CPSC 340: Machine Learning and Data Mining

Non-Parametric Feature Transforms Summer 2021

Admin

- Midterm is tomorrow.
 - Manually-graded portion on Gradescope
 - 55 minutes
 - Handwritten or typeset
 - Auto-graded potion on Canvas
 - 45 minutes
 - Multiple choice
 - The two portions are equally weighted
- Please don't ask broad questions on Piazza tomorrow
 - If you have issues with exams, etc., make a private post
- Assignment 4 is due Monday, June 7, 2021

In This Lecture

- 1. Standardization (5 minutes)
- 2. Gaussian RBF (20 minutes)
- 3. Linear Classifiers Intro (20 minutes)

Last Time: Regularization

• Lo-regularization (AIC, BIC, Mallow's Cp, Adjusted R², ANOVA):

Adds penalty on the number of non-zeros to select features.

$$f(w) = ||Xw - y||^2 + \lambda ||w||_0$$

- L2-regularization (ridge regression):
 - Adding penalty on the L2-norm of 'w' to decrease overfitting:

$$f(w) = ||Xw - y||^2 + \frac{1}{2}||w||^2$$

- L1-regularization (LASSO):
 - Adding penalty on the L1-norm decreases overfitting and selects features:

$$f(w) = ||Xw - y||^2 + \frac{1}{2} ||w||_1$$

Coming Up Next STANDARDIZATION

Features with Different Scales

• Consider continuous features with different scales:

Egg (#)	Milk (mL)	Fish (g)	Pasta (cups)
0	250	0	1
1	250	200	1
0	O	0	0.5
2	250	150	O

- Should we convert to some standard 'unit'?
 - It doesn't matter for decision trees or naïve Bayes.
 - They only look at one feature at a time.
 - It doesn't matter for least squares:
 - $w_j^*(100 \text{ mL})$ gives the same model as $w_j^*(0.1 \text{ L})$ with a different w_j .

Features with Different Scales

• Consider continuous features with different scales:

Egg (#)	Milk (mL)	Fish (g)	Pasta (cups)
0	250	0	1
1	250	200	1
0	0	0	0.5
2	250	150	O

- Should we convert to some standard 'unit'?
 - It matters for k-nearest neighbours:
 - "Distance" will be affected more by large features than small features.
 - It matters for regularized least squares:
 - Penalizing $(w_j)^2$ means different things if features 'j' are on different scales.

Standardizing Features

- It is common to standardize continuous features:
 - For each feature:
 - 1. Compute mean and standard deviation:

$$M_{j} = \frac{1}{n} \sum_{i=1}^{n} X_{ij} \quad \mathcal{O}_{j} = \left[\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - M_{j}) \right]$$

2. Subtract mean and divide by standard deviation ("z-score")

Replace
$$X_{ij}$$
 with $\frac{X_{ij} - X_{ij}}{O_i}$

- Now changes in ' w_i ' have similar effect for any feature 'j'.
- How should we standardize test data?
 - Wrong approach: use mean and standard deviation of test data.
 - Training and test mean and standard deviation might be very different.
 - Right approach: use mean and standard deviation of training data.

2

Standardizing Features

- It is common to standardize continuous features:
 - For each feature:
 - 1. Compute mean and standard deviation:

$$M_{j} = \frac{1}{n} \sum_{i=1}^{n} X_{ij}$$
 $O_{j} = \left\{ \frac{1}{n} \sum_{i=1}^{n} (x_{ij} - M_{j}) \right\}$

2. Subtract mean and divide by standard deviation ("z-score")

- Now changes in ' w_i ' have similar effect for any feature 'j'.
- If we're doing 10-fold cross-validation:
 - Compute μ_j and σ_j based on the 9 training folds (e.g., average over 9/10s of data).
 - Standardize the remaining ("validation") fold with this "training" μ_j and σ_j .
 - Re-standardize for different folds.

Standardizing Target

- In regression, we sometimes standardize the targets y_i.
 - Puts targets on the same standard scale as standardized features:

Replace
$$y_i$$
 with $y_i - u_y$
 σ_y

- With standardized target, setting w = 0 predicts <u>Mean</u> :
 High regularization makes us predict closer to the average value.
- Again, make sure you standardize test data with the training stats.
- Other common transformations of y_i are logarithm/exponent:

Use
$$log(y_i)$$
 or $exp(\Upsilon y_i)$

Makes sense for geometric/exponential processes.

GAUSSIAN RADIAL BASIS FUNCTION

Coming Up Next

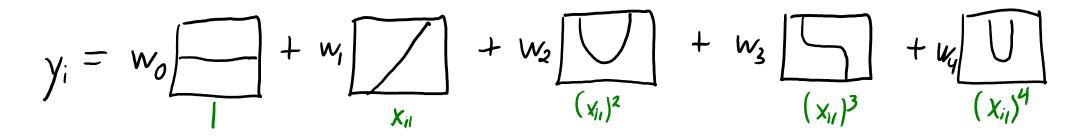
Weighted Sum of "Basis Functions"

- Features for linear models with "change of basis" are functions "basis function" $f_{j}: \mathbb{R} \to \mathbb{R}$
 - $\begin{aligned} & \mathcal{Y}_{i} = W_{0}f_{0}^{(X_{i})} + W_{1}f_{1}^{(X_{i})} + W_{2}f_{2}^{(X_{i})} + \cdots + W_{p}f_{p}(X_{i}) \quad \text{``on-the-fly'' transformation} \\ & \mathcal{Y}_{i} = V_{1}Z^{1} + V_{2}Z^{2} + V_{3}Z^{3} + \cdots + V_{p+1}Z^{p+1} \quad \text{``offline'' transformation} \end{aligned}$
- We've been using linear models with polynomial bases:

$$y_{i} = w_{0} + w_{i} + w_{2} + w_{2} + w_{3} + w_{3} + w_{4} + w_{4$$

Parametric vs. Non-Parametric Transforms

• We've been using linear models with polynomial bases:



- But polynomials are not the only possible bases:
 - Exponentials, logarithms, trigonometric functions, etc.
 - The right basis will vastly improve performance.
 - If we use the wrong basis, our accuracy is limited even with lots of data.
 - But the right basis may not be obvious.

Parametric vs. Non-Parametric Transforms

- Alternative: non-parametric bases:
 - Size of basis (number of features) grows with 'n'.
 - Model gets more complicated as you get more data.
 - Can model complicated functions where you don't know the right basis.
 - With enough data.
 - Classic example is "Gaussian RBFs" ("Gaussian" == "normal distribution").

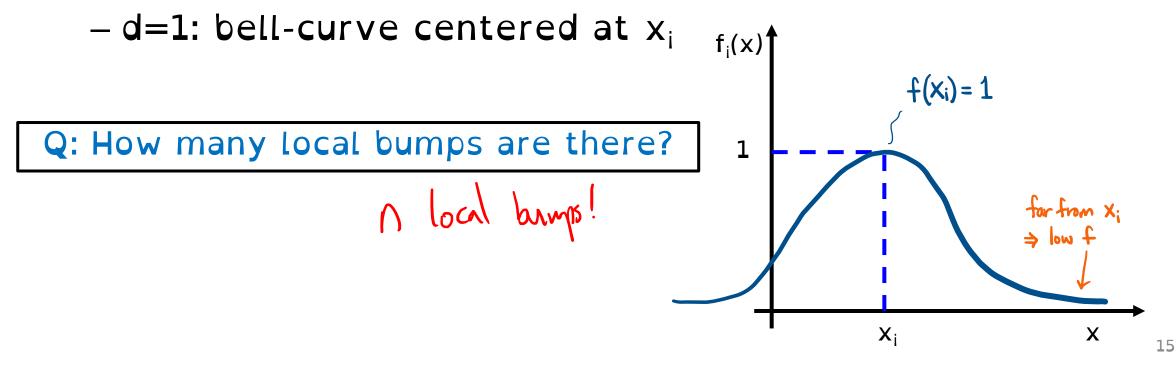
$$y_i = w_0 \left[\frac{1}{1 + w_1} + \frac{1}{1 + w_2} \right] \left[\frac{1}{1 + w_3} + \frac{1}{1 + w_4} \right]$$

