CPSC 340:
Machine Learning and Data Mining

In This Lecture

1. Kernel Trick (30 minutes)
2. Stochastic Gradient Descent Intro (15 minutes)

PROBLEM WITH
HIGH-DIMENSIONAL BASIS

Motivation: Automatic Brain Tumor Segmentation

- Task: segmentation tumors and normal tissue in multi-modal MRI data.
— We previously discussed using convolutions to engineer features.

Input: Qutput:

- Best performance was obtained with linear classifiers (SVMs/logistic).
— Provided you did feature selection or used regularization.

« One of the only methods that worked better:

— Regularized linear classifier with a low-order polynomial basis (p=2 or p=3).
+ Makes the data “closer to separable” in the higher-dimensional space. 4

Support Vector Machines for Non-Separable

« Can we use linear models for data that is not close to separable?

Support Vector Machines for Non-Separable

« Can we use linear models for data that is not close to separable?
— It may be separable under change of basis (or closer to separable).

2 2 P
Xiz lX;) >/.l: w, x; T w2 Xk Tk,
<A .
:n: X ¢ x
¥
X X x W
% o ®
- b 4
i y A -_Xll - S x =
i 4 =
4 A S L X X' 2
4 . 4 | - il
¥
¥
%
ﬁ Xit Xig
4 * W X ’

Support Vector Machines for Non-Separable

« Can we use linear models for data that is not close to separable?
— It may be separable under change of basis (or closer to separable).

2 2 2
Xiz Iue >/.l: w, x; T w2 Xk Tk,
« A y v
% X % “
¥ X
X " N *x
N X
L) J X ﬁx :
. i a
3 3 y -)S',, J} X
L - x
o AN -
» o . o - Y, X 2
b 4 X o A
W v
% M\
¥ .
ﬁ Xir Xy
% X . X I 4

Support Vector Machines for Non-Separable

« Can we use linear models for data that is not close to separable?
— It may be separable under change of basis (or closer to separable).

2 2 2
Xiz ‘Xi) yi: W, X1 t wzﬁxui‘z{fngn
« A . X
X X X “
¥
X —~ X N X " X
R W
H / ’) X i:};\} ’ X
: o » Y oM x
w . 5 11.1 0 O S\ x 2
% 2 ¥ N Y
" X ¥
¥ v A
J.n O(\lyl’\ﬂl ‘Ii Xiv Xiy
w0 * % X g qc .M , N
f C) JCOZS IoN IOOMV]darY kS OJ- T/‘€ ﬁ,mz

8

—_ A
O~ VVlXil +W;@Xn/€a+ w; X,

Multi-Dimensional Polynomial Basis

- Recall fitting polynomials when we only have 1 feature:
P=2

A
>/-‘ = W, W X + \/\/‘lxi'2

« We can fit these models using a change of basis:

xo x& XL
02] f1o02 (0D*
)(: -0.5 /=1 -05 (-0.5)?
| ((1)}
) oy

Q: How can we do this when
we have a lot of features?

Multi-Dimensional Polynomial Basis

 Polynomial basis for d=2 and p=2:

0.2 03 C1 02 g (02 (03% OPW©3)
X= | 05 | - y 2= vg (A (0.5)2 (1) (05)

~05 -0 | =05 ~o1 S (- CODCON

- T e v v .

hias Xil Xiz (X.',)l (;(,.1)2 (Xu)()’.'2>

« With d=4 and p=3, the polynomial basis would include:
— Bias variable and the x;i 1, X1, X2, Xi3, Xis-
— The x;; squared and cubed: (x;3)?%, (X;2)?, (X3)%, (X4)%, (Xi1)3, (X2)3, (X;3)3, (Xi4)3.
— Two-term interactions: X;;Xi», Xi1Xi3, Xi1Xia,» Xi2Xi3, Xi2Xia, Xi3Xige
— Cubic interactions: X;;XixXi3, Xi2Xi3Xia» Xi1Xi3,Xiar» Xi1Xi2Xia,
Xi1?Xi2, Xi1*Xiz, Xip*Xigr X1 X2 Xi2?Xiz, Xi2?Xigr XinXiz%, Xi2Xi3% Xi3°Xiar Xi1Xia%, Xi2Xis?, XizXis*-

