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In This Lecture
1. Maximum Likelihood Estimation (35 minutes)
2. Maximum A Posteriori Estimation (20 minutes)
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Motivation for Learning about MLE and MAP
• Next topic: maximum likelihood estimation (MLE) and MAP estimation.

– Crucial to understanding advanced methods, notation can be difficult at first.

• Why are we learning about these?
– Justifies the naïve Bayes “counting” estimates for probabilities.
– Shows the connection between least squares and the normal distribution.
– Makes connection between “robust regression” and “heavy tailed” probabilities.
– Shows that regularization and Laplace smoothing are doing the same thing.
– Justifies using sigmoid function to get probabilities in logistic regression.
– Gives a way to write complicated ML problems as optimization problems.

• How do you define a loss for “number of Facebook likes” or “1-5 star rating”?
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WHAT IS A LIKELIHOOD?
Coming Up Next
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Recall: “+1-ness”
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Feature space

Q: Does this “look” like a +1?Thicker colour:
Higher +1-ness



Now: “Likelihood”
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Q: Is this a “likely” example?



Now: “Likelihood”
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Q: Is this a “likely” example?



Now: “Likelihood”
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Now: “Likelihood”
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+1-ness Also Depends on Parameters
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Feature space Parameter space



+1-ness Also Depends on Parameters
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Model = Assumption

• Linear models assume that the data was generated 
according to some linear combination
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Learning = Finding Parameters

• Given data, “learning a model” means approximating 
the parameters of the data generating process
– e.g. feature coefficients for a linear model 13



“Likelihood”

• A parameter value induces a distribution called “likelihood”
– “Probability of seeing the given data”
– Corresponds to the assumption about how data is generated
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Probability of seeing dataset D 
given parameters w

Probability of seeing dataset X,y
given parameters w

Probability of seeing labels y
given parameters w and features X

Probability of seeing labeled dataset X,y
given parameters w



Signature of Likelihood Function

• Be careful about what’s being varied:
– Given same w, we can vary examples

• We are usually doing this during prediction
– Given same examples, we can vary w

• Varying w changes the induced distribution
• We are usually doing this during training 15

fixed w, varying data
(unsupervised)

fixed data, varying w



MAXIMUM LIKELIHOOD ESTIMATION
Coming Up Next
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“argmin” and “argmax”
• We’ve repeatedly used the min and max functions:

– Minimum (or maximum) value achieved by a function.

• A related set of functions are the argmin and argmax:
– The set of parameter values achieving the minimum (or maximum).
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“argmin” and “argmax”
• The last slide is a little sloppy for the following reason:

– There may be multiple values achieving the min and/or max.
– So the argmin and argmax return sets.

– And we don’t say a variable “is” the argmax, but that it “is in” the argmax.
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Maximum Likelihood Estimation
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Q: What is the parameter value that 
makes these examples most likely?



Maximum Likelihood Estimation
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Maximum Likelihood Estimation
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Maximum Likelihood Estimation
• Maximum likelihood estimation (MLE):

– Choose parameters that maximize the likelihood:
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MLE for Binary Variables (General Case)
• Consider a binary feature:

• Using ‘w’ as “probability of 1”, the maximum likelihood estimate is:

• This is the “estimate” for the probabilities we used in naïve Bayes.
– The conditional probabilities we used in naïve Bayes are also MLEs.

• The derivation is tedious, but if you’re interested I put it here.
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https://www.cs.ubc.ca/%7Eschmidtm/Courses/540-F14/naiveBayes.pdf


MAXIMUM LIKELIHOOD ESTIMATION
AND NEGATIVE LOG LIKELIHOOD
Coming Up Next
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Maximum Likelihood Estimation (MLE)
• Maximum likelihood estimation (MLE) for fitting probabilistic models.

– We have a dataset D.
– We want to pick parameters ‘w’.
– We define the likelihood as a probability mass/density function p(D | w).
– We choose the model �𝑤𝑤 that maximizes the likelihood:

• Appealing “consistency” properties as n goes to infinity (take STAT 4XX).
– “This is a reasonable thing to do for large data sets”.