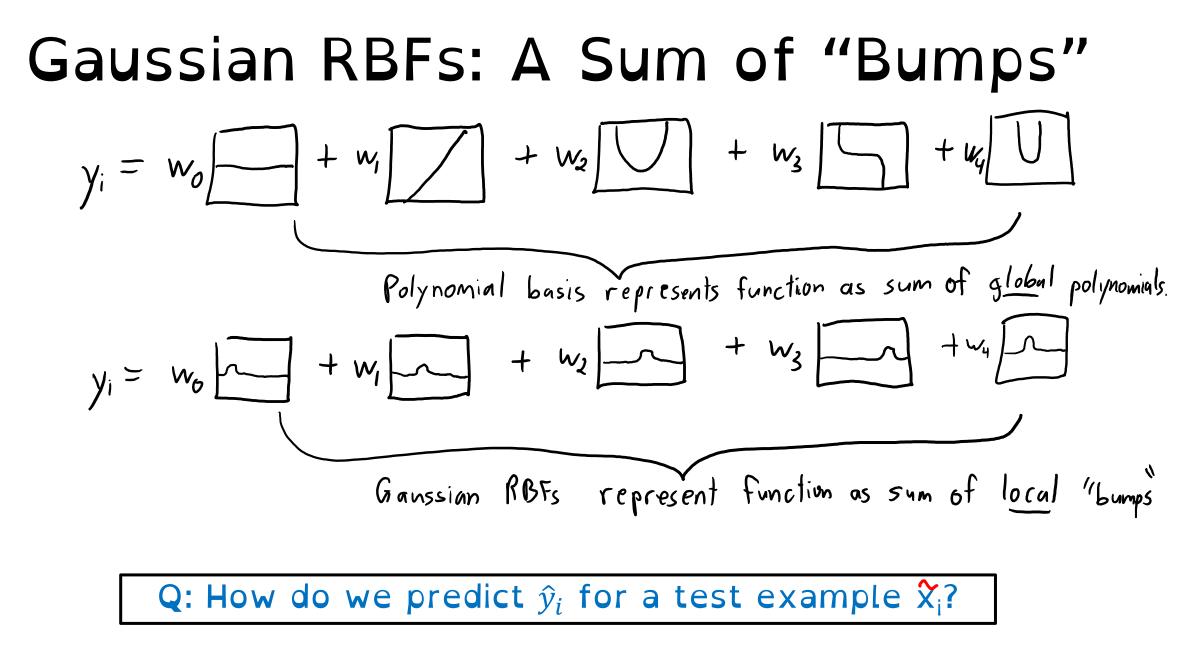
Weighted sum of basis functions

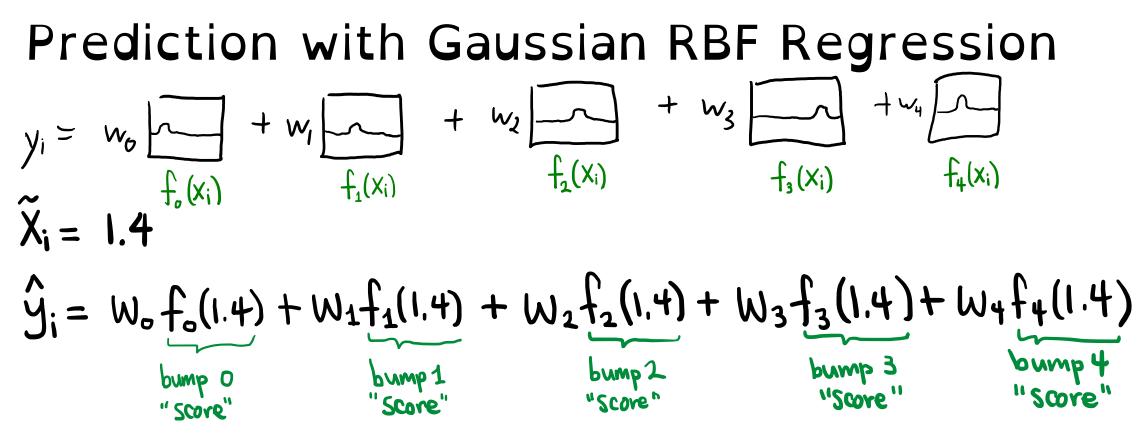
"Local Bumps"

"basis function"
$$f_i : \mathbb{R} \longrightarrow \mathbb{R}$$
, $i=1,2,...,n$

- Gaussian RBF's basis functions are "local bumps"
 - Each training example xi defines its own local bump

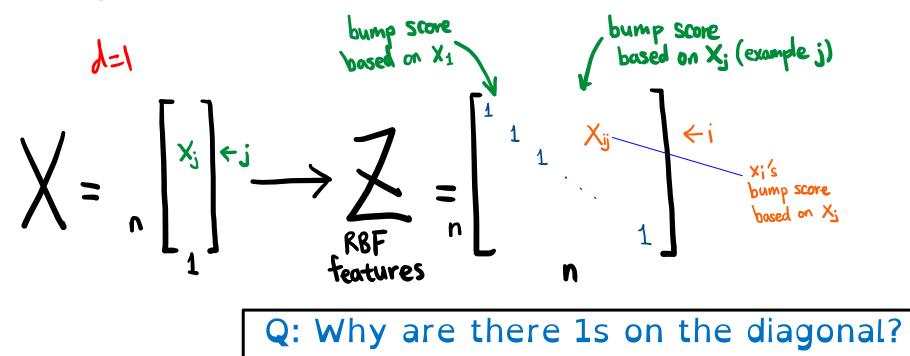


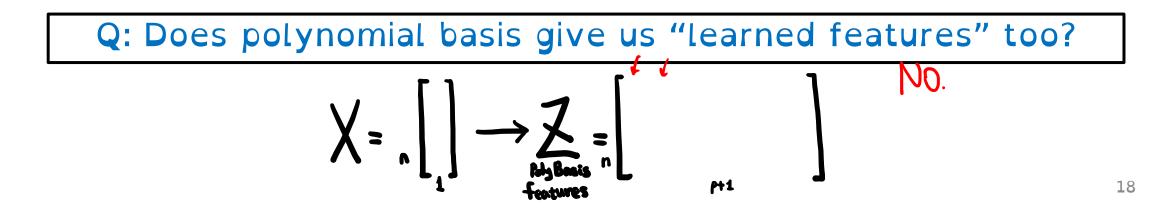




- Prediction is weighted combination of "bump scores"
- These "bump scores" are defined by training examples
 - an instance of "learned features"