10

Kernel Trick

If we go to degree p=5, we’'ll have O(d?) quintic terms:

AV, 4 3 2 3 1 3 2 s 4 s
Xn7X.:)Cz7 Xil ¥35 -)(;,;7 X Xigy Xig Xigy ..o Xit Xig 7...7)(;27)(22 X‘.g). e Xl

For large ‘d’ and ‘p’, storing a polynomial basis is intractable!
— 'Z" has k=0(dP) columns, so it does not fit in memory.

Could try to search for a good subset of these.
— ‘Hierarchical forward selection” (bonus).

Alternating, you can use all of them with the “kernel trick”.
— For special case of L2-regularized linear models.

11

GRAM MATRIX AND
THE KERNEL TRICK

How can you use an exponential-sized basis?

 Which of these two expressions would you rather compute?

Xq‘f T8 36x 7 +84x6+126x5 + 1265 34 342617+ 9 + | o (”/)7 .
A lese.

— Expressions are equal, but left costs O(A) while right costs 0(1_-).

 Which of these two expressions would you rather compute?

-

2 3 H 5 ¢ X

’+X+_)(,/+L+L+£f¥... or e
203yl 5 g -

— Expressions are equal, but left has infinite terms and right costs 0(1_.).

- Maybe we can somehow add weights to the expressions on the left,
and formulate least squares to use tricks like on the right?

13

The “Other” Normal Equations

Recall the L2-regularized least squares objective with basis ‘Z"

Fw)= g2y -yl + 2l

nske k
We showed that the minimum is given by

(Z77+27
v>\Z' [+)Z

KW' ny\

SN&\'. ’(’(K K\m__)kl ‘-5-(;,0\9("3'

(in practice you still solve thie linear system, since inverse is less numerically unstable - see CPSC 302)

With some work (bonus), this can equivalently be written as:

v=2"(227"+)I“)'|>/

n xN) MMN\&II&Q*B A Aot kw \"Pb

This is faster if n << k: ¢
— After forming ‘Z’, cost is O(n%k + ﬁ) instead of O(nk? + k_3).
— But for the polynomial basis, this is still too slow since k = O(dP).

14

The “Other” Normal Equations

T
With the “other” normal equations we have v = (ZZ + ;\I) /
Given test data X, predict y by forming Z and then using: "xw»

t,C\ Ex K
-7 v
[4\ ’;,“‘_ N
=22.(22'+%1) y
*ff [y
K K
~/ _
L = KCKAT)
€ xn nxn nx|

Notice that if you have K and K then you do not need Z and Z.

The “Other” Normal Equations

j-iv
_ _/\/ T T -~
o= 2(227+21)y =2z(z2") y
K K
txr‘-gSLUQ? lu,
X N x n x

““kernel trick”: for certain bases (like polynomials),
We can efficiently compute K and K
even though forming Z and 7 is intractable.

* In the same way we can comptue
(x+1)? instead of x° + 9x8 + 36x’ + 84x°"...

16

Gram Matrix: Training

e The matrix K = ZZT7 is called the Gram matrix K.

-

1
F_—-Z'

| s _— | (1 |
K: ZZ - ;l 2, 2, - 2.,

T T, . 50
T T .
2,2, 2,2 """ 228,

o)
i) T -
A ‘Z.,.'Z,,
\—m A

N
« K contains the dot products between all training examples.

— Similar to ‘Z" in RBFs, but using dot product as “similarity” instead of distance.
L3 SN T 17

Gram Matrix: Prediction

« The matrix K = ZZ7 has dot products between train and test examples:

)

'Z‘ Zl e zh

)

- Kernel function: k(x;, x;) = z;"z,.