25



Least Squares is Gaussian MLE
• It turns out that most objectives have an MLE interpretation:

– For example, consider minimizing the squared error:

– This gives MLE of a linear model with IID noise from a normal distribution:

• “Gaussian” is another name for the “normal” distribution.
– Remember that least squares solution is called the “normal equations”.
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Least Squares is Gaussian MLE
• It turns out that most objectives have an MLE interpretation:

– For example, consider minimizing the squared error:

https://smart.servier.com/smart_image/gaussian-curve/ 27



Least Squares is Gaussian MLE
• It turns out that most objectives have an MLE interpretation:

– For example, consider minimizing the squared error:
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Minimizing the Negative Log-Likelihood (NLL)
• To compute MLE, usually we equivalently

minimize the negative “log-likelihood” (NLL):
• “Log-likelihood” is short for “logarithm of the likelihood”.

• Why are these equivalent?
– Logarithm is strictly monotonic: if α > β, then log(α) > log(β).

• So location of maximum doesn’t change if we take logarithm.
– Changing sign flips max to min.

• See Max and Argmax notes if this seems strange.
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http://www.cs.ubc.ca/%7Eschmidtm/Courses/540-W16/max.pdf


Minimizing the Negative Log-Likelihood (NLL)
• We use log-likelihood because it turns multiplication into addition:

• More generally:
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Least Squares is Gaussian MLE (Gory Details)
• Let’s assume that yi = wTxi + εi, with εi following standard normal:

• This leads to a Gaussian likelihood for example ‘i’ of the form:

• Finding MLE (minimizing NLL) is least squares:
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MORE DETAILS ON
MAXIMUM LIKELIHOOD ESTIMATES
Coming Up Next
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Digression: “Generative” vs. “Discriminative”
• Discriminative model:

– Optimize parameters to maximize “+1-ness” for +1 examples, etc.

• Generative model:
– Optimize parameters to maximize “data likelihood”

• Prediction time: 
– both discriminative and generative models aim to predict “+1-ness”
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Digression: “Generative” vs. “Discriminative”
• For least squares, maximize conditional p(y | X, w), not the likelihood p(y, X | w).

– We did MLE “conditioned” on the features ‘X’ being fixed (no “likelihood of X”).
– This is called a “discriminative” supervised learning model.
– A “generative” model (like naïve Bayes) would optimize p(y, X | w).

• Discriminative probabilistic models:
– Least squares, robust regression, logistic regression.
– Can use complicated features because you don’t model ‘X’.

• Example of generative probabilistic models:
– Naïve Bayes, linear discriminant analysis (makes Gaussian assumption).
– Often need strong assumption because they model ‘X’.

• “Folk” belief: generative models are often better with small ‘n’.
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Discriminative MLE
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Feature space Parameter space+1
-1



Discriminative MLE

36

Feature space Parameter space+1
-1



Loss Functions and Maximum Likelihood Estimation

• So least squares is MLE under Gaussian likelihood.

• With a Laplace likelihood you would get absolute error.

• Other likelihoods lead to different errors (“sigmoid” -> logistic loss).
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Sigmoid: transforming wTxi to a Probability
• Recall we got probabilities from binary linear models with sigmoid:

1. The linear model wTxi gives us a number zi in (-∞, ∞).
2. We’ll map zi=wTxi to a probability with the sigmoid function.

• We can show that MLE with this model gives logistic loss.
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Sigmoid: transforming wTxi to a Probability
• We’ll define p(yi = +1 | zi) = h(zi), where ‘h’ is the sigmoid function.

• With yi in {-1,+1}, we can write both cases as p(yi | zi) = h(yizi).
• So we convert zi=wTxi into “probability of yi” using:

• MLE with this likelihood is equivalent to minimizing logistic loss.
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MLE Interpretation of Logistic Regression
• For IID regression problems the conditional NLL can be written:

• Logistic regression assumes sigmoid(wTxi) conditional likelihood:

• Plugging in the sigmoid likelihood, the NLL is the logistic loss:
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MLE Interpretation of Logistic Regression
• Instead of “smooth convex approximation of 0-1 loss”, we now have that

logistic regression is doing MLE in a probabilistic model.
– “Maximize +1-ness of +1 examples and -1-ness of -1 examples”

– The training and prediction would be the same as before.
• We still minimize the logistic loss in terms of ‘w’.

– But MLE justifies using sigmoid with learned w to get +1-ness:

– Softmax function and softmax loss are also connected via NLL
• See Piazza for derivations
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“Heavy” Tails vs. “Light” Tails
• We know that L1-norm is more robust than L2-norm.

– What does this mean in terms of probabilities?

