CPSC 340: Machine Learning and Data Mining

MLE and MAP Summer 2021

In This Lecture

- 1. Maximum Likelihood Estimation (35 minutes)
- 2. Maximum A Posteriori Estimation (20 minutes)

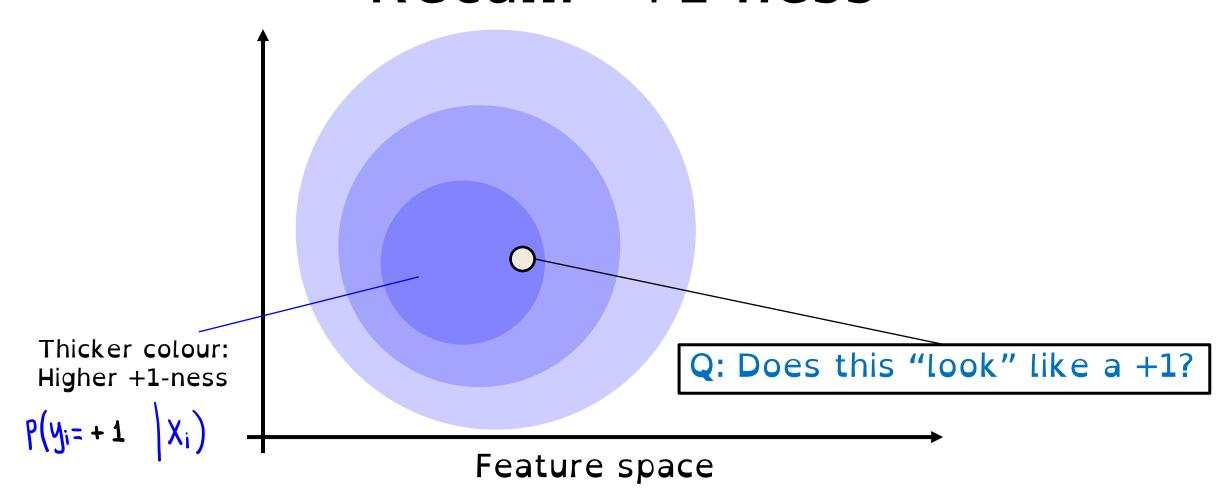
Motivation for Learning about MLE and MAP

- Next topic: maximum likelihood estimation (MLE) and MAP estimation.
 - Crucial to understanding advanced methods, notation can be difficult at first.
- Why are we learning about these?
 - Justifies the naïve Bayes "counting" estimates for probabilities.
 - Shows the connection between least squares and the normal distribution.
 - Makes connection between "robust regression" and "heavy tailed" probabilities.
 - Shows that regularization and Laplace smoothing are doing the same thing.
 - Justifies using sigmoid function to get probabilities in logistic regression.
 - Gives a way to write complicated ML problems as optimization problems.
 - How do you define a loss for "number of Facebook likes" or "1-5 star rating"?

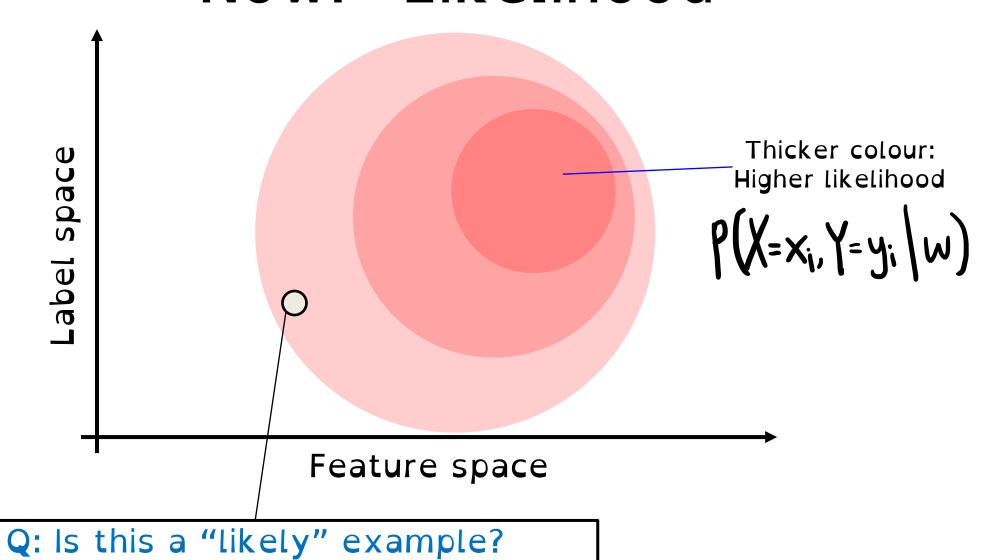
Coming Up Next

WHAT IS A LIKELIHOOD?