— Computes dot product between in basis (z;'z;) using original features x; and X;.
—_— 18

Interpreting Kernel Function
X, —

JxL kxl
X, — %
al o)

Change of basis: project examples into another (more complex) feature space

ZTZ + XX,
ixk Kx1. 1“\ Au

Dot product (“similarity”) between examples i and j in the new feature space

K(xi, %) = %'

Gram Matrix as “Change of Basis”

K(X.,\{‘) k(X.,X,\ .°- \((X\,Xn)
)< KOGX) KX KX

oL Klex) - K(Xa X0

n

A row of the matrix K: Kk
— Results of kernel function between x; and other examples
— Kernel regression: Llet’s use these as features!

Linear Regression vs. Kernel Regression

Linear Recywssiof\ (L')-’ reg\ ’4eme l pu) r oSS on (LQ.—veJa)
mm9 ceinig’
I m basis 2 from X , Form inner (Proclv\cs nlg\ From)’

2. Compie v (272+92)" @Y%) R Comple u'(K’f//‘IT' y
Kx

N on "~ Faram Fric

Tast: . Testin /
I F Lo\sis Z F rom Y | Form nner PVOJuc‘tg 5“ fom)(aud X'
4 n- 4 x
2 (om«v\“e 7:2‘& d Com‘:uTe y = f {n “

{x K Kk«

(EVer/ﬂm) Yo need fo Ko aboiut Z aul Z 1S
COn‘l‘ameJ withn K and ’() 21

Linear Regression vs. Kernel Regression

———

ID afrl\/ ’meaf feyﬂ";élom) I C)lly need to khov K omJ /?/

e xi do fom 7 F\Conﬂf\de Z,'Tz.
VSC X, er Farm % _—

J
V T
(= a8k

Fal resdlt 1s nxXn (“‘7 malfer how /'/?‘o 2 iS)

Linear Regression vs. Kernel Regression

———

lo czfrl\/ ’meaf feyﬂ";élom) I Olly need to khov K “Mc/ /?/

o APAZ L <X "
Use x. dg4%; /’///, e = 2
3 0 V r _ 3
- fls ity
(O£ =
9('»/{6“/ (6m tﬂe

Degenerate Example: “Linear Kernel”

- Consider two examples x; and x; for a 2-dimensional dataset:
Xi= (x-..)x;J Xy = (xj,)x-,z)

« And our standard (“linear”) basis:
Z;= (X-\,)Xa) Z;= (Xil))(iz>

T T
Z ;<X K

1

Xi Y'J

Example: Degree-2 Kernel

- Consider two examples X; and X; for a 2-dimensional dataset:

(= (X'ul X X X l L 2)
Xi , 2))I))2) 2 ‘_'(y“ . deulxn
« Now consider a particular degree-2 basis: ‘ -
(.2 2 _ 2
i~ (Xu 7\‘_2— XHX;J;X&) ZJ‘ B ("J')H)O’i)@l))ﬁz}
« In this case the inner product z;'z; is k(x;,X;) = (x;Tx;)%

[1] ZiTZ)' Xii X,; T (r 2 Xi X '1)(‘r XJZ) t X;z XJ?
1 2
[= an lxll Xia X 51 Xi2 +XHX|2
2 N
[3] - (Xu 3| Xi:zXn) comr'efinj fhe 57V\are
Xi X

[4] = ()(,'7){)‘)2 < Mo f&_c!, for 2, fo C()Mrmfe 22,

AN

Polynomial Kernel with Higher Degrees

« Let's add a bias and linear terms to our degree-2 basis:

—

Zi‘—'[/ \ﬁ)xn ﬁxiz Xir" {2 %y ’4'22]I

* In this case the inner product z;,'z, lSTk(X,,X) = (1 + x;Tx))«
M (I txx)* =] + 27y +(x J)

2,2 . 4
[2] =] 4 2X|l Xj 1 2)(!1 XJJ Xi X +2Xl’/ X2 X372 +Xi1 Xja

[:5-.\ :[' \riX;, ﬁx}z x'ul ﬂY,',XQ X,‘z:z) D)("l

4] = 2 ¢j ~

Polynomial Kernel with Higher Degrees

« To get all degree-4 “monomials” | can use:

k (x.-)x-) = (X,j)(S)q

)

4 3 <2 2 3
n'/;xl'/ XioyXin Xy 7}('“"2

2))X,'z) ..
- To also get lower-order terms use k(x;,x;) = (1 + x;7x;)*
« The general degree-p polynomial kernel function:

k(X,'7>(J'>: Cr+ X;7JS>()

— Works for any number of features ‘d’.
— But cost of computing one k(x;,x;) is O(_) instead of O(__) to compute z;7z,.
— Take-home message: | can compute dot-products without the features.

