CPSC 340:
Machine Learning and Data Mining

Linear Classifiers
Summer 2021



In This Lecture

1. SVM and Logistic Regression (20 minutes)
2. Linear Probabilistic Classifier (10 minutes)
3. Multi-class Logistic Regression (25 minutes)
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Perceptron Algorithm for Linearly-Separable Data

One of the first “learning” algorithms was the “perceptron” (1957).
— Searches for a ‘w’ such that sign(wTx;) =y, for all i.

Perceptron algorithm:
— Start with w° = 0.

\ . . , s
— Go through gxamples in any order until you make a mistake predicting y;.
Set wttl = wt + y X,
— Keep going thr&'ﬁ'ﬁ examples until you make no errors on training data.

If a perfect classifier exists, this algorithm finds one in finite number of steps.

Intuition:
— Consider a case where wix; < 0 but y, = +1. ha 'G )
— In this case the update “adds more of x; to w” so that wTx; is larger.

—

(Wﬁl)_rxi =Wt a)'n = W' + x % = (o pradiclion) + ”X.'//z
<o

— If y, = -1, you would be subtracting the squared norm.



History [edit]

https://en.wikipedia.org/wiki/Perceptron
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The Mark | Perceptron machine was &
the first implementation of the
perceptron algorithm. The machine was
connected to a camera that used
20x20 cadmium sulfide photocells to
produce a 400-pixel image. The main
visible feature is a patchboard that
allowed expenmentation with different
combinations of input features. To the
right of that are arrays of
potentiometers that implemented the
adaptive weights.[F#"2



SUPPORT VECTOR MACHINE AND
LOGISTIC REGRESSION



Hinge Loss

We saw that we classify examples ‘i’ correctly if yw'x, > 0.
— Qur convex approximation is the amount this inequality is violated.
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Hinge Loss

Consider replacing yw'x; > 0 with ywTx, = 1.
(the “1” is arbitrary: we could make ||w|| bigger/smaller to use any positive constant)
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Hinge Loss

L_Et/ﬁ Counrt ﬁ -(jW\-eS \ﬁ\ WTX'\ < ]- Training examples when they’re too

close to the decision boundary

W = 75 1( \ﬁawaid):i‘; I (o< 1=yiwi)

[ N OX {o, 1-‘3"\NTX'&

« This is the called hinge loss.
—It’s convex: max(constant,linear).
—It'’s not degenerate: f(0) = 1 instead of 0.



Visualizing Hinge Loss
Given example (x;, -1)

A Hinge Loss

max3o, 1 "‘j\‘”TX'&




Visualizing Hinge Loss

Given example (x;, +1)
Hinge loss

— Error

TR prediction wTx;



Hinge Loss

« Hinge loss for all ‘n’ training examples is given by: “6\‘\”‘201‘“
A 0

{(w)’é MQYZ()) | i wa,-)? / ot b

— Upper convex envelope on 0-1 loss.
« S0 minimizing hinge loss indirectly tries to minimize training error.
— Like perceptron, finds a perfect linear classifier if one exists.
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Support Vector Machine

Support vector machine (SVM) is hinge loss with L2-regularization.

‘F(W)tié YYIaYZ(?) l ‘)/i WTX,'; —+ %—HWH2

— There exist specialized optimization algorithm for this problem.
— SVMs can also be viewed as “maximizing the margin” (later).
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Logistic Loss

We can smooth max the degenerate loss with log-sum-exp:

VVW%O)"‘/'.WTX;% v \vc)(ex,o(@‘" €>{F(“Yi“’7’i)>

Summing over all examples gives: J

{(w) = % lOc) (I + exp (- ysW7X;))
V= m IO

W=0

L
This is the “logistic loss” and model is called “logistic regression”.

— It’s not degenerate: f(0) = _99%@’»_)__ instead of 0.

— Convex and differentiable: minimize this with gradient descent.
— You should also add regularization.

— We'll see later that it has a probabilistic interpretation.
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Convex Approximations to 0-1 Loss
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Logistic Regression and SVMs

Logistic regression and SVMs are used EVERYWHERE!

