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Admin
• Midterm grades are out

– Submit regrade request on Gradescope
• Not Piazza. Turnaround time will get longer if you do this

• Assignment 5 due Friday
• Assignment 6 out Friday
• Assignment 7 (optional) in the works

– No due date, posted after final
– Office hours by request
– Will cover differentiable programming and deep learning
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In This Lecture
1. Polynomial and Gaussian RBF Kernels (15 minutes)
2. Stochastic Gradient Descent (40 minutes)
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Last Time: The “Other” Normal Equations

• “kernel trick”: for certain bases (like polynomials), 
We can efficiently compute K and �𝐾𝐾
even though forming Z and �𝑍𝑍 is intractable.

• In the same way we can comptue
(x+1)9 instead of x9 + 9x8 + 36x7 + 84x6…
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Last Time: Degree-2 Kernel
• Consider two examples xi and xj for a 2-dimensional dataset:

• Now consider a particular degree-2 basis:

• In this case the inner product ziTzj is k(xi,xj) = (xiTxj)2:
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POLYNOMIAL AND 
GAUSSIAN RBF KERNELS
Coming Up Next
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Polynomial Kernel with Higher Degrees
• Let’s add a bias and linear terms to our degree-2 basis:

• In this case the inner product ziTzj is k(xi,xj) = (1 + xiTxj)2:
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Polynomial Kernel with Higher Degrees
• To get all degree-4 “monomials” I can use:

• To also get lower-order terms use k(xi,xj) = (1 + xiTxj)4
• The general degree-p polynomial kernel function:

– Works for any number of features ‘d’.
– But cost of computing one k(xi,xj) is O(_) instead of O(__) to compute ziTzj.
– Take-home message: I can compute dot-products without the features.
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Kernel Trick with Polynomials
• Using polynomial basis of degree ‘p’ with the kernel trick:

– Compute K and �𝐾𝐾 using:

– Make predictions using:

• Training cost is only O(_________), despite using k=O(__) features.
– We can form ‘K’ in O(n2d), and we need to “invert” an ‘n x n’ matrix.
– Testing cost is only O(___), cost to form �𝐾𝐾.
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Gaussian-RBF Kernel
• Most common kernel is the Gaussian RBF kernel:

• Same formula and behaviour as RBF basis, but not equivalent:
– Before we used RBFs as a basis, now we’re using them as inner-product.

• Basis zi giving Gaussian RBF kernel is infinite-dimensional.
– If d=1 and σ=1, it corresponds to using this basis (bonus slide):
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Motivation: Finding Gold
• Kernel methods first came from mining engineering (“Kriging”):

– Mining company wants to find gold.
– Drill holes, measure gold content.
– Build a kernel regression model (typically use RBF kernels).

http://www.bisolutions.us/A-Brief-Introduction-to-Spatial-Interpolation.php
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Kernel Trick for Other Methods
• Besides L2-regularized least squares, when can we use kernels?

– We can compute Euclidean distance with kernels:

– All of our distance-based methods have kernel versions:
• Kernel k-nearest neighbours.
• Kernel k-means clustering (allows non-convex clusters)
• Kernel density-based clustering.
• Kernel hierarchical clustering.
• Kernel distance-based outlier detection.
• Kernel “Amazon Product Recommendation”.
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Logistic Regression with Kernels
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STOCHASTIC GRADIENT DESCENT 
INTRO
Coming Up Next
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When you use SGD 
but don’t tune step size



Motivation: Big-n Problems
• Recall the automatic brain tumour segmentation problem:

• MRI scanners at the time produced 200x200x200 volumes.
– So one scan gives 8 million examples.
– And you need to train on more than one scan!

• Similar issues arise in the Gmail application:
– If every email is a training example, you have LOTS of training examples.
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Motivation: Big-n Problems
• Consider fitting a least squares model:

• Gradient methods are effective when ‘d’ is very large.
– O(__) per iteration instead of O(________) to solve as linear system.

