norm of ‘w’ to decrease overfitting:

• L1-regularization (LASSO):
– Adding penalty on the L1-norm decreases overfitting and selects features:
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STANDARDIZATION
Coming Up Next
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Features with Different Scales
• Consider continuous features with different scales:

• Should we convert to some standard ‘unit’?
– It doesn’t matter for decision trees or naïve Bayes.

• They only look at one feature at a time.
– It doesn’t matter for least squares:

• wj*(100 mL) gives the same model as wj*(0.1 L) with a different wj.

Egg (#) Milk (mL) Fish (g) Pasta (cups)
0 250 0 1
1 250 200 1
0 0 0 0.5
2 250 150 0
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Features with Different Scales
• Consider continuous features with different scales:

• Should we convert to some standard ‘unit’?
– It matters for k-nearest neighbours:

• “Distance” will be affected more by large features than small features.
– It matters for regularized least squares:

• Penalizing (wj)2 means different things if features ‘j’ are on different scales.
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Egg (#) Milk (mL) Fish (g) Pasta (cups)
0 250 0 1
1 250 200 1
0 0 0 0.5
2 250 150 0



Standardizing Features
• It is common to standardize continuous features:

– For each feature:
1. Compute mean and standard deviation:

2. Subtract mean and divide by standard deviation (“z-score”)

– Now changes in ‘wj’ have similar effect for any feature ‘j’.
• How should we standardize test data?

– Wrong approach: use mean and standard deviation of test data.
– Training and test mean and standard deviation might be very different.
– Right approach: use mean and standard deviation of training data.
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Standardizing Features
• It is common to standardize continuous features:

– For each feature:
1. Compute mean and standard deviation:

2. Subtract mean and divide by standard deviation (“z-score”)

– Now changes in ‘wj’ have similar effect for any feature ‘j’.
• If we’re doing 10-fold cross-validation:

– Compute µj and σj based on the 9 training folds (e.g., average over 9/10s of data).
– Standardize the remaining (“validation”) fold with this “training” µj and σj.
– Re-standardize for different folds.
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Standardizing Target
• In regression, we sometimes standardize the targets yi.

– Puts targets on the same standard scale as standardized features:

• With standardized target, setting w = 0 predicts ___________:
– High regularization makes us predict closer to the average value.

• Again, make sure you standardize test data with the training stats.
• Other common transformations of yi are logarithm/exponent:

– Makes sense for geometric/exponential processes. 
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GAUSSIAN RADIAL BASIS FUNCTION
Coming Up Next
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Weighted Sum of “Basis Functions”
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• Features for linear models with “change of basis” are functions

• We’ve been using linear models with polynomial bases:

“offline” transformation

“on-the-fly” transformation

“basis function”

Weighted sum of basis functions



Parametric vs. Non-Parametric Transforms
• We’ve been using linear models with polynomial bases:

• But polynomials are not the only possible bases:
– Exponentials, logarithms, trigonometric functions, etc.
– The right basis will vastly improve performance.
– If we use the wrong basis, our accuracy is limited even with lots of data.
– But the right basis may not be obvious.
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Parametric vs. Non-Parametric Transforms
• Alternative: non-parametric bases:

– Size of basis (number of features) grows with ‘n’.
– Model gets more complicated as you get more data.
– Can model complicated functions where you don’t know the right basis.

• With enough data.
– Classic example is “Gaussian RBFs” (“Gaussian” == “normal distribution”).
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Weighted sum of basis functions



“Local Bumps”

• Gaussian RBF’s basis functions are “local bumps”
– Each training example xi defines its own local bump
– d=1: bell-curve centered at xi
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“basis function”

x

fi(x)

xi

1Q: How many local bumps are there?



Gaussian RBFs: A Sum of “Bumps”
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Q: How do we predict �𝑦𝑦𝑖𝑖 for a test example xi?



Prediction with Gaussian RBF Regression

• Prediction is weighted combination of “bump scores”
• These “bump scores” are defined by training examples

– an instance of “learned features”
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“Change of Basis” for Gaussian RBFs

18

Q: Does polynomial basis give us “learned features” too?

Q: Why are there 1s on the diagonal?



Gaussian RBFs: Universal Approximator
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• Gaussian RBFs are universal approximators (compact subets of ℝd)
– Enough bumps can approximate any continuous function to arbitrary precision.
– Achieve optimal test error as ‘n’ goes to infinity.



Visualizing RBF Regression

20

x1 x3x2 x

1

Q: What happens if these change?

