
CPSC 340:
Machine Learning and Data Mining

Kernel Trick
Summer 2021

1

In This Lecture
1. Kernel Trick (30 minutes)
2. Stochastic Gradient Descent Intro (15 minutes)

2

PROBLEM WITH
HIGH-DIMENSIONAL BASIS
Coming Up Next

3

Motivation: Automatic Brain Tumor Segmentation
• Task: segmentation tumors and normal tissue in multi-modal MRI data.

– We previously discussed using convolutions to engineer features.

• Best performance was obtained with linear classifiers (SVMs/logistic).
– Provided you did feature selection or used regularization.

• One of the only methods that worked better:
– Regularized linear classifier with a low-order polynomial basis (p=2 or p=3).

• Makes the data “closer to separable” in the higher-dimensional space.

Input: Output:

4

Support Vector Machines for Non-Separable
• Can we use linear models for data that is not close to separable?

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes
5

Support Vector Machines for Non-Separable
• Can we use linear models for data that is not close to separable?

– It may be separable under change of basis (or closer to separable).

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes
6

Support Vector Machines for Non-Separable
• Can we use linear models for data that is not close to separable?

– It may be separable under change of basis (or closer to separable).

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes
7

Support Vector Machines for Non-Separable
• Can we use linear models for data that is not close to separable?

– It may be separable under change of basis (or closer to separable).

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes
8

Multi-Dimensional Polynomial Basis
• Recall fitting polynomials when we only have 1 feature:

• We can fit these models using a change of basis:

9

Q: How can we do this when
we have a lot of features?

Multi-Dimensional Polynomial Basis
• Polynomial basis for d=2 and p=2:

• With d=4 and p=3, the polynomial basis would include:
– Bias variable and the xij: 1, xi1, xi2, xi3, xi4.
– The xij squared and cubed: (xi1)2, (xi2)2, (xi3)2, (xi4)2, (xi1)3, (xi2)3, (xi3)3, (xi4)3.
– Two-term interactions: xi1xi2, xi1xi3, xi1xi4, xi2xi3, xi2xi4, xi3xi4.
– Cubic interactions: xi1xi2xi3, xi2xi3xi4, xi1xi3,xi4, xi1xi2xi4,

xi12xi2, xi12xi3, xi12xi4, xi1xi22, xi22xi3, xi22xi4, xi1xi32, xi2xi32,xi32xi4, xi1xi42, xi2xi42, xi3xi42.
10

Kernel Trick
• If we go to degree p=5, we’ll have O(d5) quintic terms:

• For large ‘d’ and ‘p’, storing a polynomial basis is intractable!
– ‘Z’ has k=O(dp) columns, so it does not fit in memory.

• Could try to search for a good subset of these.
– “Hierarchical forward selection” (bonus).

• Alternating, you can use all of them with the “kernel trick”.
– For special case of L2-regularized linear models.

11

GRAM MATRIX AND
THE KERNEL TRICK
Coming Up Next

12

How can you use an exponential-sized basis?
• Which of these two expressions would you rather compute?

– Expressions are equal, but left costs O(_) while right costs O(_).

• Which of these two expressions would you rather compute?

– Expressions are equal, but left has infinite terms and right costs O(_).

• Maybe we can somehow add weights to the expressions on the left,
and formulate least squares to use tricks like on the right? 13

The “Other” Normal Equations
• Recall the L2-regularized least squares objective with basis ‘Z’:

• We showed that the minimum is given by

• (in practice you still solve the linear system, since inverse is less numerically unstable – see CPSC 302)

• With some work (bonus), this can equivalently be written as:

• This is faster if n << k:
– After forming ‘Z’, cost is O(n2k + n3) instead of O(nk2 + k3).
– But for the polynomial basis, this is still too slow since k = O(dp).

14

The “Other” Normal Equations
• With the “other” normal equations we have
• Given test data �𝑋𝑋, predict �𝑦𝑦 by forming �𝑍𝑍 and then using:

• Notice that if you have K and �𝐾𝐾 then you do not need Z and �𝑍𝑍.

15

The “Other” Normal Equations

• “kernel trick”: for certain bases (like polynomials),
We can efficiently compute K and �𝐾𝐾
even though forming Z and �𝑍𝑍 is intractable.