— Fast training and testing.
- Training on huge datasets using “stochastic” gradient descent (next week).
 Prediction is just computing wTx,. g@,\(wfx;)
— Weights w; are easy to understand.
» It’s how much w; changes the prediction and in what direction.
— We can often get a good test error.
- With low-dimensional features using RBFs and regularization.
- With high-dimensional features and regularization.
— Smoother predictions than random forests.

15



Comparison of “Black Box"” Classifiers

Fernandez-Delgado et al. [2014]:
— “Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?”

Compared 179 classifiers on 121 datasets.
Random forests are most likely to be the best classifier.

Next best class of methods was SVMs (L2-regularization, RBFs).

“Why should | care about logistic regression if | know about deep learning?”

16


https://www.quora.com/Why-should-I-care-about-logistic-regression-if-I-know-about-deep-learning

Maximum-Margin Perspective

« Consider a linearly-separable dataset.
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Maximum-Margin Perspective

« Consider a linearly-separable dataset.
— Perceptron algorithm finds some classifier with zero error.
— But are all zero-error classifiers equally good?




Maximum-Margin Perspective

« Consider a linearly-separable dataset.
— Maximum-margin classifier: choose the farthest from both classes.

Per-Fec+ classifier Wlﬂ\

\
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Maximum-Margin Perspective

« Consider a linearly-separable dataset.
— Maximum-margin classifier: choose the farthest from both classes.

Y : 174 \
K— Per-f\ec‘l’ (/,asslf;?" Wf”\ max im(m y’Vlar9i'1‘

Per-f\ed' classifier Wlﬂ\
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Small  "margin




Maximum-Margin Perspective

« Consider a linearly-separable dataset.
— Maximum-margin classifier: choose the farthest from both classes.
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Maximum-Margin Perspective

 For linearly-separable data:

\K— Per'rec"' c,'aSS"ﬁ"' “Vr“\ max imym "marymu

(lgf#nt_&m:.ﬁ closest ex»-m'Jis)
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* With small-enough A > 0, SVMs find the maximum-margin classifier.
— Need A small enough that hinge loss is 0 in solution.
— Origin of the name: the “support vectors” are the points closest to the line (see bonus).

« Recent result: logistic regression also finds maximum-margin classifier.
— With A=0 and if you fit it with gradient descent (not true for many other optimizers).






Previously: Identifying Important E-mails

« Recall problem of identifying ‘important’ e-mails:

| »  Mark .. Issam, Ricky (10) Inbox A2, tutorials, marking = 10:41 am
COMPOSE
Holger, Jim (2) lists Intro to Computer Science 10:20 am
Inbox (3) » Issam Laradji Inbox  Convergence rates forcu = 9:49 am
(_  Important i * sameh, Mark, sameh (3) Inbox  Graduation Project Dema = 8:01 am
Sent Mail - :
- » Mark .. sara, Sara (11) Label propagation = 757 am

« We can do binary classification by taking sign of linear model:
/ .
)’i - §/9n(w7x,->

— Convex loss functions (hinge/logistic loss) let us find an appropriate ‘w’.

« But what if we want a probabilistic classifier?
— Want a model of p(y, = “important” | x;) for use in decision theory.



Recall: “Spam-ness”

_——

Thicker colour:
Higher spam-ness

Q: Does this “look” like a spam?

Pg="Spom | ) :

Feature space
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Linear Prediction of “4+1-ness”

Given parameters w R T
A Yi=W ' X
L O---—-—-0O-——"fF——- -

Feature space

Plyi=+1]%) > Plyi=—4|x)

Labellspace

O
>

Q: How should p(y,=+1 | x;) behave?

26



Sigmoid Function

f(x) = wx
S'\gmmcl: ,P\ﬁ (0. 1)
. _ 1 | | | | | | f(x) = sigmoid(wx)
Smoid ()= {+exp(-2) e
Q: What is sigmoid(z) | |
when z is negative? : 3 : P X

What is sigmoid(z)
when z is positive?

217



+1-ness with Sigmoid

% f(x) = sigmoid(wx)
—_ﬁ_ﬂ'ﬂf 5 10

 |dea: Llet’s compute +1-ness with sigmoid.