• To predict �𝑦𝑦𝑖𝑖 from �𝑥𝑥𝑖𝑖,
1. get fj values (heights) from curves
2. add them together



Visualizing RBF Regression
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xx1 x2 x3

1

• To predict �𝑦𝑦𝑖𝑖 from �𝑥𝑥𝑖𝑖,
1. get fj values (heights) from curves
2. add them together

Q: What do we predict when �𝑥𝑥𝑖𝑖 is far 
away from other examples?



Gaussian RBFs: A Sum of “Bumps”
• More-realistic version (green is regression line, red is each basis):
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GAUSSIAN RBF
IN HIGHER DIMENSIONS
Coming Up Next
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Recall: Distance
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x1

xi

x2

Feature space



Gaussian RBFs: Formal Details
• What is a radial basis functions (RBFs)?

– A set of non-parametric bases that depend on distances to training points.

– Have ‘n’ features, with feature ‘j’ depending on distance to example ‘i’.
• Typically the feature will decrease as the distance increases:
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• What is a radial basis functions (RBFs)?
– Most common choice of  ‘g’ is Gaussian RBF:

Gaussian RBFs: Formal Details
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Q: What does g(𝜖𝜖) look like if 𝜎𝜎 is small?
What does it look like if 𝜎𝜎 is large?



𝜎𝜎 and Curve Width

• How does 𝜎𝜎 affect the model complexity?
– As 𝜎𝜎 increases, the model complexity 

(increases/decreases)

• Low sensitivity to change in feature values 
=> low complexity of model
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𝜎𝜎 = 0.1

𝜎𝜎 = 1.0

𝜎𝜎 = 10.0



Gaussian RBFs: Formal Details
• What is a radial basis functions (RBFs)?

– The training and testing matrices when using RBFs:
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Non-Parametric Basis: RBFs
• Least squares with Gaussian RBFs for different σ values:
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Q: What do we predict when �𝑥𝑥𝑖𝑖 is far 
away from other examples?



RBFs and Regularization
• Gaussian Radial basis functions (RBFs) predictions:

– Flexible bases that can model any continuous function.
– But with ‘n’ data points RBFs have ‘n’ basis functions.

• How do we avoid overfitting with this huge number of features?
– We regularize ‘w’ and use validation error to choose 𝜎𝜎 and λ.
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RBFs, Regularization, and Validation
• A model that is hard to beat:

– RBF basis with L2-regularization and cross-validation to choose 𝜎𝜎 and λ.
– Flexible non-parametric basis, magic of regularization, and tuning for test error.

distance to all training examples.
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RBFs, Regularization, and Validation
• A model that is hard to beat:

– RBF basis with L2-regularization and cross-validation to choose 𝜎𝜎 and λ.
– Flexible non-parametric basis, magic of regularization, and tuning for test error!

– Expensive at test time: needs _____________________________.
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Hyper-Parameters of Gaussian RBFs
• In this setting we have 2 hyper-parameters (𝜎𝜎 and λ).
• More complicated models have even more hyper-parameters.

– Searching all values is unviable (increases __________ risk).

• Simplest approaches:
– Exhaustive search: discretize and try all combinations
– Random search: try random values.
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Hyper-Parameter Optimization
• Other common hyper-parameter optimization methods:

– Exhaustive search with pruning:
• If it “looks” like test error is getting worse as you decrease λ, stop decreasing it.

– Coordinate search:
• Optimize one hyper-parameter at a time, keeping the others fixed.
• Repeatedly go through the hyper-parameters

– Stochastic local search:
• Generic global optimization methods (simulated annealing, genetic algorithms, etc.).

– Bayesian optimization (Mike’s PhD research topic):
• Use RBF regression to build model of how hyper-parameters affect validation error.
• Try the best guess based on the model.
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LINEAR CLASSIFIERS INTRO
Coming Up Next
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Motivation: Identifying Important Emails
• How can we automatically identify ‘important’ emails?

• A binary classification problem (“important” vs. “not important”).
– Labels are approximated by whether you took an “action” based on mail.
– High-dimensional feature set (that we’ll discuss later).

• Gmail uses regression for this binary classification problem.
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Binary Classification Using Regression?
• Recall: we had classification problems in Part 1:

– Food allergies, spam filtering, character recognition, 
Netflix recommendation, etc.

• Binary classification: 2 classes in label y

• Usually, we encode yi = {0, 1}
• For linear classifiers, we encode yi = {-1, +1}

– e.g. +1 means “important”, -1 means otherwise.
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Visualizing Binary Classification
• Assumption: somewhere along the feature space, 

there’s a boundary that (roughly) splits +1s and -1s.