• In the same way we can comptue
(x+1)9 instead of x9 + 9x8 + 36x7 + 84x6…

16

Gram Matrix: Training
• The matrix K = ZZT is called the Gram matrix K.

• K contains the dot products between all training examples.
– Similar to ‘Z’ in RBFs, but using dot product as “similarity” instead of distance.

17

Gram Matrix: Prediction
• The matrix �𝐾𝐾 = �𝑍𝑍ZT has dot products between train and test examples:

• Kernel function: k(xi, xj) = ziTzj.
– Computes dot product between in basis (ziTzj) using original features xi and xj.

18

Interpreting Kernel Function

19

Change of basis: project examples into another (more complex) feature space

Dot product (“similarity”) between examples i and j in the new feature space

Gram Matrix as “Change of Basis”

• A row of the matrix K: ki
– Results of kernel function between xi and other examples
– Kernel regression: let’s use these as features!

20

Linear Regression vs. Kernel Regression

21

Linear Regression vs. Kernel Regression

22

Linear Regression vs. Kernel Regression

23

Degenerate Example: “Linear Kernel”
• Consider two examples xi and xj for a 2-dimensional dataset:

• And our standard (“linear”) basis:

• In this case the inner product ziTzj is k(xi,xj) = xiTxj:

24

Example: Degree-2 Kernel
• Consider two examples xi and xj for a 2-dimensional dataset:

• Now consider a particular degree-2 basis:

• In this case the inner product ziTzj is k(xi,xj) = (xiTxj)2:

25

POLYNOMIAL AND
GAUSSIAN RBF KERNELS
Coming Up Next

26

Polynomial Kernel with Higher Degrees
• Let’s add a bias and linear terms to our degree-2 basis:

• In this case the inner product ziTzj is k(xi,xj) = (1 + xiTxj)2:

27

Polynomial Kernel with Higher Degrees
• To get all degree-4 “monomials” I can use:

• To also get lower-order terms use k(xi,xj) = (1 + xiTxj)4
• The general degree-p polynomial kernel function:

– Works for any number of features ‘d’.
– But cost of computing one k(xi,xj) is O(_) instead of O(__) to compute ziTzj.
– Take-home message: I can compute dot-products without the features.

28

Kernel Trick with Polynomials
• Using polynomial basis of degree ‘p’ with the kernel trick:

– Compute K and �𝐾𝐾 using:

– Make predictions using:

• Training cost is only O(_________), despite using k=O(__) features.
– We can form ‘K’ in O(n2d), and we need to “invert” an ‘n x n’ matrix.
– Testing cost is only O(___), cost to form �𝐾𝐾.

29

Gaussian-RBF Kernel
• Most common kernel is the Gaussian RBF kernel:

• Same formula and behaviour as RBF basis, but not equivalent:
– Before we used RBFs as a basis, now we’re using them as inner-product.

• Basis zi giving Gaussian RBF kernel is infinite-dimensional.
– If d=1 and σ=1, it corresponds to using this basis (bonus slide):

30

Motivation: Finding Gold
• Kernel methods first came from mining engineering (“Kriging”):

– Mining company wants to find gold.
– Drill holes, measure gold content.
– Build a kernel regression model (typically use RBF kernels).

http://www.bisolutions.us/A-Brief-Introduction-to-Spatial-Interpolation.php
31

Kernel Trick for Non-Vector Data
• Consider data that doesn’t look like this:

• But instead looks like this:

• We can interpret k(xi,xj) as a “similarity” between objects xi and xj.
– We don’t need features if we can compute “similarity” between objects.
– Kernel trick lets us fit regression models without explicit features.
– There are “string kernels”, “image kernels”, “graph kernels”, and so on.

32

Kernel Trick for Non-Vector Data
• Recent list of types of data where people have defined kernels:

• Bonus slide overviews a particular “string” kernel.
https://arxiv.org/pdf/1802.04784.pdf

33

Valid Kernels
• What kernel functions k(xi,xj) can we use?

• Kernel ‘k’ must be an inner product in some space:
– There must exist a mapping from the xi to some zi such that k(xi,xj) = ziTzj.

• It can be hard to show that a function satisfies this.
– Infinite-dimensional eigenfunction problem.

• But like convex functions, there are some simple rules for constructing
“valid” kernels from other valid kernels (bonus slide).