 Given parameters w:
1. Compute z; = w'x,
2. Compute p(y; = +1 | w, X;) = sigmoid(z)

=+t |w, ) K = (0.1)

F(ﬂ“*i \szi) = Sigmoid (""TX@

28



Probabilities for Linear Classifiers using Sigmoid

Using sigmoid function, we output probabilities for linear models using:

l

P()(i:+’ / Wy)(i): L

’ 1‘?1/: (‘w7X;

Visualization for 2 features:

[Greg Shakhnarovich]
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What About “-1-ness”?

Using sigmoid function, we output probabilities for linear models using:

P(),,,:Jrl [ wx)= = l

’*Pxf (‘w-,)(;
By rules of probability:

plyn=-1[wmd = | = plyet ] ug)
o

, y P)/f(w7yi)

(with some efloct)

We then use these for “probability that an email x; is important”.

This may seem heuristic, but later we'll see that:
— minimizing Llogistic loss does “maximum likelihood estimation” in this model.

30



People with no idea Me wondering why my
about Al, telling me my  neural network is
Al will destroy the world  classifying a cat as a dog..

(F TR

Coming Up Next
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Multi-Class Linear Classification
« We’'ve been considering linear models for binary classification:
— W ()7
X: y: "’

| -

- E.g., is there a cat in this image or not?




Multi-Class Linear Classification

Today we'll discuss linear models for multi-class classification:
g ) (27

| (
K= %

|

¥

v
[

L5

For example, classify image as “cat”, “dog”, or “person”.

— This was natural for methods of Part 1 (decision trees, naive Bayes, KNN).
— For linear models, we need some new notation.

Q: Can we use binary classifiers for multi-class?

33



“One vs AllL"” Classification

Training phase:

— For each class ‘c’, train binary classifier to predict whether example is a ‘c’.
« For example, train a “cat detector”, a “dog detector”, and a “human detector”.
- If we have ‘k’ classes, this gives ‘k’ binary classifiers .

Yot" +1

Wl oy _1

X = ﬂ = | “husan? — jm’- -1
n 0] Vet +1

d 1

X,\ﬁm’c > Weo X,\j&a %w&g (Xlﬁ‘\\m\‘“%wk\m\l\a\n

"ot detector”



“One vs AllL"” Classification

V\I — k ——Wo\ag—-

i L T Whaman —

« Prediction phase:

— Apply the ‘k’ binary classifiers to get a “score” for each class ‘c’.

Nm;‘-xi =—0.1

A
v sFG’a'}(ﬂ/‘t’s X, == \f\)jpaT x‘ = -O.% ﬂ\z l\\AW‘O\n

\ T - o0

wk\mm \ ' 35




Multi-Class Linear Classification
(MEMORIZE)

« Back to multi-class classification where we have 1 “correct” label:

7 (27 T —
V5
I( /; W= ‘1—‘}& - ]
N e L7 =S
2’ C |q55l f/«ocj \/\/\/
_ S . -
L_ — fecl\d l,/ vv\q)[lm:zm7
- We'll use * Wy as classifier where c=y; (row of correct class label). wjx,'

— So if y;=2 then Wy‘. = W,.



Shape of Decision Boundaries

Recall that a binary linear classifier splits space using a hyper-plane:

- /
51“55”[‘/ & o' because WTX,->O

Xil
(
A X
X
)()(XX y
v 1 0% o
X O
X

C,lasstfy as x
loe(amjc WX <O \< L ,me \M'ﬂ\ w X 0

Divides x; space into 2 “half-spaces”.
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Shape of Decision Boundaries

Multi-class linear classifier is intersection of these “half-spaces”:
— This divides the space into convex regions (like k-means):

W’a(\a‘( X, 7 Mq’w\‘h. ¥,
T, 2w
WL/W X{ / W/ /

— Could be non-convex with change of basis.

38



Digression: Multi-Label Classification

A related problem is multi-label classification:

L]
rfq+ ia9 pesson chair mouse

Y; =l 0 | =1
n [ -
(

- [person

« Which of the k’ objects are in this image? b
— There may be more than one “correct” class label. 4 Lm—*!"*"
— Here we can also fit ‘k’ binary classifiers.
- But we would take all the sign(w_"x;)=+1 as the labels.




“One vs AlL" Multi-Class Linear Classification

Problem: We didn’t train the w_so that the largest w_"x, would be Wy‘Txi.
— Each classifier is just trying to get the sign right.