Eﬂw'va'e/\f fo usinc) o Z with Weiahm Versions of x

28

Kernel Trick with Polynomials

Using polynomial basis of degree ‘p’ with the kernel trick:
— Compute K and K using:

P =
K | = (/ + X,‘TXJ) ,\ (! —:))(XLJ/, Tram ecanple

— Make predictions using:];f:jm/
y, [((}(+§II> :Ku
txl tm\Wn"l bu:(’(-FqI)\l\/

Training costisonly O(___), despite using k=0(__) features.
— We can form ‘K’ in O(n?d), and we need to “invert” an ‘n x n’ matrix.
— Testing cost is only O(___), cost to form K.

Gaussian-RBF Kernel

« Most common kernel is the Gaussian RBF kernel:

k(X,7 J)’ ex (“f'___.Lln)

22

« Same formula and behaviour as RBF basis, but not equivalent:
— Before we used RBFs as a basis, now we're using them as inner-product.

« Basis z; giving Gaussian RBF kernel is infinite-dimensional.
— If d=1 and o=1, it corresponds to using this basis (bonus slide):

2T eq(=x)L Fx 1F 12 2’x \Y'L/ :]

Motivation: Finding Gold

« Kernel methods first came from mining engineering (“Kriging”):
— Mining company wants to find gold.
— Drill holes, measure gold content.
— Build a kernel regression model (typically use RBF kernels).

Input Process Qutput

31

Kernel Trick for Non-Vector Data

« Consider data that doesn’t look like this:

[05377 0.3188 3.5784 | (41

x 1.8339 1.3077 2.7694 , 1
— | —2.2588 04336 —1.3499|° YT |-1
| 0.8622 0.3426 3.0349 | +1]

« But instead looks like this:

[Do you want to go for a drink sometime? | 1]
J'achéte du pain tous les jours. —1
X —_— . 1'3; —
Fais ce que tu veux. —1
| There are inner products between sentences? | +1]

* We can interpret k(x;,x;) as a “similarity” between objects xi and xj.
— We don’t need features if we can compute “similarity” between objects.
— Kernel trick lets us fit regression models without explicit features.
— There are “string kernels”, “image kernels”, “graph kernels”, and so on.

Kernel Trick for Non-Vector Data

- Recent list of types of data where people have defined kernels:

trees (Collins & Dufty, 2001; Kashima & Koyanagi, 2002),
time series (Cuturi, 2011), strings (Lodhi et al., 2002), mix-
ture models, hidden Markov models or linear dynamical
systems (Jebara et al., 2004), sets (Haussler, 1999; Gértner
et al., 2002), fuzzy domains (Guevara et al., 2017), dis-
tributions (Hein & Bousquet, 2005; Martins et al., 2009;
Muandet et al., 2011), groups (Cuturi et al., 2005) such as

specific constructions on permutations (Jiao & Vert, 2016),
or graphs (Vishwanathan et al., 2010; Kondor & Pan, 2016).

« Bonus slide overviews a particular “string” kernel.

Valid Kernels

What kernel functions k(x;x;) can we use?

Kernel ‘k’ must be an inner product in some space:
— There must exist a mapping from the x; to some z; such that k(x;,x;) = z;'z,.

It can be hard to show that a function satisfies this.
— Infinite-dimensional eigenfunction problem.

But like convex functions, there are some simple rules for constructing
“valid” kernels from other valid kernels (bonus slide).