34

Kernel Trick for Other Methods
• Besides L2-regularized least squares, when can we use kernels?

– We can compute Euclidean distance with kernels:

– All of our distance-based methods have kernel versions:
• Kernel k-nearest neighbours.
• Kernel clustering k-means (allows non-convex clusters)
• Kernel density-based clustering.
• Kernel hierarchical clustering.
• Kernel distance-based outlier detection.
• Kernel “Amazon Product Recommendation”.

35

Kernel Trick for Other Methods
• Besides L2-regularized least squares, when can we use kernels?

– “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized:

36

Kernel Trick for Other Methods
• Besides L2-regularized least squares, when can we use kernels?

– “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized:

• L2-regularized robust regression.
• L2-regularized brittle regression.
• L2-regularized logistic regression.
• L2-regularized hinge loss (SVMs).

37

Logistic Regression with Kernels

38

STOCHASTIC GRADIENT DESCENT
INTRO
Coming Up Next

39

Motivation: Big-n Problems
• Recall the automatic brain tumour segmentation problem:

• MRI scanners at the time produced 200x200x200 volumes.
– So one volume givens 8 million training examples.
– And you need to train on more than one volume!

• Similar issues arise in the Gmail application:
– If every e-mail is a training example, you have LOTS of training examples.

40

Motivation: Big-n Problems
• Consider fitting a least squares model:

• Gradient methods are effective when ‘d’ is very large.
– O(__) per iteration instead of O(________) to solve as linear system.

• But what if number of training examples ‘n’ is very large?
– All Gmails, all products on Amazon, all homepages, all images, etc.

41

Gradient Descent vs. Stochastic Gradient
• Recall the gradient descent algorithm:

• For least squares, our gradient has the form:

• So the cost of computing this gradient is linear in ‘n’.
– As ‘n’ gets large, gradient descent iterations become expensive.

42

Gradient Descent vs. Stochastic Gradient
• Common solution to this problem is stochastic gradient algorithm:

• Uses the gradient of a randomly-chosen training example:

• Cost of computing this one gradient is independent of ‘n’.
– Iterations are ‘n’ times faster than gradient descent iterations.
– With 1 billion training examples, this iteration is 1 billion times faster.

43

Stochastic Gradient (SG)
• Stochastic gradient is an iterative optimization algorithm:

– We start with some initial guess, w0.
– Generate new guess by moving in the negative gradient direction:

• For a random training example ‘i’.
– Repeat to successively refine the guess:

• For a random training example ‘i’.

44

Problem where we can use Stochastic Gradient
• Stochastic gradient applies when minimizing averages:

• Basically, all our regression losses except “brittle” regression.
– Recall: multiplying by positive constant doesn’t change location of optimal ‘w’.

45

Why Does Stochastic Gradient Work / Not Work?
• Main problem with stochastic gradient:

– Gradient of random example might point in the wrong direction.

• Does this have any hope of working?
– The expected direction is the full gradient.

– The algorithm is going in the right direction on average.
46

Gradient Descent vs. Stochastic Gradient (SG)
• Gradient descent:

• Stochastic gradient:

47

Summary
• High-dimensional bases allows us to separate non-separable data.
• “Other” normal equations are faster when n < d.
• Kernel trick allows us to use high-dimensional bases efficiently.

– Write model to only depend on inner products between features vectors.

• Kernels let us use similarity between objects, rather than features.
– Allows some exponential- or infinite-sized feature sets.
– Applies to distance-based and linear models with L2-regularization.

• Stochastic gradient methods let us use huge datasets.

• Next time:
– How do we train on all of Gmail?

48

Review Questions
• Q1: What is the signature of a kernel function?

• Q2: In what scenarios would using the kernel trick be too
expensive?

• Q3: How does polynomial and Gaussian RBF kernels affect the
shape of decision boundaries in linear classifiers?

• Q4: Why do “deep learning” models often use stochastic
gradient descent?

49

Feature Selection Hierarchy
• Consider a linear models with higher-order terms,

• The number of higher-order terms may be too large.
– Can’t even compute them all.
– We need to somehow decide which terms we’ll even consider.

• Consider the following hierarchical constraint:
– You only allow w12 ≠ 0 if w1 ≠ 0 and w2 ≠ 0.
– “Only consider feature interaction if you are using both features already.”