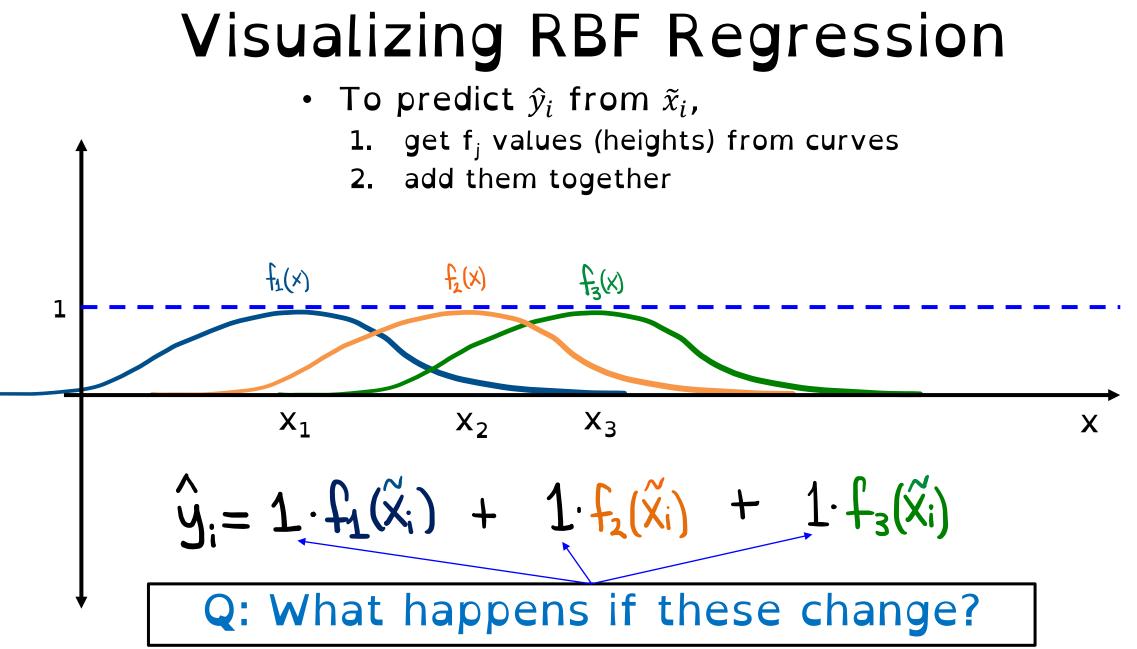
"Change of Basis" for Gaussian RBFs

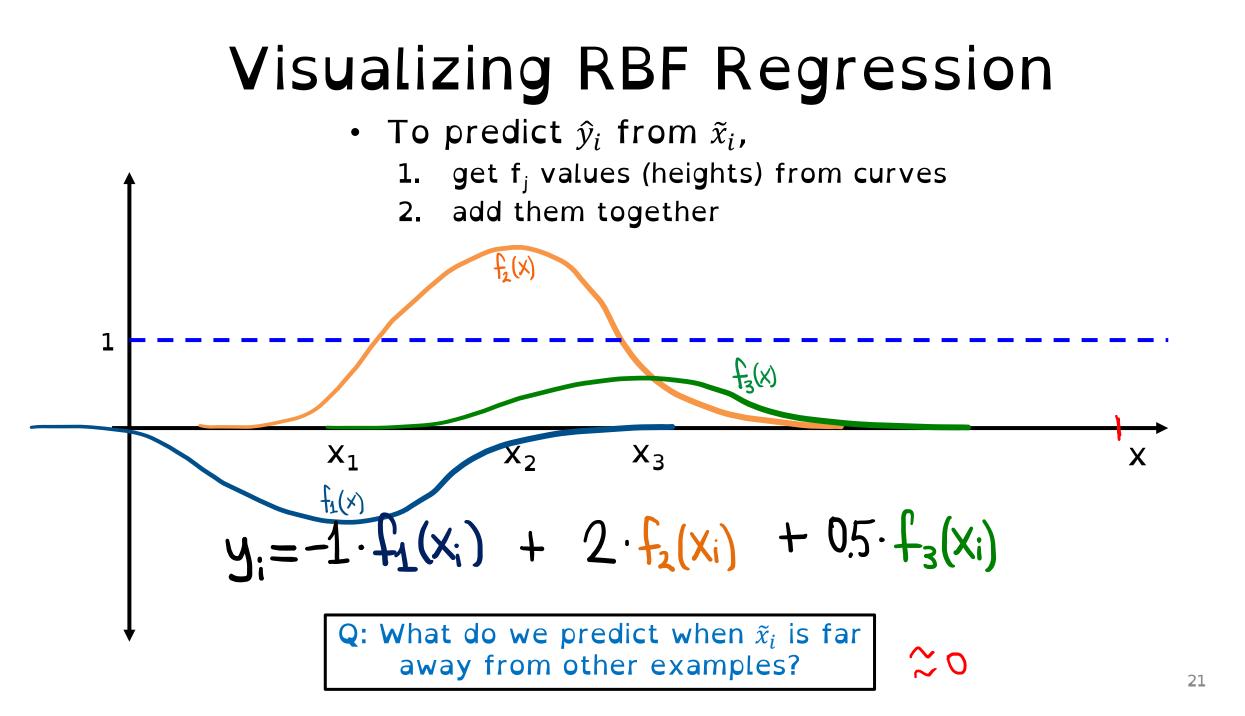




Gaussian RBFs: Universal Approximator

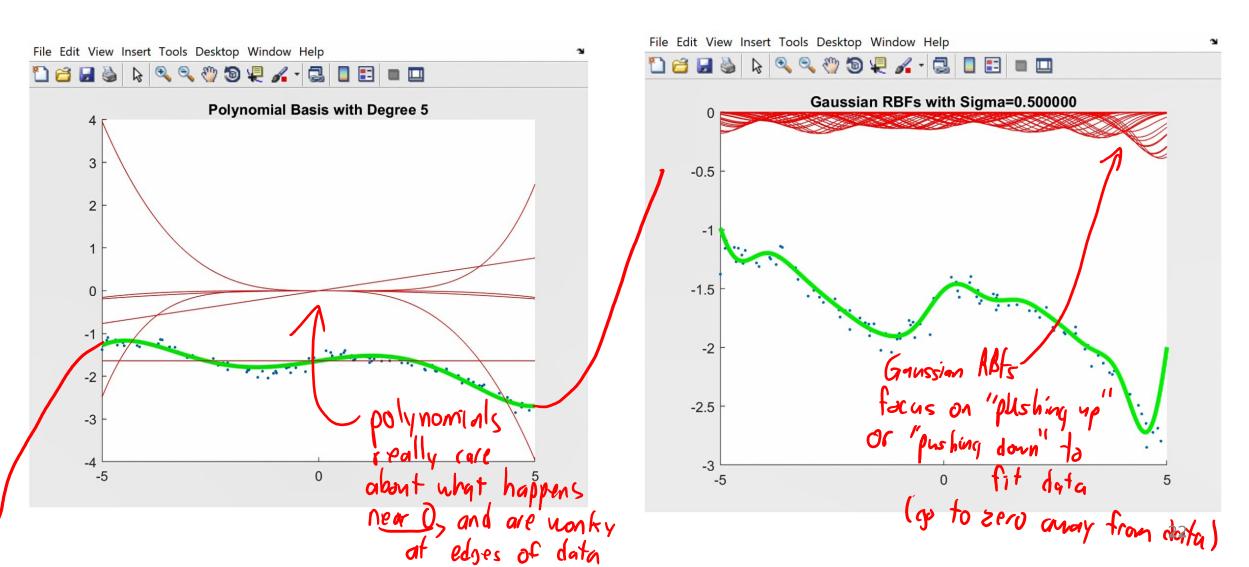
- Gaussian RBFs are universal approximators (compact subets of \mathbb{R}^d)
 - Enough bumps can approximate any continuous function to arbitrary precision.
 - Achieve optimal test error as 'n' goes to infinity.





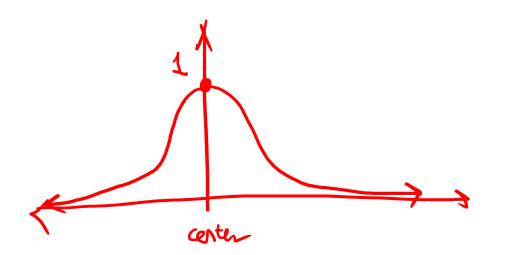
Gaussian RBFs: A Sum of "Bumps"

• More-realistic version (green is regression line, red is each basis):

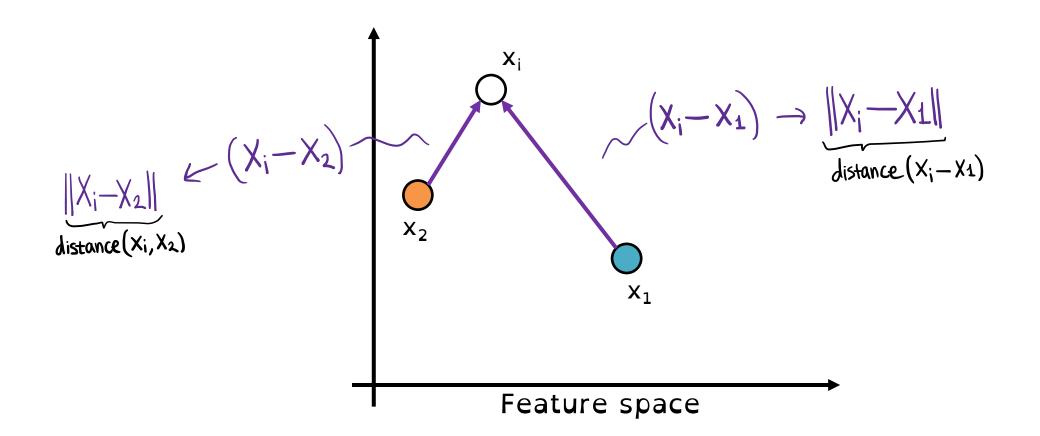


GAUSSIAN RBF IN HIGHER DIMENSIONS

Coming Up Next



Recall: Distance

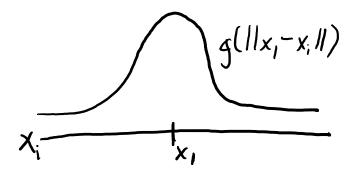


Gaussian RBFs: Formal Details

- What is a radial basis functions (RBFs)?
 - A set of non-parametric bases that depend on distances to training points.