Kernel Trick for Other Methods

- Besides L2-regularized least squares, when can we use kernels?
— We can compute Euclidean distance with kernels:

”2; _ 2).“2 — Z,‘7Zi —22,_72). - k()(:))() 2,*()(,))(> ’\/)

— All of our distance-based methods have kernel versions:
« Kernel k-nearest neighbours.
« Kernel clustering k-means (allows non-convex clusters)
- Kernel density-based clustering.
« Kernel hierarchical clustering.
« Kernel distance-based outlier detection.
« Kernel “Amazon Product Recommendation”.

Kernel Trick for Other Methods

- Besides L2-regularized least squares, when can we use kernels?

— “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized:

If Iearm) Can he wrillen in 7’/’1 7r0f”\ W""’ 70/2\’/4?//\///2 WCIYSOW Z

then waler Weak (on dilons (H’ﬂ)we)pnf'w Fhoore) \,\v\
we (an re‘[])wnmtﬂ"lze N f_{rm5 @F V- Z(L /\/ﬂ;\ 4/‘»:? /M;\
S’V)wg V"’iﬂ ﬁ(%mz/ “)43“{/\2} W
K K
5 s _® /\ /
A?L fwo)'/ Tme \/vv\ \,,,WU wse Z\%“ V,(,gm /\/o{ 0, vl

Kernel Trick for Other Methods

- Besides L2-regularized least squares, when can we use kernels?
— “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized:
« L2-regularized robust regression.
« L2-regularized brittle regression.
« L2-regularized logistic regression.
« L2-regularized hinge Loss (SVMs).

D W’.ﬂ‘ a f)“ﬁ’c“laf)M///Mén"/a‘//on)

can reduce prediclion (oS
vV

{from 0(nd1) To O(mdt)
L/VW’VILP(o'{‘

Su /:/m‘ vectors.

th Kernels

i
kernel-Linear Logistic Regression

Regression w

Logistic

Linear Logistic Regression

“f; " Kewmel
Saml ds usin7

///’l(a/

W?Ld

X v

original]"\Pa fum"

kerel-REF Logistic Regression

k.ernel-Foly Logistic Regression

38

Motivation: Big-n Problems

Recall the automatic brain tumour segmentation problem:

MRI scanners at the time produced 200x200x200 volumes.
— S0 one volume givens 8 million training examples.
— And you need to train on more than one volume!

Similar issues arise in the Gmail application:

— If every e-mail is a training example, you have LOTS of training examples.

40

Motivation: Big-n Problems

- Consider fitting a least squares model:

N

Pz 20my & 5 L5a-3)

=1

- Gradient methods are effective when ‘d’ is very large.
— O(__) per iteration instead of O(

« But what if number of training examples ‘n’ is very large?
— All Gmalils, all products on Amazon, all homepages, all images, etc.

) to solve as linear system.

41

Gradient Descent vs. Stochastic Gradient

- Recall the gradient descent algorithm:
t
- For least squares, our gradient has the form:

V()= ig(WTXz B yi)\ﬁ)

S(m‘a\r JX,

« So the cost of computing this gradient is linear in ‘n’.
— As ‘n’ gets large, gradient descent iterations become expensive.

42

Gradient Descent vs. Stochastic Gradient

Common solution to this problem is stochastic gradient algorithm:
t— £ _ ¢ t
Uses the gradient of a randomly-chosen training example:

VE(w) = (W Ty -
(W) (W X. Zi Zy\)f‘-
S(m‘mr JX'
Cost of computing this one gradient is independent of ‘n’.

— lterations are ‘n’ times faster than gradient descent iterations.
— With 1 billion training examples, this iteration is 1 billion times faster.

43

Stochastic Gradient (SG)

- Stochastic gradient is an iterative optimization algorithm:
— We start with some initial guess, w°®.
— Generate new guess by moving in the negative gradient direction:

w = w’ = oL VW)

- For a random training example ‘'
— Repeat to successively refine the guess:

Whl:_..wt__o(tv{:i(wt) for 1=)) 7)3)“‘

- For a random training example ‘'

44

Problem where we can use Stochastic Gradient

- Stochastic gradient applies when minimizing averages:

f (”"7 - ln '.:Z, <WTX1 N)’\)Z (5‘7"‘*’*‘1 error)
{:(W> = *{;\ % ‘09(' +exP(~)«-,wa'-)> (‘0*}1>+i0 Feﬁfcss\oﬂ)

F (W) = .-.';) .é' ['0(1 U 4€7P(->’iWTX3))’f“ 2 "w//zj (Lz’rf’y\/\[c«dz;,/ /m)is?'l'c)

‘»\(w): —),)ZPL ‘E (W> (OW‘ no_@n 'FO(7(he 9€nfro,/ Cﬂﬁe)

 —
i—=1

- Basically, all our regression losses except “orittle” regression.