– Gaussian has “light tails”: assumes everything is close to mean.
– Laplace has “heavy tails”: assumes some data is far from mean.
– Student ‘t’ is even more heavy-tailed/robust, but NLL is non-convex.

http://austinrochford.com/posts/2013-09-02-prior-distributions-for-bayesian-regression-using-pymc.html
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MAXIMUM A POSTERIORI
ESTIMATION
Coming Up Next
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Maximum Likelihood Estimation and Overfitting
• In our abstract setting with data D the MLE is:

• But conceptually MLE is a bit weird:
– “Find the ‘w’ that makes ‘D’ have the highest probability given ‘w’.”

• And MLE often leads to overfitting: 
– Data could be very likely for some very unlikely ‘w’.
– For example, a complex model that overfits by memorizing the data.

• What we really want:
– “Find the ‘w’ that has the highest probability given the data D.” 44



Maximum a Posteriori (MAP) Estimation
• Maximum a posteriori (MAP) estimate maximizes the reverse probability:

– This is what we want: the probability of ‘w’ given our data.

• MLE and MAP are connected by Bayes rule:

• So MAP maximizes the likelihood p(D|w) times the prior p(w):
– Prior is our “belief” that ‘w’ is correct before seeing data.
– Prior can reflect that complex models are likely to overfit.
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“Prior”
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Q: What if this is overfitting? 
How do we discourage w from going here?



“Prior”
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“Prior”
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Q: Is this a good value 
according to the prior? Prior p(w)

Q: Haven’t we seen 
a similar concept before?



MAP Estimation and Regularization
• From Bayes rule, the MAP estimate with IID examples Di is:

• By again taking the negative of the logarithm as before we get:

• So we can view the negative log-prior as a regularizer:
– Many regularizers are equivalent to negative log-priors.
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L2-Regularization and MAP Estimation
• We obtain L2-regularization under an independent Gaussian assumption:

• This implies that:

• So we have that:

• With this prior, the MAP estimate with IID training examples would be
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MAP Estimation and Regularization
• MAP estimation gives link between probabilities and loss functions.

– Gaussian likelihood (σ = 1) + Gaussian prior gives L2-regularized least squares.

– Laplace likelihood (σ = 1) + Gaussian prior give L2-regularized robust regression:

– As ‘n’ goes to infinity, effect of prior/regularizer goes to zero.
– Unlike with MLE, the choice of σ changes the MAP solution for these models.
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Summarizing the past few slides
• Many of our loss functions and regularizers have probabilistic interpretations.

– Laplace likelihood leads to absolute error.
– Laplace prior leads to L1-regularization.

• The choice of likelihood corresponds to the choice of loss.
– Our assumptions about how the yi-values can come from the xi and ‘w’.

• The choice of prior corresponds to the choice of regularizer.
– Our assumptions about which ‘w’ values are plausible.
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Regularizing Other Models
• We can view priors in other models as regularizers.

• Remember the problem with MLE for naïve Bayes:
• The MLE of p(‘lactase’ = 1| ‘spam’) is: count(spam,lactase)/count(spam).
• But this caused problems if count(spam,lactase) = 0.

• Our solution was Laplace smoothing:
– Add “+1” to our estimates: (count(spam,lactase)+1)/(counts(spam)+2).
– This corresponds to a “Beta” prior so Laplace smoothing is a regularizer.

53



Why do we care about MLE and MAP?
• Unified way of thinking about many of our tricks?

– Probabilitic interpretation of logistic loss.
– Laplace smoothing and L2-regularization are doing the same thing.

• Remember our two ways to reduce overfitting in complicated models:
– Model averaging (ensemble methods).
– Regularization (linear models).

• “Fully”-Bayesian methods (CPSC 440) combine both of these.
– Average over all models, weighted by posterior (including regularizer).
– Can use extremely-complicated models without overfitting.
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Losses for Other Discrete Labels
• MLE/MAP gives loss for classification with basic labels:

– Least squares and absolute loss for regression.
– Logistic regression for binary labels {“spam”, “not spam”}.
– Softmax regression for multi-class {“spam”, “not spam”, “important”}.

• But MLE/MAP lead to losses with other discrete labels (bonus):
– Ordinal: {1 star, 2 stars, 3 stars, 4 stars, 5 stars}.
– Counts: 602 ‘likes’.
– Survival rate: 60% of patients were still alive after 3 years.
– Unbalanced classes: 99.9% of examples are classified as +1.