Replace
$$x_i = (x_{i1}, x_{i2}, \dots, x_{in})$$
 with $z_i = (g(1|x_i - x_i|1), g(1|x_i - x_2|1), \dots, g(1|x_i - x_n|1))$
'd' features
'h' features

- Have 'n' features, with feature 'j' depending on distance to example 'i'.
 - Typically the feature will decrease as the distance increases:

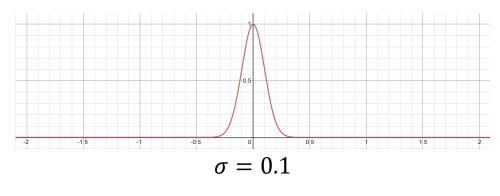


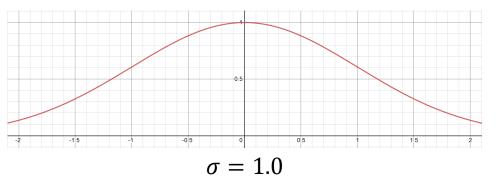
Gaussian RBFs: Formal Details

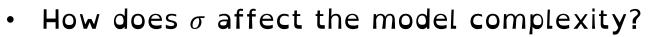
- What is a radial basis functions (RBFs)?
 - Most common choice of 'g' is Gaussian RBF:

Q: What does $g(\epsilon)$ look like if σ is small? What does it look like if σ is large?

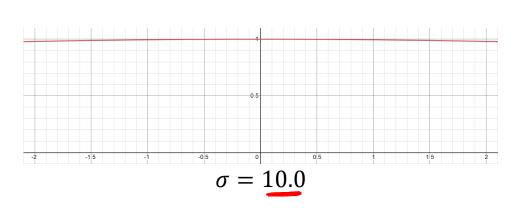
σ and Curve Width







- As σ increases, the model complexity (increases decreases)
- Low sensitivity to change in feature values => low complexity of model

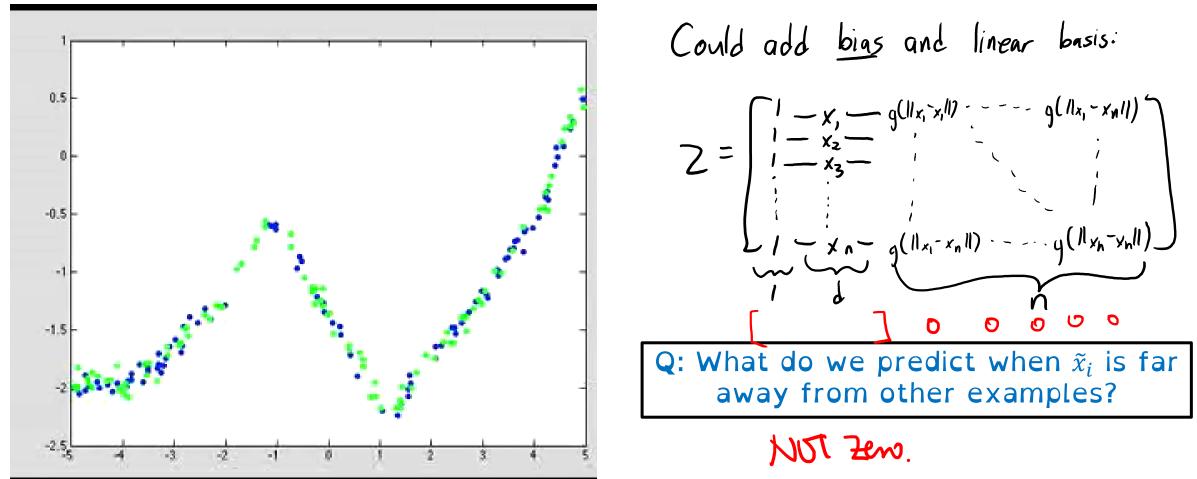


Gaussian RBFs: Formal Details

- What is a radial basis functions (RBFs)?
 - The training and testing matrices when using RBFs:

Non-Parametric Basis: RBFs

- Least squares with Gaussian RBFs for different σ values:



RBFs and Regularization

• Gaussian Radial basis functions (RBFs) predictions:

$$\hat{y}_{i} = w_{i} \exp\left(-\frac{\|x_{i} - x_{i}\|^{R}}{2\sigma^{2}}\right) + w_{2} \exp\left(-\frac{\|x_{i} - x_{2}\|^{2}}{2\sigma^{2}}\right) + \dots + w_{h} \exp\left(-\frac{\|x_{i} - x_{h}\|^{2}}{2\sigma^{2}}\right)$$
$$= \sum_{j=1}^{n} w_{j} \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\sigma^{2}}\right)$$

- Flexible bases that can model any continuous function.
- But with 'n' data points RBFs have 'n' basis functions.
- How do we avoid overfitting with this huge number of features?
 - We regularize 'w' and use validation error to choose σ and λ .

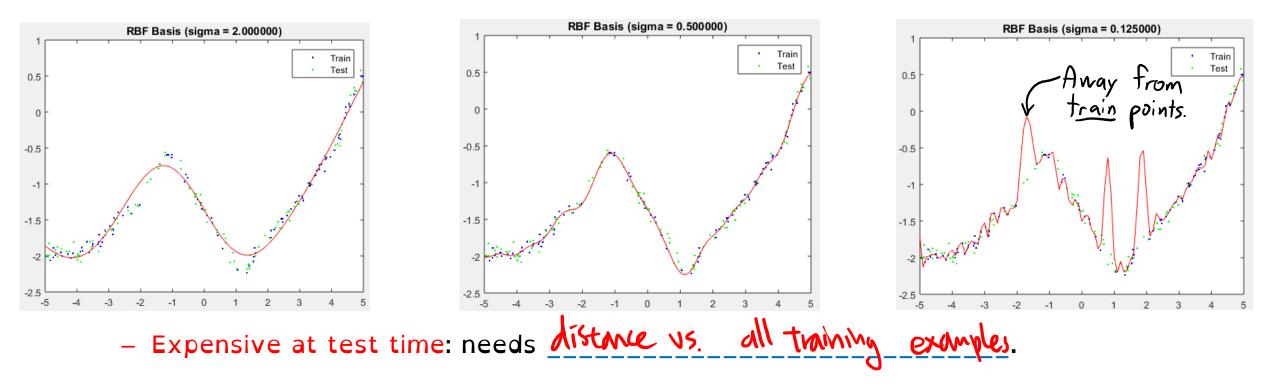
RBFs, Regularization, and Validation

- A model that is hard to beat:
 - RBF basis with L2-regularization and cross-validation to choose σ and λ .
 - Flexible non-parametric basis, magic of regularization, and tuning for test error.

for each value of
$$\hat{\lambda}$$
 and \hat{Q} :
- Compute $\sum_{n \ge n}^{2}$ on training data (and \hat{Q})
- Compute best $V: V = (Z^7Z + \hat{\lambda}I)^{-1}Z^7 V$
- Compute $\sum_{n \ge n}^{2}$ on validation data (using train
- Make predictions $\hat{V} = \sum_{n \ge n}^{2} V$
- Compute validation error $||\hat{Y} - \hat{Y}||^2$

RBFs, Regularization, and Validation

- A model that is hard to beat:
 - RBF basis with L2-regularization and cross-validation to choose σ and λ .
 - Flexible non-parametric basis, magic of regularization, and tuning for test error!



Hyper-Parameters of Gaussian RBFs

- In this setting we have 2 hyper-parameters (σ and λ).
- More complicated models have even more hyper-parameters.
 - Searching all values is unviable (increases ______ risk).
- Simplest approaches:
 - Exhaustive search: discretize and try all combinations
 - Random search: try random values.