• If a perfect boundary exists, the data is called
“linearly separable”
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Visualizing Binary Classification
• Assumption: somewhere along the feature space, 

there’s a boundary that (roughly) splits +1s and -1s.
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Visualizing Binary Classification
• Assumption: somewhere along the feature space, 

there’s a boundary that (roughly) splits +1s and -1s.
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Visualizing Binary Classification
• Assumption: somewhere along the feature space, 

there’s a boundary that (roughly) splits +1s and -1s.
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Visualizing Binary Classification
• Assumption: somewhere along the feature space, 

there’s a boundary that (roughly) splits +1s and -1s.
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Decision Boundaries in 2D
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Decision Boundaries in 2D
linear classifier

• Linear classifier would be a �𝑦𝑦i= wTxi function coming out of screen:
– The boundary is at �𝑦𝑦i=0.

Feature space
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LOSSES FOR BINARY CLASSIFIERS
Coming Up Next
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Should we use least squares for classification?

Feature space
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error=0

error=0

Q: Do these points deserve 
to have error=0 and others don’t?

�𝑦𝑦𝑖𝑖=wTxi
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sign(wTxi) is incorrect

Should we use least squares for classification?
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er
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r
Given example (xi, -1)

prediction wTxi-1 0

NOT GOOD!

sign(wTxi) is correct



Issues with Least Squares Error

• xi far from 0 means wTxi will be ____________
• sign(wTxi) is correct but (wTxi – yi)2 is huge

– Penalizes for examples that are “too correct”
• Also, which examples get 0 error is arbitrary
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When least squares penalizes 
my example far from 0



Should we use least squares for classification?
• Least squares can behave weirdly when applied to classification:

• Why? Least squares error of green line is huge!
– The green line achieves 0 training classification error.
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0-1 Loss: What We Really Want

• We want to minimize classification error
based on “hard predictions”!

Feature space
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“soft prediction”
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0-1 Loss: What We Really Want
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prediction wTxi

er
ro

r
Given example (xi, -1)

-1 0

sign(wTxi) is correct sign(wTxi) is incorrect

0-1 loss

Q: What’s wrong with the 0-1 loss?



0-1 Loss Function
• We can write using the L0-norm as || �𝑦𝑦– y||0.

– In classification it’s reasonable that �𝑦𝑦𝑖𝑖= yi (it’s either +1 or -1).

• 0-1 loss is non-convex in ‘w’.
– It’s easy to minimize if a perfect classifier exists (“perceptron”).
– Otherwise, finding the ‘w’ minimizing 0-1 loss is a hard problem.

– Gradient is zero everywhere: don’t even know “which way to go”.

– NOT the same type of problem we had with using the squared loss.
• We can minimize the squared error, 

but it might give a bad model for classification.

• Motivates convex approximations to 0-1 loss… 52



Degenerate Convex Approximation to 0-1 Loss
• If yi = +1, we get the label right if wTxi > 0.
• If yi = -1, we get the label right if wTxi < 0, or equivalently –wTxi > 0.
• So “classifying ‘i’ correctly” is equivalent to having ______________.

Feature space

La
be

l s
pa

ce
+1

-1
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Degenerate Convex Approximation to 0-1 Loss
• If yi = +1, we get the label right if wTxi > 0.
• If yi = -1, we get the label right if wTxi < 0, or equivalently –wTxi > 0.
• So “classifying ‘i’ correctly” is equivalent to having yiwTxi > 0.

• One possible convex approximation to 0-1 loss:
– Minimize how much this constraint is violated.
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0-1 Loss: What We Really Want
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Degenerate Convex Approximation to 0-1 Loss
• Our convex approximation of the error for one example is:

• We could train by minimizing sum over all examples:

• But this has a degenerate solution:

• There are two standard fixes: hinge loss and logistic loss.
Q: When is f(0) = 0?
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Summary
• Feature standardization:

– Change the unit of every feature into “z-score”
• Radial basis functions: 

– Non-parametric bases that can model any function.
• Binary classification using regression:

– Encode using yi in {-1,1}.
– Use sign(wTxi) as prediction.
– “Linear classifier” (a hyperplane splitting the space in half).

• Least squares is a weird error for classification.
• Perceptron algorithm: finds a perfect classifier (if one exists).
• 0-1 loss is the ideal loss, but is non-smooth and non-convex.

• Next time: logistic regression and support vector machine 57



Gaussian RBFs: Pseudo-Code
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Can we just use least squares??
• What went wrong?

– “Good” errors vs. “bad” errors.
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Can we just use least squares??
• What went wrong?

– “Good” errors vs. “bad” errors.

60
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