• Define likelihood of labels, and use NLL as the loss function.

• We can also use ratios of probabilities to define more losses (bonus):
– Binary SVMs, multi-class SVMs, and “pairwise preferences” (ranking) models.
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SUMMARY OF PART 3
Coming Up Next

56



End of Part 3: Key Concepts
• Linear models predict based on linear combination(s) of features:

• We model non-linear effects using a change of basis:
– Replace d-dimensional xi with k-dimensional zi and use vTzi.
– Examples include polynomial basis and (non-parametric) RBFs.

• Regression is supervised learning with continuous labels.
– Logical error measure for regression is squared error:

– Can be solved as a system of linear equations.
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End of Part 3: Key Concepts
• Gradient descent finds local minimum of smooth objectives.

– Converges to a global optimum for convex functions.
– Can use smooth approximations (Huber, log-sum-exp)

• Stochastic gradient methods allow huge/infinite ‘n’.
– Though very sensitive to the step-size.

• Kernels let us use similarity between examples, instead of features.
– Lets us use some exponential- or infinite-dimensional features.

• Feature selection is a messy topic.
– Classic method is forward selection based on L0-norm.
– L1-regularization simultaneously regularizes and selects features.
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End of Part 3: Key Concepts
• We can reduce over-fitting by using regularization:

• Squared error is not always right measure:
– Absolute error is less sensitive to outliers.
– Logistic loss and hinge loss are better for binary yi.
– Softmax loss is better for multi-class yi.

• MLE/MAP perspective:
– We can view loss as log-likelihood and regularizer as log-prior.
– Allows us to define losses based on probabilities.
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The Story So Far…
• Part 1: Supervised Learning.

– Methods based on counting and distances.

• Part 2: Unsupervised Learning.
– Methods based on counting and distances.

• Part 3: Supervised Learning (just finished).
– Methods based on linear models and gradient descent.

• Part 4: Unsupervised Learning (next time).
– Methods based on linear models and gradient descent.
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Summary
• Maximum likelihood estimate viewpoint of common models.

– Objective functions are equivalent to maximizing p(y, X | w) or p(y | X, w).
• MAP estimation directly models p(w | X, y).

– Gives probabilistic interpretation to regularization.
• Losses for weird scenarios are possible using MLE/MAP:

– Ordinal labels, count labels, censored labels, unbalanced labels.

• Next time: 
– What ‘parts’ is your personality made of?
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Review Questions
• Q1: How is the likelihood different between supervised and unsupervised 

learning?

• Q2: How is maximizing +1-ness for +1 examples related to the logistic loss?

• Q3: Why is the argmin of negative log likelihood the same as the argmax of 
likelihood?

• Q4: How does Bayes’ rule connect likelihood and prior?
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Discussion: Least Squares and Gaussian Assumption

• Classic justifications for the Gaussian assumption underlying least squares:
– Your noise might really be Gaussian. (It probably isn't, but maybe it's a good enough approximation.)
– The central limit theorem (CLT) from probability theory. (If you add up enough IID random 

variables, the estimate of their mean converges to a Gaussian distribution.)  

• I think the CLT justification is wrong as we've never assumed that the xij are IID 
across ‘j’ values. We only assumed that the examples xi are IID across ‘i’ values, so 
the CLT implies that our estimate of ‘w’ would be a Gaussian distribution under 
different samplings of the data, but this says nothing about the distribution of yi
given wTxi.

• On the other hand, there are reasons *not* to use a Gaussian assumption, like it's 
sensitivity to outliers. This was (apparently) what lead Laplace to propose the 
Laplace distribution as a more robust model of the noise.

• The "student t" distribution (published anonymously by Gosset while working at the 
Guiness beer company) is even more robust, but doesn't lead to a convex objective.
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Binary vs. Multi-Class Logistic
• How does multi-class logistic generalize the binary logistic model?
• We can re-parameterize softmax in terms of (k-1) values of zc:

– This is due to the “sum to 1” property (one of the zc values is redundant).
– So if k=2, we don’t need a z2 and only need a single ‘z’.
– Further, when k=2 the probabilities can be written as:

– Renaming ‘2’ as ‘-1’, we get the binary logistic regression probabilities.
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Ordinal Labels
• Ordinal data: categorical data where the order matters:

– Rating hotels as {‘1 star’, ‘2 stars’, ‘3 stars’, ‘4 stars’, ‘5 stars’}.
– Softmax would ignore order.