Hyper-Parameter Optimization

- Other common hyper-parameter optimization methods:
 - Exhaustive search with pruning:
 - If it "looks" like test error is getting worse as you decrease λ , stop decreasing it.
 - Coordinate search:
 - Optimize one hyper-parameter at a time, keeping the others fixed.
 - Repeatedly go through the hyper-parameters
 - Stochastic local search:
 - Generic global optimization methods (simulated annealing, genetic algorithms, etc.).
 - Bayesian optimization (Mike's PhD research topic):
 - Use RBF regression to build model of how hyper-parameters affect validation error.
 - Try the best guess based on the model.

Coming Up Next
LINEAR CLASSIFIERS INTRO

Motivation: Identifying Important Emails

• How can we automatically identify 'important' emails?

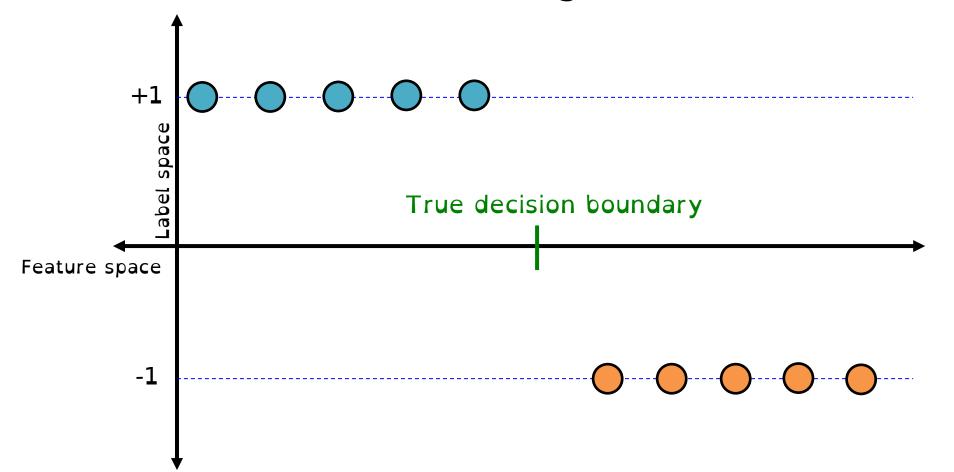
COMPOSE	🗆 🕁 Ď	Mark Issam, Ricky (10)	Inbox A2, tutorials, marking	n
		Holger, Jim (2)	lists Intro to Computer Science 10:20 an	n
Inbox (3) Starred		Issam Laradji	Inbox Convergence rates for cu	n
Important	- 🕁 ⋗	sameh, Mark, sameh (3)	Inbox Graduation Project Dema C 8:01 an	n
Sent Mail		Mark sara, Sara (11)	Label propagation C 7:57 an	n

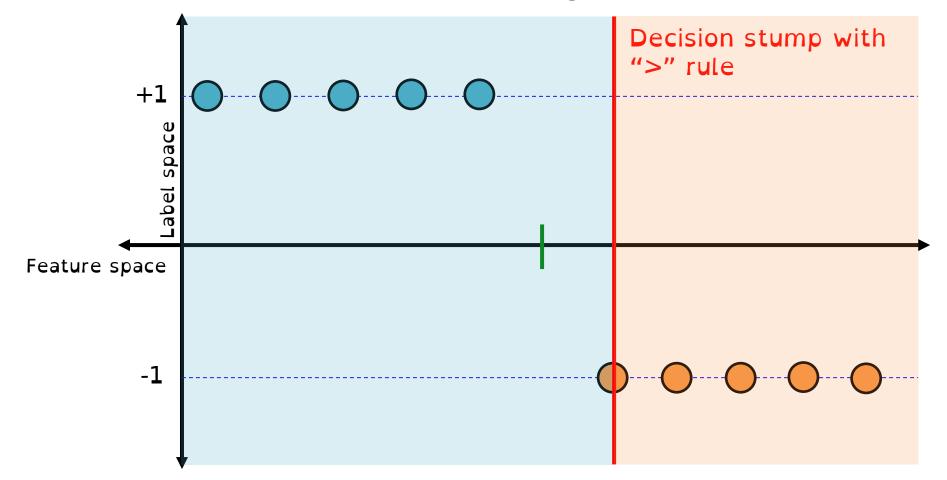
- A binary classification problem ("important" vs. "not important").
 - Labels are approximated by whether you took an "action" based on mail.
 - High-dimensional feature set (that we'll discuss later).
- Gmail uses regression for this binary classification problem.

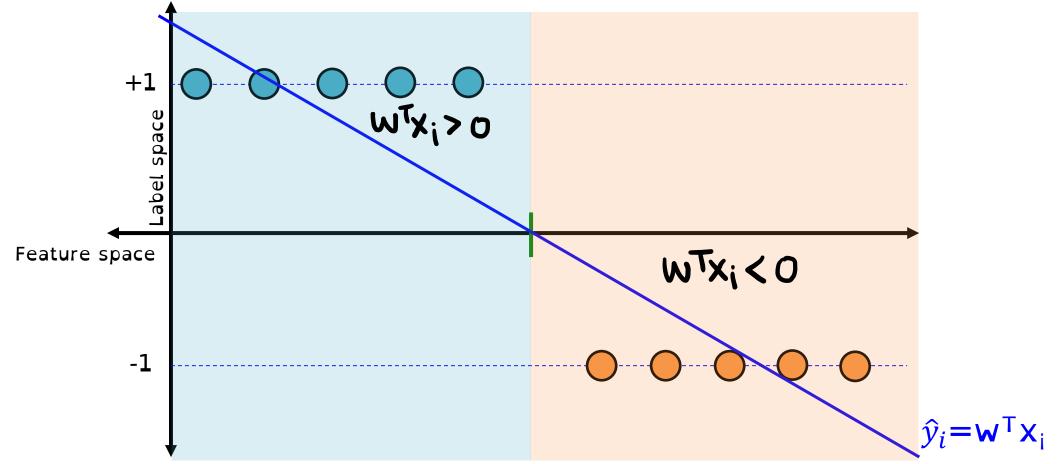
Binary Classification Using Regression?

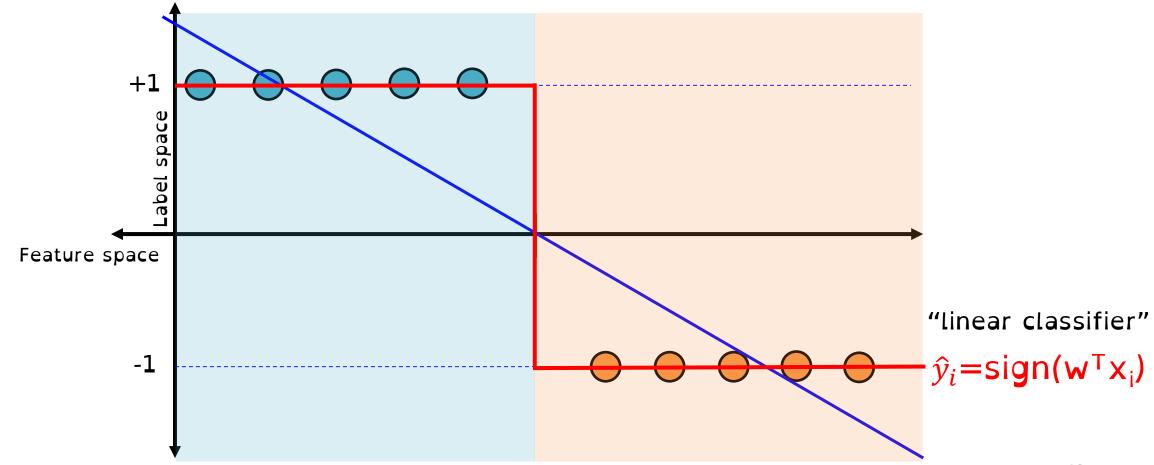
- Recall: we had classification problems in Part 1:
 - Food allergies, spam filtering, character recognition, Netflix recommendation, etc.
- Binary classification: 2 classes in label y
- Usually, we encode $y_i = \{0, 1\}$
- For linear classifiers, we encode $y_i = \{-1, +1\}$
 - e.g. +1 means "important", -1 means otherwise.