W‘—')( = "'g (”(n'/', 5(0/8)

| A I;Qa'}v\/\’s X. //—/"w ;= =0 (doy score)

= o0 (hemn s

— Here the classifier incorrectly predicts “dog”.

« “One vs All” doesn’t try to put w,"x; and w5"x;, on same scale for decisions like this.

« We should try to make w;3Tx; positive and w,"x; negative relative to each other.
« The multi-class hinge losses and the multi-class logistic loss do this.

40






Binary Classifiers are “Under-constrained”

O O
O o OO
OOOO
O 08
WoumgeaXi20 | © 7 W, Ixi<o
Feature space



Binary Classifiers are “Under-constrained”

Q: What's the prediction
for this example?

“_o®
O o OO
OOOO O wblu:xizo
O 80
Wblu;r)('\ <O
Feature space g



What Do We Want for Multi-Class Classifiers?

« I|dea: additional constraints on slopes
— WiIlL “force” classifier to find better boundaries

 Think of , , as scores.
— Previously, we only wanted (underconstrained!)
— New constraint: should have than ,
— Now, we want: and

Q: How should we design the error here?




Multi-Class Loss Function

Now, we want:

lets count ¥ times Weod X; < WX + WX W hon X
i f £ (W)= Z,I(wmx. gwa,ax)ﬂ( ot Xi SW&WJX)

1€ ok Q:IM\?

= T, T(0g —Wal X Wil ) 10 <~ Wk X, ¥ W)

1€ Cok Examp

51 % T 100, ~WX;+HWagX; | + Maxcdo, -1 T Wy gt % b

1€ Cok Examples



Multi-Class Loss Function
» Let’s generalize this!

4 (W) mex{o —NmX&WJ,aX } -\-W\m({ 0o -W. i T W )(‘}

IéCﬁtEM

(£) {-(w\ ) Zmax{o -W xd—de]}

1€"c exam‘:\es ct C

0 (W) = Z‘_‘{- (W)= Z Y, L, mex{o,~W x\+—wdx73

-\ 1E"C exam‘)\es ckC

1) 2 Z MoX {O —Wj X; +W JX‘}

| = Cl¢3|



Multi-Class Loss Function

:;X\“'Wc'xi}
WY = —— Weat
We,|—
| K|
4



Multi-Class Hinge Loss
FW) = 2 I, mox{o, Wy Wi}
1= C’*‘j'l
« This function is degenerate: f(0) =
+ As with binary SVM, we introduce an offset | UGUH

Hw)= 31 T, mcfo, L-wxcuon)

““sum”-rule multi-class hinge loss

‘F(W) = 2 m:xtmo‘x {o, | -Wj-." X +W¢'Xi}}
1= C#Y
“max”-rule multi-class hinge loss




Multi-Class SVMs

« Idea: for a cat example, we want: and

Hw) - Z.' ;é'a-.m” o L-wyixi+wex}
£w)

i MMLMM {O, ! ‘WJT %Xy +W¢'Xi‘ﬁ
- For each training example ‘i":

1= c#Y%
— “Sum” rule penalizes for each ‘c’ that violates the constraint.
— “Max” rule penalizes for one ‘c’ that violates the constraint the most.
« “Sum” gives a penalty of ‘k-1" for W=0, “max"” gives a penalty of ‘l".
- If we add L2-regularization, both are called multi-class SVMs:
— “Max” rule is more popular, “sum” rule usually works better.
— Both are convex upper bounds on the 0-1 loss.

]






Multi-Class Logistic Regression

« Idea: for a cat example, we want: and
— In other words: we want to be max w_Tx;

N ¢
Wt X;
Wasl X; > Wiy X Xé Wt Xi =M‘”‘l Wt:;r;(-.
Wart X; > Whmen Xi Whomen Xi
T Wclxa
#+ T Wat X T I
Whman Xi Wi

Q: What happens when W=07




Multi-Class Logistic Regression

wc;‘;x; - QXQ (\:_w‘;rx')
— WY, X; + Mmox Wtk | R —Wee Xi + 103 exp (Wi X;)
W Lo Xi N
(Wi i)
. |ldeas: bysum—ext