• But what if number of training examples ‘n’ is very large?
– All Gmails, all products on Amazon, all homepages, all images, etc.
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Gradient Descent vs. Stochastic Gradient
• Recall the gradient descent algorithm:

• For least squares, our gradient has the form:

• So the cost of computing this gradient is linear in ‘n’.
– As ‘n’ gets large, gradient descent iterations become expensive.
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Gradient Descent vs. Stochastic Gradient
• Common solution to this problem is stochastic gradient algorithm:

• Uses the gradient of a randomly-chosen training example:

• Cost of computing this one gradient is O(_).
– Independent of ‘n’!
– Iterations are ‘n’ times faster than gradient descent iterations.
– With 1 billion training examples, this iteration is 1 billion times faster.
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Stochastic Gradient (SG)
• Stochastic gradient is an iterative optimization algorithm:

– We start with some initial guess, w0.
– Generate new guess by moving in the negative gradient direction:

• For a random training example ‘i’.
– Repeat to refine the guess:

• For a random training example ‘i’.
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“Epoch”
• “Epoch” := number of stochastic gradient steps 

that amounts to using ‘n’ examples
– Right now, one epoch is ‘n’ stochastic gradient steps
– With mini-batches (later) of size B, one epoch is ‘n / B’ steps

• Important: ‘t’ denotes stochastic gradient step iteration
– Not epoch iteration
– t = n after first epoch, t = 2n after second epoch, etc.
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Problem where we can use Stochastic Gradient
• Stochastic gradient applies when minimizing averages:

21
Q: What about brittle regression?



Why Does Stochastic Gradient Work / Not Work?
• Main problem with stochastic gradient:

– Gradient of random example might point in the wrong direction.

• Does this have any hope of working?
– The expected direction is the full gradient.

– The algorithm is going in the right direction on average.
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VISUAL EXPLANATION OF
STOCHASTIC GRADIENT
Coming Up Next
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Gradient Descent vs. Stochastic Gradient (SG)
• Gradient descent:

• Stochastic gradient:
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Gradient Descent in Action
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Stochastic Gradient in Action
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Stochastic Gradient in Action
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Stochastic Gradient in Action
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Stochastic Gradient in Action
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Stochastic Gradient in Action
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Effect of ‘w’ Location on Progress

• We’ll still make good progress if “most” gradients points in right direction.
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STEP SIZES OF 
STOCHASTIC GRADIENT
Coming Up Next
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When you set step size to 
3e-4 and SGD just works



Variance of the Random Gradients
• The “confusion” is captured by a kind of variance of the gradients:

33

Q: When is this variance zero?

Q: When is this variance large?



Effect of the Step-Size
• We can reduce the effect of the variance with the step size.

– Variance slows progress by amount proportional to square of step-size.
– So as the step size gets smaller, the variance has less of an effect.

• For a fixed step-size, SG makes progress until variance is too big.

• This leads to two “phases” when we use a constant step-size:
1. Rapid progress when we are (near/far from) the solution.
2. Erratic behaviour confined to a “ball” around solution.

(Radius of ball is proportional to the step-size.)
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Stochastic Gradient with Constant Step Size
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Stochastic Gradient with Constant Step Size
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Stochastic Gradient with Constant Step Size
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Stochastic Gradient with Constant Step Size
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Step Size Considerations
• To get convergence, we need a _______________________.

– Shrinks size of ball to zero so we converge to w*.
• But it can’t shrink too quickly:

– Otherwise, we don’t move fast enough to reach the ball.
• Stochastic gradient converges to a stationary point if:

– “Total distance covered” grows faster than “squared L2-norm of step sequence”.

– This choice also works for non-smooth functions like SVMs.
• Function must be continuous and not “too crazy” 

(we’re still figuring it out for non-convex). 39

Integral of displacements 
= total distance

L2-norm of [𝛼𝛼0,𝛼𝛼1,⋯ , ]



Stochastic Gradient with Decreasing Step Sizes
• For convergence, step-sizes need to satisfy: 

• Classic solution is to use a step-size sequence like  αt = O(1/t).