- Assumption: somewhere along the feature space, there's a boundary that (roughly) splits +1s and -1s.
- If a perfect boundary exists, the data is called "linearly separable"





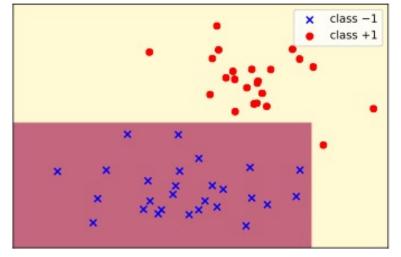




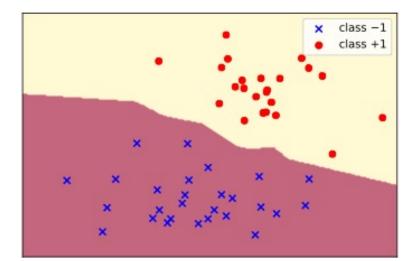
Decision Boundaries in 2D

decision tree

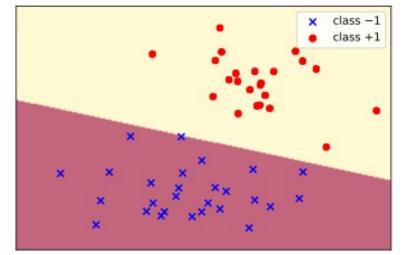
linear classifier



Feature space



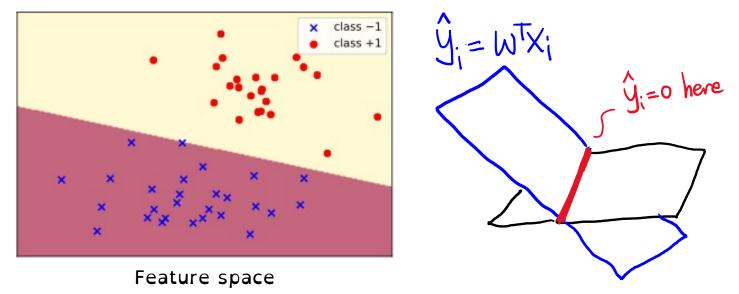
Feature space



Feature space

Decision Boundaries in 2D

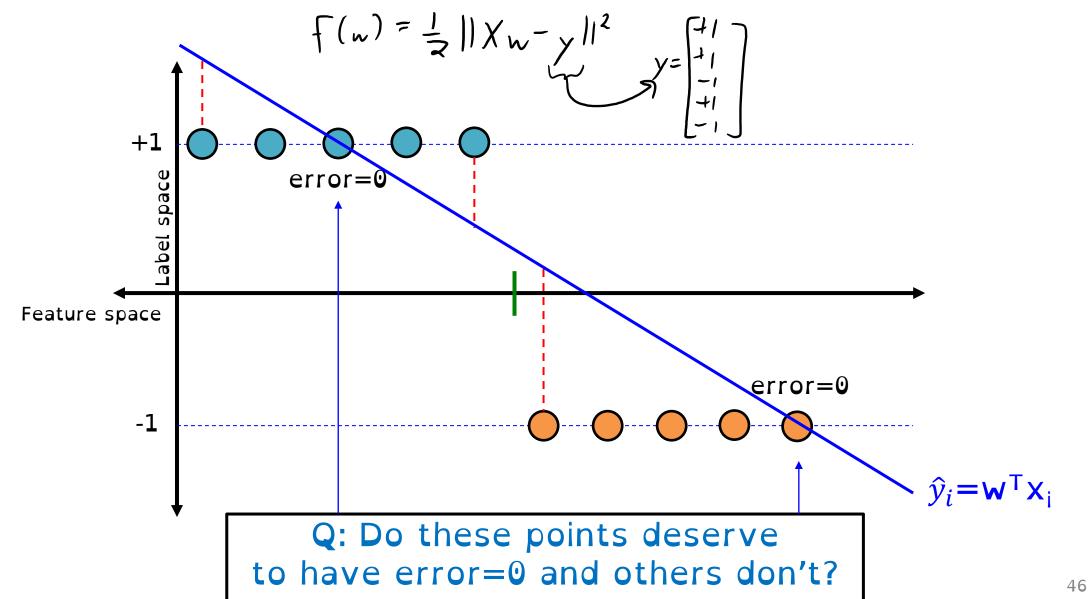
linear classifier



- Linear classifier would be a $\hat{y}_i = w^T x_i$ function coming out of screen:
 - The boundary is at $\hat{y}_i = 0$.

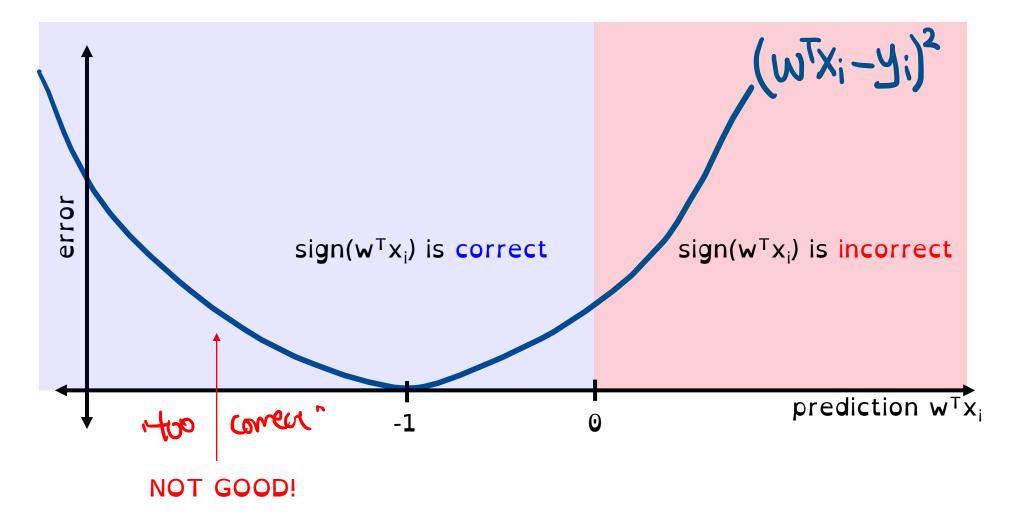
Coming Up Next LOSSES FOR BINARY CLASSIFIERS

Should we use least squares for classification?



Should we use least squares for classification?

Given example (x_i, -1)



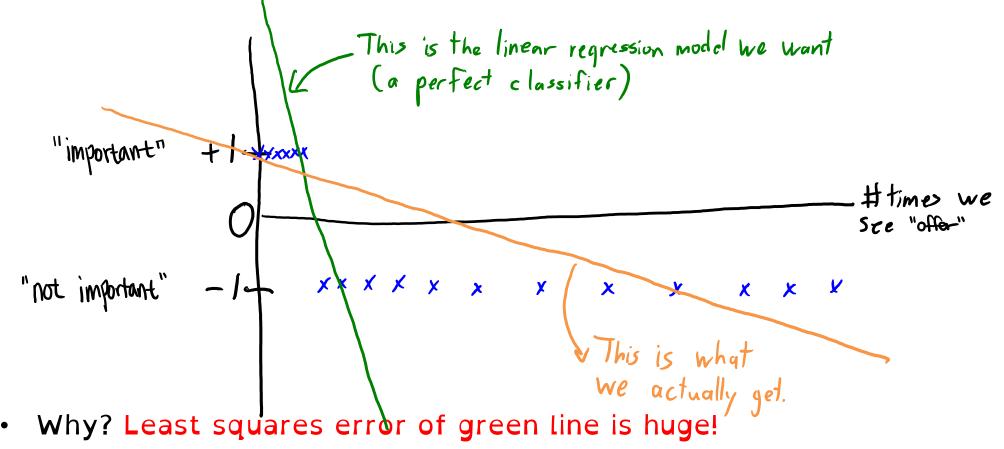
Issues with Least Squares Error

When least squares penalizes my example far from 0

- x_i far from 0 means $w^T x_i$ will be far from 0.
- sign(w^Tx_i) is correct but (w^Tx_i y_i)² is huge
 Penalizes for examples that are "too correct"
- Also, which examples get 0 error is arbitrary