— Recall: multiplying by positive constant doesn’t change location of optimal ‘w’.

Why Does Stochastic Gradient Work / Not Work?

Main problem with stochastic gradient:
— Gradient of random example might point in the wrong direction.

Does this have any hope of working?
— The expected direction is the full gradient.

(K = s i : _ 2 A
%E VFs(VV):l i-‘-'ZI ‘0(7V‘Y,(wk) iz str (wk) "I\Z‘_ ’Ci("\/,r) = v](\(wk)
erpectation over - it eack exm!'
y

chaice oF (angom deTinition of s e‘/““”l §

, gradion‘/ oV
examge A axpegtotion

(>]

A P’(amfl,s

— The algorithm is going in the right direction on average.

46

Gradient Descent vs. Stochastic Gradient (SG)

« Gradient descent:

» Stochastic gradient:

\W/ \W

summary

« High-dimensional bases allows us to separate non-separable data.
« “Other” normal equations are faster when n < d.

- Kernel trick allows us to use high-dimensional bases efficiently.
— Write model to only depend on inner products between features vectors.

9: T((K‘*/XD_IY

CXn malcix 'AZ/Z7 Com‘ainm? inper ¢rk‘wﬁd t‘” hXn matriy ZZT C°”+“5”;"‘) inner ’Qmed; befween

eleen '}es'/ exaMr'e) and f—mimn} exam,/a, all frqininc, é’)famf/ef.

« Kernels let us use similarity between objects, rather than features.
— Allows some exponential- or infinite-sized feature sets.
— Applies to distance-based and linear models with L2-regularization.

« Stochastic gradient methods let us use huge datasets.

e Next time:

— How do we train on all of Gmail? »

Review Questions

« QIl: What is the signature of a kernel function?

+ Q2: In what scenarios would using the kernel trick be too
expensive?

49

Feature Selection Hierarchy

« Consider a linear models with higher-order terms,

A
y', < Wb 1 W."u" ‘Vz x’u * "’3 Xi; . W,z}(iixil t “ﬂ;x x')-‘W}X/z i3 + ,BX,,V,(

« The number of higher-order terms may be too large.
— Can’t even compute them all.
— We need to somehow decide which terms we’ll even consider.

- Consider the following hierarchical constraint:
— You only allow wi, # 0 if w; # 0 and w, = 0.
— “Only consider feature interaction if you are using both features already.”

Hierarchical Forward Selection

Hierarchical Forward Selection:

Usual forward selection, but consider interaction terms obeying
hierarchy.

Only consider w,, # 0 once w; # 0 and w, = 0.
Only allow w;,3 # 0 once w;, # 0 and w,3 # 0 and w,; # 0.
Only allow w53, # 0 once all threeway interactions are present.

Fig 9: Power set of the set {1,...,4}: in blue, an anthorized set of selected subsets,
In red, an example of a group used within the norm (a subset and all of its
descendants in the DAG).

Sl

Bonus Slide: Equivalent Form of Ridge Regression

Note that X and Y are the same on the left and right side, so we only need to show that
(XTX 2D X = XXX 2078, (1)
A version of the matrix inversion lemma (Equation 4.107 in MLAPP) is
(E-FH'G)"'FH '=E'F(H-GE™'F)™".