1. use log-sum-exp to approximate max

2. instead of counting number of times this quantity is
positive, use this quantity as objective function

Q: What happens when W=07
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Multi-Class Logistic Regression

)= ), —wix; + g (C‘Z}e"\’("’cT ")>

H)= 2, —whx ey Leplun) 4 it

L2-regularized softmax lLoss

« Multi-class (multinomial) Logistic regression:
optimize W with L2-regularized softmax Loss



Multi-Class Logistic Regression

d

- K - X
FW)= 2w % +log(2 el )] + 252w
1= ' ! d carjor ©)
Trle> ‘tO J\/

AP ro)(irv\ﬁ-if> Mma KZ TXS

| s ¢ (Ve Uswal Lz~ fopplecicw
vv\q\«a W(,TXi lgl% ’For 50 TrteS 177 malke w;l)(" Syy\—i” on ec;ew fj {]'W‘
‘H\t COY[QCJT \o\\oe, ‘Fo( a“ ’aladf. e

This objective is convex (should be clear for 1st and 3™ terms).
— It’s differentiable so you can use gradient descent.

When k=2, equivalent to using binary logistic loss.
— Not obvious at the moment.
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Softmax Function
softmax : R x K — (0, 1)
Sottmax (Z , [2‘1 X) = KQX? (%)

. ¢ Z‘_.ex?(i‘g

2‘; 3\
ze[ s \ ‘
Zk

« Evaluates “max-ness” of z compared to group
— if z is big compared to every other z_, softmax is close to 1




“Max-ness” to FInd “Cat-ness”

P(vi= \W, ) K= (0. 1)
P( = \\N,X-): Soitmo\x( N‘Iﬁx' )

\k) Mumnx

“cat-ness” “How big is my cat score compared to
my dog score and human score?”

WeeXi =\. 8 Cok-vess = ~%3,b.
} a\oa-M‘NOOL”
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Multi-Class Linear Prediction in Matrix Notation

« In multi-class linear classifiers our weights are:

=

-'W
= K )

d

« To predict on all training examples, we first compute all w_Tx..

— Or in matrix notation: rﬂw;'x‘ w:x. ‘.- WK",(, ) 8

-T

¥ \1 j
L | — 7 Y \ \
w' X7 W? J WK yz _ }.J
_ ' - [ Wa W
i \| \ ]
n 1 o —\
TV
1
XW X W'

— So predictions are maximum column indices of XWT (which is ‘n’ by ‘k’).
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How Do | Regularize W7

« The Frobenius norm of a (‘k’ by ‘d’) matrix ‘W’ is defined by:

)I W”F :,i ég\%f

(Lz"”ofm | F Joum "stack” elements
nfo  one big vector )

« We can use this to write regularizer in matrix notation:

I{J

V53

o= o

2
W, j

K
- //12 (2 w111 ("L requbarizer on each veclor')

N % \)W”; ( Frolv\mius‘rog,.\ keizer on Wo.'hix")
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summary

« Perceptron algorithm: finds a perfect classifier (if one exists).
« Logistic lLoss uses a smooth convex approximation to the 0-1 Loss.

« SVMs and logistic regression are very widely-used.
— A lot of ML consulting: “find good features, use L2-regularized logistic/SVM".
— Under certain conditions, can be viewed as “maximizing the margin”.
— Both are just linear classifiers (a hyperplane dividing into two halfspaces).

*VHICIEsS TOgSTiCs TEgTessiomr Uses soTmax 0 Z 2 RBE g widy ©

« Next time: probabilistic classifiers, multi-class classifiers
model = SUM ( >\)
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Review Questions

Q1l: What does it mean that a perfect linear classifier exists?

Q2: How are hinge loss and logistic loss not degenerate, compared to the original convex
approximation to 0-1 Loss?

Q3: How do we combine RBF basis with logistic regression or support vector machine?

Q4: What does it mean that the linear classifiers’ predictions are “smoother than random
forest’s”?

Q5: How does regularization affect the linear classifier’s slopes?
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Online Classification with Perceptron

« Perceptron for online linear binary classification [Rosenblatt, 1957]
— Start with wy = 0.
— At time ‘t’ we receive features x,.
— We predict y, = sign(w,"x,).
— If y, #y, then set w,,; = w, + Yy X,.
« Otherwise, set w,; = W,.