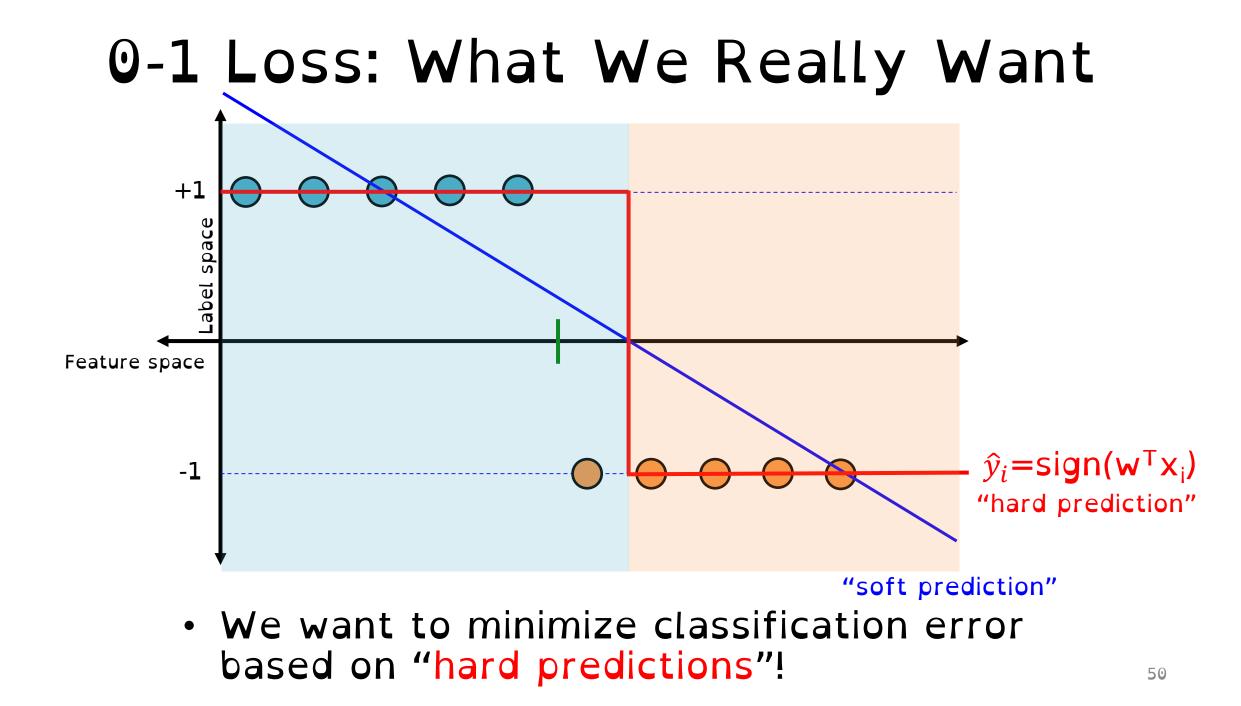
Should we use least squares for classification?

Least squares can behave weirdly when applied to classification: ٠



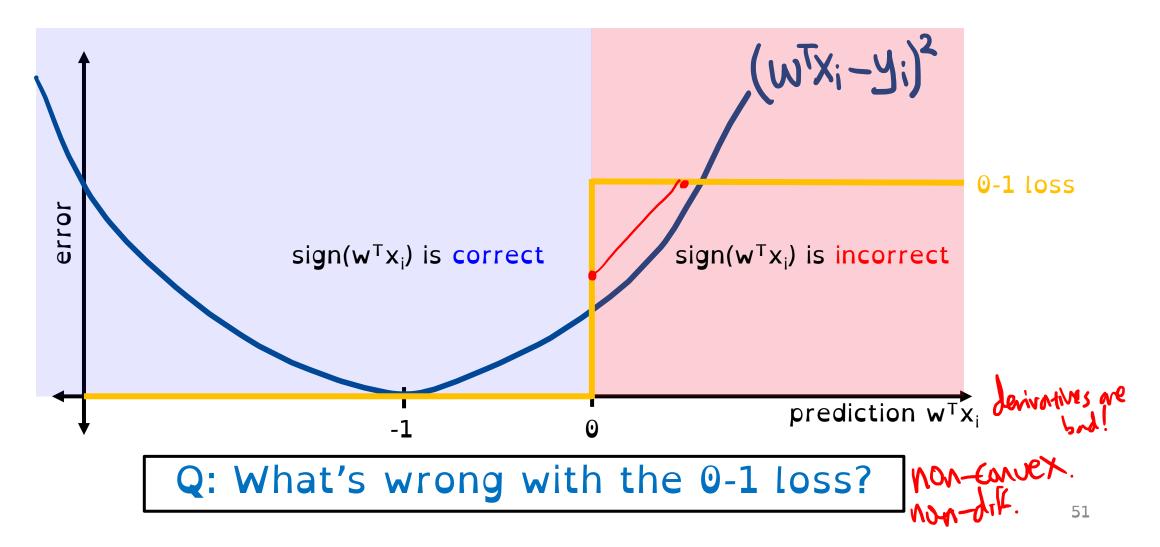
- The green line achieves 0 training classification error.

٠



0-1 Loss: What We Really Want

Given example (x_i, -1)

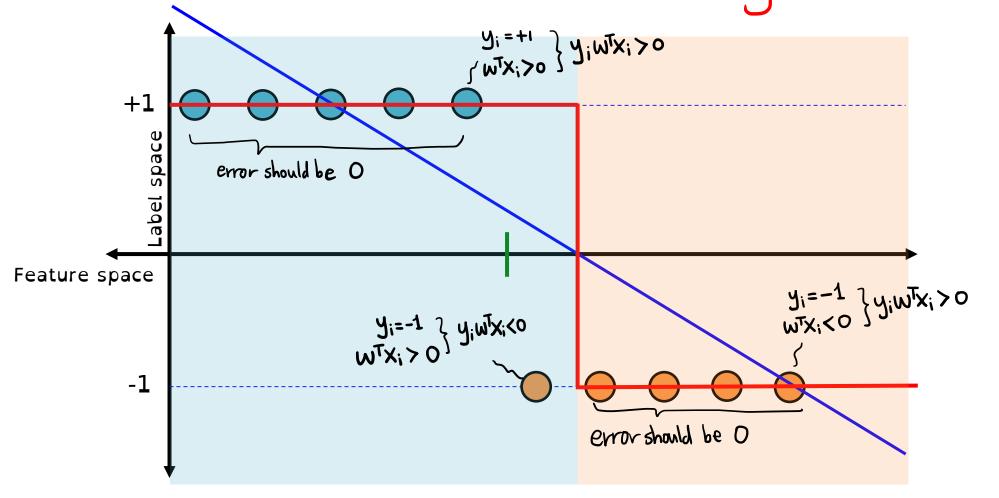


0-1 Loss Function

- We can write using the L0-norm as $\|\hat{y} y\|_0$.
 - In classification it's reasonable that $\hat{y}_i = y_i$ (it's either +1 or -1).
- 0-1 loss is non-convex in 'w'.
 - It's easy to minimize if a perfect classifier exists ("perceptron").
 - Otherwise, finding the 'w' minimizing 0-1 loss is a hard problem.
 - Gradient is zero everywhere: don't even know "which way to go".
 - NOT the same type of problem we had with using the squared loss.
 - We can minimize the squared error, but it might give a bad model for classification.
- Motivates convex approximations to 0-1 loss...

Degenerate Convex Approximation to 0-1 Loss

- If $y_i = +1$, we get the label right if $w^T x_i > 0$.
- If $y_i = -1$, we get the label right if $w^T x_i < 0$, or equivalently $-w^T x_i > 0$.
- So "classifying 'i' correctly" is equivalent to having $\underline{V_1} \cdot \underline{W^T X_i} \ge \underline{O}$.