– E.g., αt = .001/t.
• Unfortunately, this often works badly in practice:

– Steps get too small too fast.
– Some authors add extra parameters like αt = γ/(𝛽𝛽t + Δ), which helps a bit.
– One of the only cases where this works well: binary SVMs with αt = 1/λt.
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Stochastic Gradient with Decreasing Step Sizes
• How do we pick step-sizes satisfying

• Better solution is to use a step-size sequence like  αt = O(1/√𝑡𝑡).

– E.g., use αt = .001/√t
– Both sequences diverge, but denominator diverges faster.

• Roughly optimizes rate at which ratio goes to zero.
– Better worst-case theoretical properties (and more robust to step-size).
– Often better in practice too.
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Stochastic Gradient with Constant Step Sizes?
• Alternately, could we just use a constant step-size?

– E.g., use αt = .001 for all ‘t’.

• This will not converge to a stationary point in general.
– However, do we need it to converge?

• What if you only care about the first 2-3 digits of the test error?
– Who cares if you aren’t able to get 10 digits of optimization accuracy?

• There is a step-size small enough to achieve any fixed accuracy.
– Just need radius of “ball” to be small enough.

• Magic number: set 𝛼𝛼𝑡𝑡 = 3e-4 (0.0003)
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Mini-batches: Using more than 1 example
• Does it make sense to use more than 1 random example?

– Yes, you can use a “mini-batch” Bt of examples.

– Radius of ball is inversely proportional to the mini-batch size.
• If you double the batch size, you half the radius of the ball.

– Big gains for going from 1 to 2, less gains from going from 100 to 101.
• You can use a bigger step size as the batch size increases (“linear scaling” rule).

– Gets you to the ball faster (though diverges if step-size gets too big).

– Useful for vectorizing/parallelizing code.
• Evaluate one gradient on each core.
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A Practical Strategy for Deciding When to Stop
• In gradient descent, we can stop when gradient is close to zero.

• In stochastic gradient:
– Individual gradients don’t necessarily go to zero.
– We can’t see full gradient, so we don’t know when to stop.

• Practical trick:
– Every ‘k’ iterations (for some large ‘k’), measure validation set error.
– Stop if the validation set error “isn’t improving”.

• We don’t check the gradient, since it takes a lot longer for the gradient to get small.
• This “early stopping” can also reduce overfitting.
• “Snapshotting”: save model to disk each time, use latest/best-performing snapshot
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Summary
• Kernels let us use similarity between objects, rather than features.

– Allows some exponential- or infinite-sized feature sets.
– Applies to distance-based and linear models with L2-regularization.

• Stochastic gradient methods let us use huge datasets.
• Step-size in stochastic gradient is a huge pain:

– Needs to go to zero to get convergence, but classic O(1/t) steps are bad.
– O(1/√𝑡𝑡) works better, but still pretty slow.
– Constant step-size is fast, but only up to a certain point.

• SGD practical issues: mini-batching, averaging, termination.
• SAG and other methods fix SG convergence for finite datasets. (bonus)
• Infinite datasets can be used with SG and do not overfit. (bonus)

• Next time: Using Probability for Machine Learning
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Review Questions
• Q1: How does polynomial and Gaussian RBF kernels affect the shape of 

decision boundaries in linear classifiers?

• Q2: Can stochastic gradient descent help us with memory constraints?

• Q3: Why can stochastic gradient descent make progress even based on a 
single example?

• Q4: In what situation “early stopping” is a good idea? When is it a bad idea?

46



Kernel Trick for Other Methods
• Besides L2-regularized least squares, when can we use kernels?

– “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized:
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Kernel Trick for Other Methods
• Besides L2-regularized least squares, when can we use kernels?