50

Hierarchical Forward Selection
• Hierarchical Forward Selection:

– Usual forward selection, but consider interaction terms obeying
hierarchy.

– Only consider w12 ≠ 0 once w1 ≠ 0 and w2 ≠ 0.
– Only allow w123 ≠ 0 once w12 ≠ 0 and w13 ≠ 0 and w23 ≠ 0.
– Only allow w1234 ≠ 0 once all threeway interactions are present.

http://arxiv.org/pdf/1109.2397v2.pdf
51

52

Why is inner product a similarity?
• It seems weird to think of the inner-product as a similarity.
• But consider this decomposition of squared Euclidean distance:

• If all training examples have the same norm, then minimizing Euclidean distance is
equivalent to maximizing inner product.

– So “high similarity” according to inner product is like “small Euclidean distance”.
– The only difference is that the inner product is biased by the norms of the training

examples.
– Some people explicitly normalize the xi by setting xi = (1/||xi||)xi, so that inner products act

like the negation of Euclidean distances.
• E.g., Amazon product recommendation.

53

54

55

A String Kernel
• A classic “string kernel”:

– We want to compute k(“cat”, “cart”).
– Find all common subsequences: ‘c’, ‘a’, ‘t’, ‘ca’, ‘at’, ‘ct’, ‘cat’.
– Weight them by total length in original strings:

• ‘c’ has length (1,1), ‘ca’ has lengths (2,2), ‘ct’ has lengths (3,4), and so on.
– Add up the weighted lengths of common subsequences to get a similarity:

– where γ is a hyper-parameter controlling influence of length.

• Corresponds to exponential feature set (counts/lengths of all subsequences).
– But kernel can be computed in polynomial time by dynamic programming.

• Many variations exist.

56

57

58

Kernel Trick for Other Methods
• Besides L2-regularized least squares, when can we use kernels?

– “Representer theorems” have shown that
any L2-regularized linear model can be kernelized.

– Linear models without regularization fit with gradient descent.
• If you starting at v=0 or with any other value in span of rows of ‘Z’.

59

	CPSC 340:�Machine Learning and Data Mining
	In This Lecture
	Problem with �High-Dimensional Basis
	Motivation: Automatic Brain Tumor Segmentation
	Support Vector Machines for Non-Separable
	Support Vector Machines for Non-Separable
	Support Vector Machines for Non-Separable
	Support Vector Machines for Non-Separable
	Multi-Dimensional Polynomial Basis
	Multi-Dimensional Polynomial Basis
	Kernel Trick
	Gram Matrix and�The Kernel Trick
	How can you use an exponential-sized basis?
	The “Other” Normal Equations
	The “Other” Normal Equations
	The “Other” Normal Equations
	Gram Matrix: Training
	Gram Matrix: Prediction
	Interpreting Kernel Function
	Gram Matrix as “Change of Basis”
	Linear Regression vs. Kernel Regression
	Linear Regression vs. Kernel Regression
	Linear Regression vs. Kernel Regression
	Degenerate Example: “Linear Kernel”
	Example: Degree-2 Kernel
	Polynomial and �Gaussian RBF Kernels
	Polynomial Kernel with Higher Degrees
	Polynomial Kernel with Higher Degrees
	Kernel Trick with Polynomials
	Gaussian-RBF Kernel
	Motivation: Finding Gold
	Kernel Trick for Non-Vector Data
	Kernel Trick for Non-Vector Data
	Valid Kernels
	Kernel Trick for Other Methods
	Kernel Trick for Other Methods
	Kernel Trick for Other Methods
	Logistic Regression with Kernels
	Stochastic Gradient Descent Intro
	Motivation: Big-n Problems
	Motivation: Big-n Problems
	Gradient Descent vs. Stochastic Gradient
	Gradient Descent vs. Stochastic Gradient
	Stochastic Gradient (SG)
	Problem where we can use Stochastic Gradient
	Why Does Stochastic Gradient Work / Not Work?
	Gradient Descent vs. Stochastic Gradient (SG)
	Summary
	Review Questions
	Feature Selection Hierarchy
	Hierarchical Forward Selection
	Slide Number 52
	Why is inner product a similarity?
	Slide Number 54
	Slide Number 55
	A String Kernel
	Slide Number 57
	Slide Number 58
	Kernel Trick for Other Methods