Degenerate Convex Approximation to 0-1 Loss

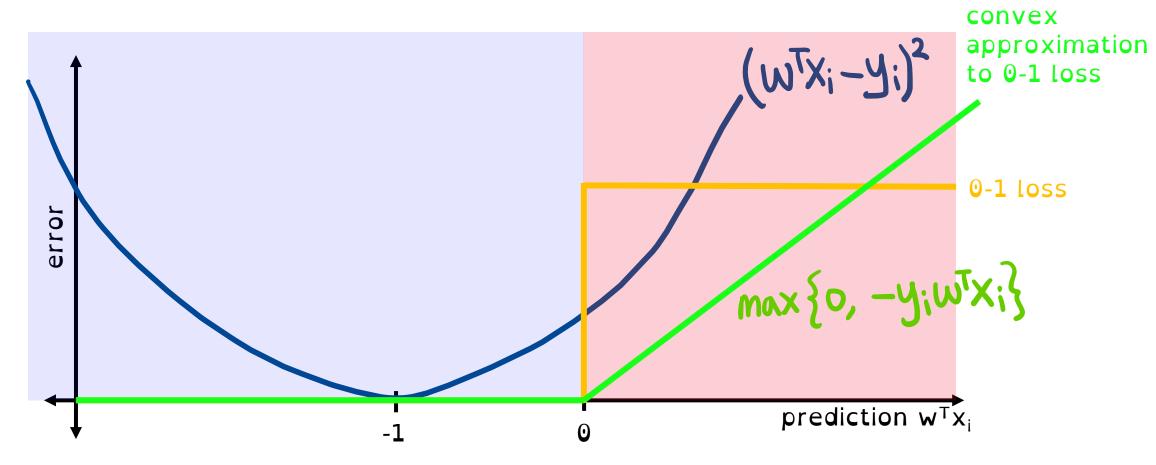
- If $y_i = +1$, we get the label right if $w^T x_i > 0$.
- If $y_i = -1$, we get the label right if $w^T x_i < 0$, or equivalently $-w^T x_i > 0$.
- So "classifying 'i' correctly" is equivalent to having $y_i w^T x_i > 0$.

• One possible convex approximation to 0-1 loss:
- Minimize how much this constraint is violated.
Let's count # times
$$y_i W^T X_i < 0$$

[1] $f(w) = \sum_{i=1}^{n} I(y_i W^T X_i < 0) = \sum_{i=1}^{n} I(0 < -y_i W^T X_i) (0-1 loss)$
[2] $\approx \sum_{i=1}^{n} max \{0, -y_i W^T X_i\}$ (convex approximation)

0-1 Loss: What We Really Want

Given example $(x_i, -1)$



Degenerate Convex Approximation to 0-1 Loss

• Our convex approximation of the error for one example is:

$$\max\{0, -\gamma; w^T x_i\}$$

- We could train by minimizing sum over all examples: $f(w) = \sum_{i=1}^{n} \max\{O_{j} - \gamma_{i} w^{T} x_{i}\}$
- But this has a degenerate solution:

Q: When is f(w) = 0?

• There are two standard fixes: hinge loss and logistic loss.

Summary

- Feature standardization:
 - Change the unit of every feature into "z-score"
- Radial basis functions:
 - Non-parametric bases that can model any function.
- Binary classification using regression:
 - Encode using y_i in $\{-1,1\}$.
 - Use $sign(w^Tx_i)$ as prediction.
 - "Linear classifier" (a hyperplane splitting the space in half).
- Least squares is a weird error for classification.
- 0-1 loss is the ideal loss, but is non-smooth and non-convex.
- Next time: logistic regression and support vector machine

Review Questions

• Q1: In what ways can standardizing the features help reduce a linear model's complexity?

• Q2: What parameters are we "learning" for standardization?

• Q3: How does the shape of the local bumps change with their coefficients in the learned linear model with Gaussian RBF basis?

• Q4: How does σ affect the prediction of the linear model with Gaussian RBF basis when the test example \tilde{x}_i is far from 0?

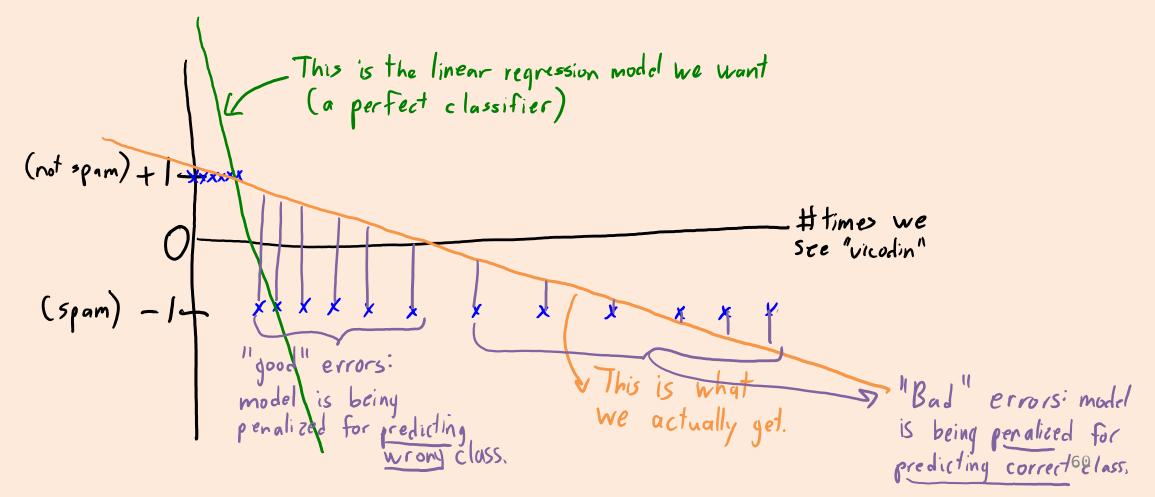
• Q5: Why is discretization of λ and σ important for hyper-parameter optimization for the linear model with Gaussian RBF basis?

Gaussian RBFs: Pseudo-Code

Constructing Gaussian RBFs given data 'X' and hyper-parameter O. Z = z cros(n, n)for il in lin for i2 in lin $Z[il, i2] = e_{xp}(-norm(X[il, 1] - X[i2, 1])^2/20^2)$

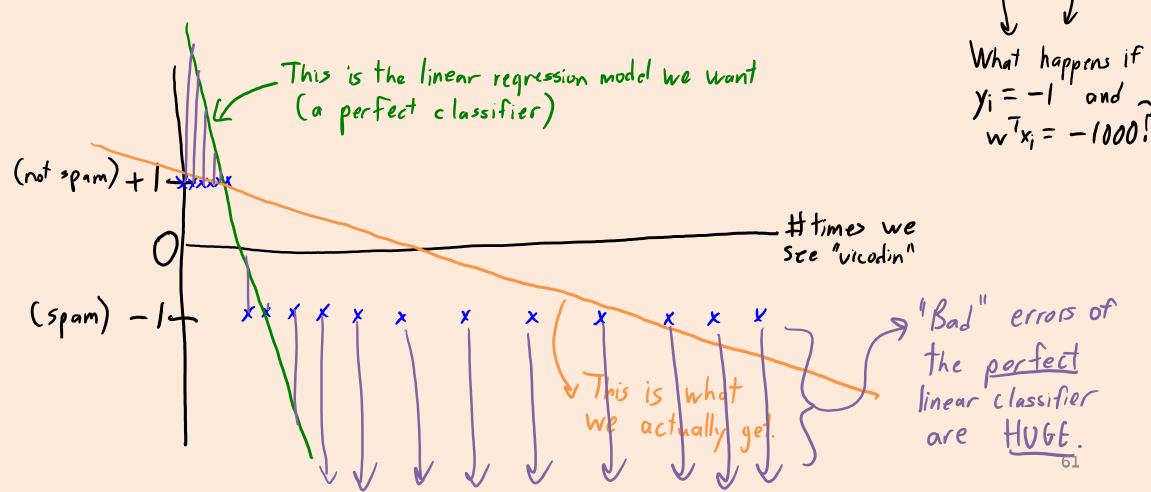
Can we just use least squares??

- What went wrong?
 - "Good" errors vs. "bad" errors.



Can we just use least squares??

- What went wrong?
 - "Good" errors vs. "bad" errors.



 $f(w) = \hat{Z}(w^{T}x_{i} - y_{i})^{2}$