Since matrix addition is commutative and multiplying by the identity matrix does nothing, we can re-write

the left side of (1) as

(XTX+ADN)XT = (W+XTX)IXT = AT+ XTIX)71 XY = AI=-XT(=-DX) 1 XT = -(QAI-XT(-DX) ' XT(-I)
Now apply the matrix inversion with £ = Al (so E~! = [%) I, F=X",H=-I (so H ' = —I too), and

G=X:

(M = XT(-DX)"' X" (-1) = =(5 -

Now use that (1/a)A~" = (aA)™!, to push the (—=1/X) inside the sum as — A\,

NIXT(-T-X (l) XT)1.

.
A

1

(X (-I-X (A) XT)y = XT(M+ XXT) = XT(XXT + 207

52

Why Is inner product a similarity?

It seems weird to think of the inner-product as a similarity.
But consider this decomposition of squared Euclidean distance:

‘!,’_HX',’X\')”Z ’3‘ "X{”z —'X]-T)S +La.uy3

If all training examples have the same norm, then minimizing Euclidean distance is
equivalent to maximizing inner product.
— So “high similarity” according to inner product is like “small Euclidean distance”.

— The only difference is that the inner product is biased by the norms of the training
examples.

— Some people explicitly normalize the x; by setting x; = (1/|[x|])x;, so that inner products act
like the negation of Euclidean distances.

- E.g., Amazon product recommendation.

Guasian-RBF Kernels

@ The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,

2
Ti — Xi
k(zi, ;) = exp (— |z i) :

o2
e What function ¢(x) would lead to this as the inner-product?
o To simplify, assume d =1 and o0 =1,
k(xzi,xj) = exp(—x7 + 2w — J_‘:)
= exp(—z7) exp(2zix;) exp(—z7),

so we need ¢(x;) = exp(—z7)z; where z;z; = exp(2z;x;).
@ For this to work for all z; and x;, z; must be infinite-dimensional.

e |f we use that o ok k
AR i
exp(2z;x;) = Z kt' J

E=0

then we obtain

o(z;) = m(p(—:f:g) [1 N %:{;i A/ g_z:mf \ ,:‘:23_::;3;3 .. })

54

B question stop following

Why RBF-kernel not the same as RBF-basis?

| do not quite understand the two statements in red box? | think with k as defined that way, it is just the g(||z; — z;]||)
as we saw in the last lecture of RBF basis? Why they are not equivalent? What does "equivalent” here mean?

Also, why now "we are using them as inner product"? Is it because we now regard k(a:z-, :L‘j) as the inner product of z;
and z;, which are some magical transformation of z; and z;? (Like k(z;, z;) = (1 + iE;-FzL‘j)p is the inner product of z;
and z;, which are polynomial transformation of x; and ;)7

b

{ "l,g,, Chenliang Zhou 2@ & months ago Oh so is my following reasoning correct?:
VA
Let Z and Z be as defined in lecture 22a.

In Gaussian RBF basis, § = Z(ZTZ + X)) 1 ZTy = ZZT(ZZT + X\I) y.

In Gaussian RBF kernel, we have y = IE’(K + AI) 1y where where K and K are those 2
horrible matrices for Gaussian RBF kernels. Since they are the same formula, K = Z and K = Z, so

j=Z(Z+)y

o~

So Gaussian RBF basis and Gaussian RBF kernel are different because in general,

ZZT(ZZT + X\I)~(for G-RBF basis) # Z(Z + MI)~!(for G-RBF kernel). 55

A String Kernel

« A classic “string kernel”:

wWe want to compute k(“cat”, “cart”).
Find all common subsequences: ‘c’, ‘a’, ‘t’, ‘ca’, ‘at’, ‘ct’, ‘cat’.
Weight them by total length in original strings:
« ‘c’ has length (1,1), ‘ca’ has lengths (2,2), ‘ct’ has lengths (3,4), and so on.
Add up the weighted lengths of common subsequences to get a similarity:

k(“cat”,“cart'):’yl’yl +71,71 ‘f”Yl’Yl _1_72,}/2 _i_,YZ,Y?) +’7374+73747
R L I I I N

iCr |al |t1 lcal .:atv lctv lcatr

where v is a hyper-parameter controlling influence of Length.

« Corresponds to exponential feature set (counts/lengths of all subsequences).