• Can use ‘ordinal logistic regression’.
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Count Labels
• Count data: predict the number of times something happens.

– For example, yi = “602” Facebook likes.
• Softmax requires finite number of possible labels.
• We probably don’t want separate parameter for ‘654’ and ‘655’.
• Poisson regression: use probability from Poisson count distribution.

– Many variations exist, a lot of people think this isn’t the best likelihood.
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Censored Survival Analysis (Cox Partial Likelihood)

• Censored survival analysis:
– Target yi is  last time at which we know person is alive.

• But some people are still alive (so they have the same yi values).
• The yi values (time at which they die) are “censored”.

– We use vi=0 is they are still alive and otherwise we set vi = 1.

• Cox partial likelihood assumes “instantaneous” rate of dying depends on xi
but not on total time they’ve been alive (not that realistic). Leads to 
likelihood of the “censored” data of the form:

• There are many extensions and alternative likelihoods.

67



Other Parsimonious Parameterizations
• Sigmoid isn’t the way to model a binary p(yi | xi, w):

– Probit (uses CDF of normal distribution, very similar to logistic).
– Noisy-Or (simpler to specify probabilities by hand).
– Extreme-value loss (good with class imbalance).
– Cauchit, Gosset, and many others exist…
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Unbalanced Training Sets
• Consider the case of binary classification where your training set has 99% class -1 

and only 1% class +1.
– This is called an “unbalanced” training set

• Question: is this a problem?
• Answer: it depends!

– If these proportions are representative of the test set proportions, and you care about 
both types of errors equally, then “no” it’s not a problem.

• You can get 99% accuracy by just always predicting -1, so ML can only help with the 1%.
– But it’s a problem if the test set is not like the training set (e.g. your data collection 

process was biased because it was easier to get -1’s)
– It’s also a problem if you care more about one type of error, e.g. if mislabeling a +1 as a -1 

is much more of a problem than the opposite
• For example if +1 represents “tumor” and -1 is “no tumor”  
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Unbalanced Training Sets
• This issue comes up a lot in practice!
• How to fix the problem of unbalanced training sets?

– Common strategy is to build a “weighted” model:
• Put higher weight on the training examples with yi=+1.

• This is equivalent to replicating those examples in the training set.
• You could also subsample the majority class to make things more balanced.
• Boostrap: create a dataset of size ‘n’ where n/2 are sampled from +1, n/2 from -1.

– Another approach is to try to make “fake” data to fill in minority class.
– Another option is to change to an asymmetric loss function (next slides)

that penalizes one type of error more than the other.
– Some discussion of different methods here.
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https://www.quora.com/In-a-supervised-learning-problem-what-are-some-effective-techniques-that-can-deal-with-highly-imbalanced-datasets


Unbalanced Data and Extreme-Value Loss
• Consider binary case where:

– One class overwhelms the other class (‘unbalanced’ data).
– Really important to find the minority class (e.g., minority class is tumor).
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Unbalanced Data and Extreme-Value Loss
• Extreme-value distribution:
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Unbalanced Data and Extreme-Value Loss
• Extreme-value distribution:
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Loss Functions from Probability Ratios
• We’ve seen that loss functions can come from probabilities:

– Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.
• Most other loss functions can be derived from probability ratios.

– Example: sigmoid => hinge.
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Loss Functions from Probability Ratios
• We’ve seen that loss functions can come from probabilities:

– Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.
• Most other loss functions can be derived from probability ratios.

– Example: sigmoid => hinge.
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Loss Functions from Probability Ratios
• We’ve seen that loss functions can come from probabilities:

– Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.
• Most other loss functions can be derived from probability ratios.

– Example: sigmoid => hinge.
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Loss Functions from Probability Ratios
• We’ve seen that loss functions can come from probabilities:

– Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.
• Most other loss functions can be derived from probability ratios.

– Example: sigmoid => hinge.
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Loss Functions from Probability Ratios
• General approach for defining losses using probability ratios:

1. Define constraint based on probability ratios.
2. Minimize violation of logarithm of constraint.

• Example: softmax => multi-class SVMs.
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Supervised Ranking with Pairwise Preferences

• Ranking with pairwise preferences:
– We aren’t given any explicit yi values.
– Instead we’re given list of objects (i,j) where yi > yj.
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