– “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized:

• L2-regularized robust regression.
• L2-regularized brittle regression.
• L2-regularized logistic regression.
• L2-regularized hinge loss (SVMs).
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Kernel Trick for Non-Vector Data
• Consider data that doesn’t look like this:

• But instead looks like this:

• We can interpret k(xi,xj) as a “similarity” between objects xi and xj.
– We don’t need features if we can compute “similarity” between objects.
– Kernel trick lets us fit regression models without explicit features.
– There are “string kernels”, “image kernels”, “graph kernels”, and so on.
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Kernel Trick for Non-Vector Data
• Recent list of types of data where people have defined kernels:

• Bonus slide overviews a particular “string” kernel.
https://arxiv.org/pdf/1802.04784.pdf
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Valid Kernels
• What kernel functions k(xi,xj) can we use?

• Kernel ‘k’ must be an inner product in some space:
– There must exist a mapping from the xi to some zi such that k(xi,xj) = ziTzj.

• It can be hard to show that a function satisfies this.
– Infinite-dimensional eigenfunction problem.

• But like convex functions, there are some simple rules for constructing 
“valid” kernels from other valid kernels (bonus slide).
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Polyak-Ruppert Iterate Averaging
• Another practical/theoretical trick is averaging of the iterations.

1. Run the stochastic gradient algorithm with αt = O(1/√t) or αt constant.
2. Take some weighted average of the wt values.

• Average does not affect the algorithm, it’s just “watching”.
• Surprising result shown by Polyak and by Ruppert in the 1980s:

– Asymptotically converges as fast as stochastic Newton’s method.
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Stochastic Gradient with Averaging
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Gradient Descent vs. Stochastic Gradient

• 2012: methods with cost of stochastic gradient, progress of full gradient.
– Key idea: if ‘n’ is finite, you can use a memory instead of having αt go to zero.
– First was stochastic average gradient (SAG), “low-memory” version is SVRG.

full gradientlo
g(

 f(
w

t ) 
–

f(w
* )

 )

54



https://www.ubyssey.ca/science/schmidt-sloan-fellowship/
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Machine Learning with “n = ∞”
• Here are some scenarios where you effectively have “n = ∞”:

– A dataset that is so large we cannot even go through it once (Gmail).
– A function you want to minimize that you can’t measure without noise.
– You want to encourage invariance with a continuous set of transformation:

• You consider infinite number of translations/rotations instead of a fixed number.

– Learning from simulators with random numbers (physics/chem/bio):

http://kinefold.curie.fr/cgi-bin/form.pl
https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php
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Stochastic Gradient with Infinite Data
• Previous slide gives examples with infinite sequence of IID samples.

• How can you practically train on infinite-sized datasets?

• Approach 1 (exact optimization on finite ‘n’):
– Grab ‘n’ data points, for some really large ‘n’.
– Fit a regularized model on this fixed dataset (“empirical risk minimization”).

• Approach 2 (stochastic gradient for ‘n’ iterations):
– Run stochastic gradient iteration for ‘n’ iterations.
– Each iteration considers a new example, never re-visiting any example.

57



Stochastic Gradient with Infinite Data
• Approach 2 works because of an amazing property of stochastic gradient:

– The classic convergence analysis does not rely on ‘n’ being finite.

• Further Approach 2 only looks at a data point once:
– Each example is an unbiased approximation of test data.

• So Approach 2 is doing stochastic gradient on test error:
– It cannot overfit.

• Up to a constant, Approach 1 and 2 have same test error bound.
– This is sometimes used to justify SG as the “ultimate” learning algorithm.

• “Optimal test error by computing gradient of each example once!”
– In practice, Approach 1 usually gives lower test error.

• The constant factor matters!
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A Practical Strategy For Choosing the Step-Size
• All these step-sizes have a constant factor in the “O” notation.

– E.g.,

• We don’t know how to set step size as we go in the stochastic case.
– And choosing wrong γ can destroy performance.

• Common practical trick:
– Take a small amount of data (maybe 5% of the original data).
– Do a binary search for γ that most improves objective on this subset.
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