(Slides are old so above I'm using subscripts of ‘t’ instead of superscripts.)

« Perceptron mistake bound [Novikoff, 1962]:
— Assume data is linearly-separable with a “margin”:
« There exists w* with ||w*|[=1 such that sign(x,Tw*) = sign(y,) for all ‘t" and |[xTw*| = v.
— Then the number of total mistakes is bounded.
* No requirement that data is IID.

20



Perceptron Mistake Bound

« Let’s normalize each x; so that [[x,]|] = 1.
— Length doesn’t change label.

« Whenever we make a mistake, we have sign(y,) # sign(w,"x,) and

2 2
|wer1]]” = ||we + yae||
= [Jwe]]® + 2wl xy +1
\'W_/

<0

IN

we||* + 1
wi_1||® + 2
we—s | + 3.

VAN

AN

« So after ‘k’ errors we have [|w[]? = k.



Perceptron Mistake Bound

« Let’s consider a solution w*, so sign(y,) = sign(x,"w¥*).
— And let’s choose a w* with [|[w*|| = 1,
« Whenever we make a mistake, we have:

|lwipa ]l = flwera ||l

T

> Wiy Wy
T

= (Wi + yexe)” Wy

T T
= Wy Wy + YTy Wy

— 'th'w* + |:L’tT’w*\

Zth'w*—i—'y.

— Note: w,"w. = 0 by induction (starts at 0, then at least as big as old value plus v).
« So after ‘k’ mistakes we have ||w| = vk.



Perceptron Mistake Bound

« S0 our two bounds are ||w|[ = sqrt(k) and [|w|] = VK.

« This gives vk = sqrt(k), or a maximum of 1/yv% mistakes.
— Note that v > 0 by assumption and is upper-bounded by one by [|x|| = 1.

— After this ‘k’, under our assumptions
we're guaranteed to have a perfect classifier.



Maximum-Margin Classifier

« Consider a linearly-separable dataset.
— Maximum-margin classifier: choose the farthest from both classes.
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Maximum-Margin Classifier

« Consider a linearly-separable dataset.
— Maximum-margin classifier: choose the farthest from both classes.

\ Perfect classifier wilh MGX i ”,V,a,9;,,“
[- ' ‘\ (‘_&-’}’L‘c‘)f Apquce -}D E&)CS% €Xmmlp/-e§>
“Inal Classi fier O_rﬂy X‘Z
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A X < 6 Support vector maching
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X X X X . OOO o - The 8)(°er'(5 ‘ﬂ\a'/' are.
x X X - s closest are Ca/,ecl
/] \
SULN;or', V€C7‘0[j

| Xil -



Maximum-Margin Classifier

« Consider a linearly-separable dataset.
— Maximum-margin classifier: choose the farthest from both classes.

\ Pe,—-{}c‘l’ C,ass.lf\”\’" Wr”\ M9X imm ,lv""a’y‘"“
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Support Vector Machines

 For linearly-separable data, SVM minimizes:
- 2
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- - T - = \ Oxamples (orrafly
— Subject to the constraints that: w X, < | for . I ampres /

(see Wikipedia/textbooks)
« But most data is not linearly separable.
 For non-separable data, try to minimize violation of constraints:
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Support Vector Machines

Try to maximizing margin and also minimizing constraint violation:
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We typically control margin/violation trade-off with parameter “A":

F(w>: émaxiﬁ) /~)’;W7X;§ + %))WNQ

This is the standard SVM formulation (L2-regularized hinge).
— Some formulations use A= 1 and multiply hinge by ‘C’ (equivalent).




Support Vector Machines for Non-Separable

 Non-separable case:
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Support Vector Machines for Non-Separable

 Non-separable case:
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Support Vector Machines for Non-Separable

 Non-separable case: \ .
Flw= gmaxZU, | - y.-W'x,-g + %Vw”'?
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Support Vector Machines for Non-Separable

£w) = ém:axiv, + %')w”z

 Non-separable case:
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Discussion of Various Linear Classifiers

Perceptron vs. logistic vs. SVM:

These linear classifiers are all extremely similar. They are basically just variations on reasonable methods to Learn a
Classifier that uses the rule $$\hat{y}_i = \text{sign}{w”~Tx_i)$$. (The online vs. offline issue is a red herring, you can
train logistic/SVMs online using stochastic gradient and you can write a linear program that will give you a minimizer of
the perceptron objective).