But kernel can be computed in polynomial time by dynamic programming.

« Many variations exist.

Constructing Valid Kernels

o If ki(zi,z;) and ka(x;, ;) are valid kernels, then the following are valid kernels:

o ki(d(xq), d(xj)).
L {}kl(T%qu) + ﬁk’z(TtT_}.) for a > () and 6 > 0.
o ki(wi, xj)ka(zs, x;5).
o P(x;)ky(xi,x;)0(xy).
@ D}{p(kl(iﬂi,:ﬁj)).
e Example: Gaussian-RBF kernel:

2
Ls — ;5
(i, 35) = exp (_M 3|)

(\

_]2 2 7 |511°
= exp (— exp 5 Tj Tj | exp . .

N _ Nl IN ’
~~ \&}0 ualld) ~~
o) N2 T ()
exp(valid)

57

Representer Theorem

Consider linear model differentiable with losses f; and L2-regularization,

A
argmin Y™ fi(w"z) + 3

d
weR i—1

Setting the gradient equal to zero we get
mn
0= Z fl(w" z3)z; + Mw.
i=1

So any solution w™* can written as a linear combination of features x;,

T

= 3) iz = 3z
1=1

i=1
— X7,

This is called a representer theorem (true under much more general conditions):s

Kernel Trick for Other Methods

Besides L2-regularized least squares, when can we use kernels?

— “Representer theorems” have shown that
any L2-regularized linear model can be kernelized.

— Linear models without regularization fit with gradient descent.
« If you starting at v=0 or with any other value in span of rows of ‘Z’.

Therations of gradint_descent On F(Zv) can be wrillen as \/:le&
Wk'zc‘n '6{3 V%) fb“f’dfam\LTQ/ize as ?(ZZR&}

At f@f Tme o \/wwu wse Zvv:éij:/?u

X')/?

	CPSC 340:�Machine Learning and Data Mining
	In This Lecture
	Problem with �High-Dimensional Basis
	Motivation: Automatic Brain Tumor Segmentation
	Support Vector Machines for Non-Separable
	Support Vector Machines for Non-Separable
	Support Vector Machines for Non-Separable
	Support Vector Machines for Non-Separable
	Multi-Dimensional Polynomial Basis
	Multi-Dimensional Polynomial Basis
	Kernel Trick
	Gram Matrix and�The Kernel Trick
	How can you use an exponential-sized basis?
	The “Other” Normal Equations
	The “Other” Normal Equations
	The “Other” Normal Equations
	Gram Matrix: Training
	Gram Matrix: Prediction
	Interpreting Kernel Function
	Gram Matrix as “Change of Basis”
	Linear Regression vs. Kernel Regression
	Linear Regression vs. Kernel Regression
	Linear Regression vs. Kernel Regression
	Degenerate Example: “Linear Kernel”
	Example: Degree-2 Kernel
	Polynomial and �Gaussian RBF Kernels
	Polynomial Kernel with Higher Degrees
	Polynomial Kernel with Higher Degrees
	Kernel Trick with Polynomials
	Gaussian-RBF Kernel
	Motivation: Finding Gold
	Kernel Trick for Non-Vector Data
	Kernel Trick for Non-Vector Data
	Valid Kernels
	Kernel Trick for Other Methods
	Kernel Trick for Other Methods
	Kernel Trick for Other Methods
	Logistic Regression with Kernels
	Stochastic Gradient Descent Intro
	Motivation: Big-n Problems
	Motivation: Big-n Problems
	Gradient Descent vs. Stochastic Gradient
	Gradient Descent vs. Stochastic Gradient
	Stochastic Gradient (SG)
	Problem where we can use Stochastic Gradient
	Why Does Stochastic Gradient Work / Not Work?
	Gradient Descent vs. Stochastic Gradient (SG)
	Summary
	Review Questions
	Feature Selection Hierarchy
	Hierarchical Forward Selection
	Slide Number 52
	Why is inner product a similarity?
	Slide Number 54
	Slide Number 55
	A String Kernel
	Slide Number 57
	Slide Number 58
	Kernel Trick for Other Methods