If you want to explore the small differences, these are some of the usual arguments:

The perceptron has largely been replaced by logistic/SVM, except in certain subfields like theory (it is easy to prove things about _
perceptrons) and natural language processing (mostly historical reasons). Perceptrons have the potential disadvantages of non-regularized
models (non-uniqueness and potential non-existence of the solution, potential high sensitivity to small changes in the data, and non-
robustness to irrelevant features). However, perceptrons do not interact well with regularization: if you add L2-regularization and the
dataset is linearly-separable, then the solution only exists as a limit and it is actually $$w=0$$ (although it may still work in practice).

A usual criticism of logistic regression by people that favour SVMs is that, if the data is linearly se]Parable, then the solution only exists as a
limit as some elements $$w$$ go to plus or minus $$\infty$s$. However, this argument disagpears it you add regularization. A second
argument traditionally made by SVM people is that you can't kernelize logistic regression, but this is now known to be incorrect (we'll cover
a general kernelization strategy for L2-regularized linear classifiers in one of the next two classes).

The remaining differences between logistic and SVMs is that logistic regression is smooth while SVMs have support vectors. This means that
the logistic regression training problem is easier from an optimization perspective (we'll get to this next class?. But if you have very few
support vectors, you can only take advantage of this with SVMs (or perceptrons), and this is especially important if you are using kernels.

Regarding other linear predictors for binary classification, there are a few more:
Probit regression uses the Gaussian CDF in place of the lo?istic sigmoid function. This has very similar properties to

logistic regression, but it's harder to generalize to the mu

ti-class case (while probit regression is better if you are using a

“Bayesian” estimator). You could actually use any CDF as your sigmoid function, and if there is some asymmetry between
the classes using an extreme value distribution is sometimes advocated in statistics.

In neural networks, they sometimes use tanh in place of the logistic sigmoid function, and the reason to do this is to get
values into the interval [-1,1] instead of [0,1].

If you want to keep support vectors but get a smooth optimization problem, you can square the hinge loss (making it
once but not twice differentiable), and this is called smooth SVMs. Alternately, you could replace the non-differentiable
kink with a small smooth part, and this is called Huberized SVMs.

Finally, some people actually just apply least squares to classification problems. If you use a flexible enough
basis/kernel, then the 'oad' errors may not actually be that harmful.



Robusthness and Convex Approximations

- Because the hinge/logistic grow like absolute value for mistakes, they tend
not to be affected by a small number of outliers.
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Robusthness and Convex Approximations

- Because the hinge/logistic grow like absolute value for mistakes, they tend
not to be affected by a small number of outliers.

« But performance degrades if we have many outliers.



Non-Convex 0-1 Approximations

« There exists some smooth non-convex 0-1 approximations.

— Robust to many/extreme outliers.

— Still NP-hard to minimize.

— But can use gradient descent.
* Finds “local” optimum.
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“Rooust” Logistic Regression

A recent idea: add a “fudge factor” v, for each example.

n
- 1
‘F(w)v) - 2’ 'oc) (l‘f €xP(">/,'\\/ X +V,))
« If wTx; gets the sign wrong, we can “correct” the mis-classification by modifying v..

— This makes the training error lower but doesn’t directly help with test data, because we
won’t have the v, for test data.

— But having the v, means the ‘w’ parameters don’t need to focus as much on outliers (they
can make |v,| big if sign(wTx;) is very wrong).



“Rooust” Logistic Regression

A recent idea: add a “fudge factor” v, for each example.

flwyv) = ,ﬁ, log (14 exp (= y ' +,))

If wTx; gets the sign wrong, we can ‘“correct” the mis-classification by modifying v..

A problem is that we can ignore the ‘w’ and get a tiny training error by just
updating the v; variables.

But we want most v, to be zero, so “robust logistic regression” puts an L1-
regularizer on the v; values:

You would probably also want to regularize the ‘w’ with different A.

‘F(w)v7 = é 'oc) (14 exp(->/,-v7x,- "'V,-)) * ﬂ)’vll,



“All-Pairs” and ECOC Classification

Alternative to “one vs. all” to convert binary classifier to multi-class is “all pairs”.

— For each pair of labels ‘c’ and ‘d’, fit a classifier that predicts +1 for examples of class ‘c’ and -1 for examples of class ‘d’
(so each classifier only trains on examples from two classes).

— To make prediction, take a vote of how many of the (k-1) classifiers for class ‘c’ predict +1.
— Often works better than “one vs. all”, but not so fun for large ‘k’.

A variation on this is using “error correcting output codes” from information theory (see Math 342).
— Each classifier trains to predict +1 for some of the classes and -1 for others.

— You setup the +1/-1 code so that it has an “error correcting” property.
+ It will make the right decision even if some of the classifiers are wrong.



Motivation: Dog Image Classification

Suppose we're classifying images of dogs into breeds:

What if we have images where class label isn’t obvious?
— Siberian husky vs. Inuit dog?




Learning with Preferences

Do we need to throw out images where label is ambiguous?
— We don’t have the vy..

— We want classifier to prefer Siberian husky over bulldog, Chihuahua, etc.
« Even though we don’t know if these are Siberian huskies or Inuit dogs.

— Can we design a loss that enforces preferences rather than “true” labels?
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Learning with Pairwise Preferences (Ranking)

- Instead of y,, we're given list of (c,,c,) preferences for each ‘I’

Vve V\/0\n+ VVC;T)(I ? WLJTX' 'FO/' TAU@ rfwr (CI)C:Z) vo ,M(j

Multi-class classification is special case of choosing (y;,c) for all ‘c’.

- By following the earlier steps, we can get objectives for this setting:
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Learning with Pairwise Preferences (Ranking)

« Pairwise preferences for computer graphics:
— We have a smoke simulator, with several parameters:

LY. o

rabe sarmulabion )

— Don’t know what the optimal parameters are, but we can ask the artist:
« “Which one looks more like smoke”?
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Learning with Pairwise Preferences (Ranking)

* Pairwise preferences for humour:
— New Yorker caption contest:

— ““Which one is funnier”?



Risk Scores

« In medicine/law/finance, risk scores are sometimes used to give probabilities:

1. Congestive Heart Failure 1 point
2.  Hypertension 1 point | +
3. Age>75 1 point | +
4. Diabetes Mellitus 1 point | +
5.  Prior Stroke or Transient Ischemic Attack 2 points | +
SCORE | =
SCORE 0 1 2 3 4 5 6

RISK | 1.9% | 28% | 4.0% | 59% | 85% | 12.5% | 18.2%

Figure 1: CHADS, risk score of Gage et al. (2001) to assess stroke risk (see www.mdcalc.com for other
medical scoring systems). The variables and points of this model were determined by a panel of experts,
and the risk estimates were computed empirically from data.

— Get integer-valued “points” for each “risk factor”, and probability is computed from data based on
people with same number of points.

— Less accurate than fancy models, but interpretable and can be done by hand.
« Some work on trying to “learn” the whole thing (like doing feature selection then rounding).



Support Vector Regression

« Support vector regression objective (with hyper-parameter e):

n
Flu) '_,i‘ maxi0), ’w7x,-7,-"'63 * -j’z—\-//w//z

— Looks like L2-regularized robust
regression with the L1-loss.
— But have loss of 0 if y; within € of ¥,.

« So doesn’t try to fit data exactly.
— This can help fight overfitting.

— Support vectors are points with loss>0.
« Points outside the “epsilon-tube”.

— Example with Gaussian-RBFs as features:
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1-Class SVMs

e 1l-class SVMs for outlier detection.

— |earned frontier

71 o© training observations

@ new regular observations

© new abnormal observations

fw,wy) = Zil[ma}{{oa Wwo — TUbe"i} — wol + %HWH%

—r

— Variables are ‘w’ (vector) and ‘wy’ (scalar).
— Only trains on “inliers”.
- Tries to make wTx; bigger than wy for inliers. e
« At test time: says “outlier” if wix; < wy. T 5 0 : :
. Usually used with RBFs. ertor train: 227200 ; ertors novel regular: 040 : erors novel abnormal: 2/40
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