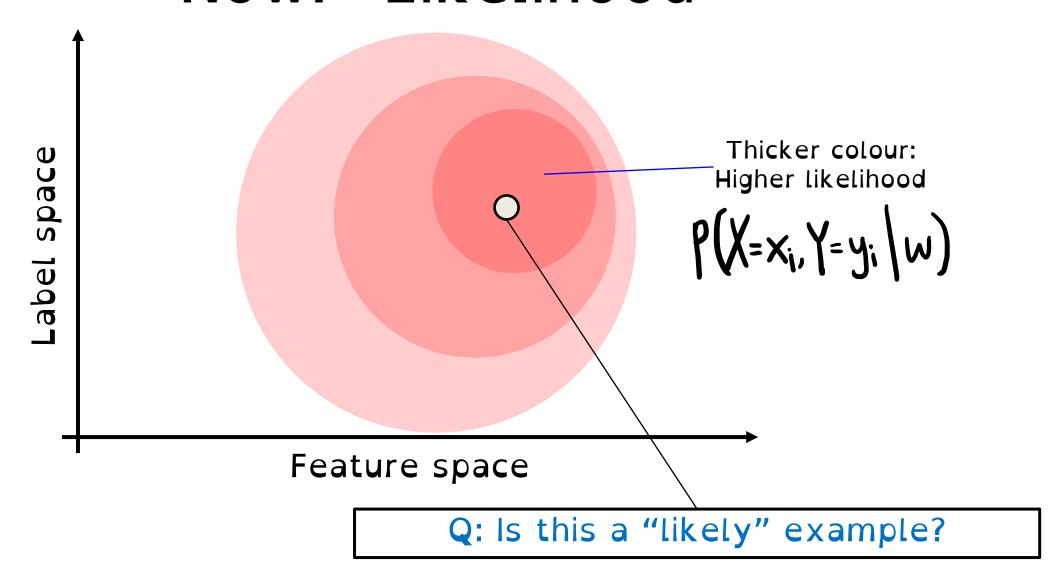
Recall: "+1-ness"



Now: "Likelihood"



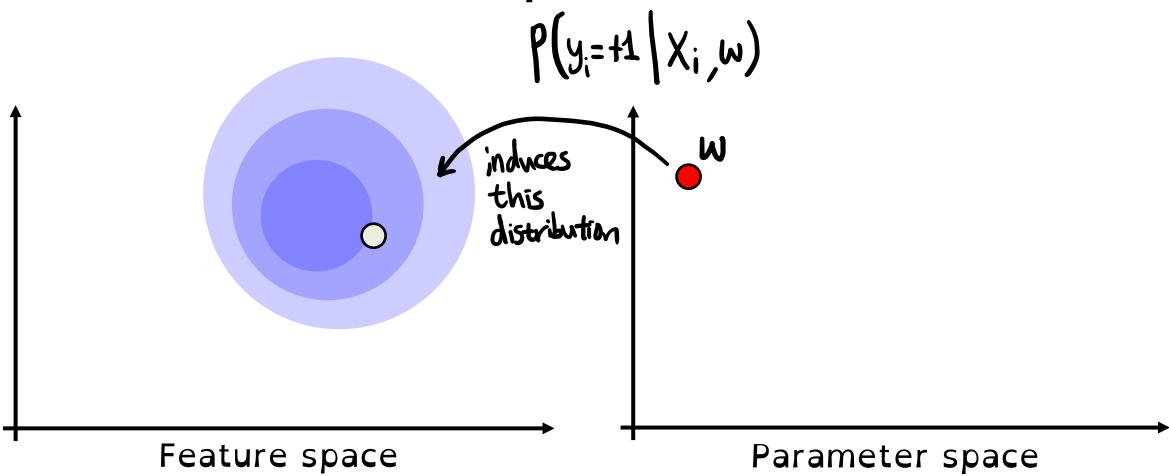
Now: "Likelihood"



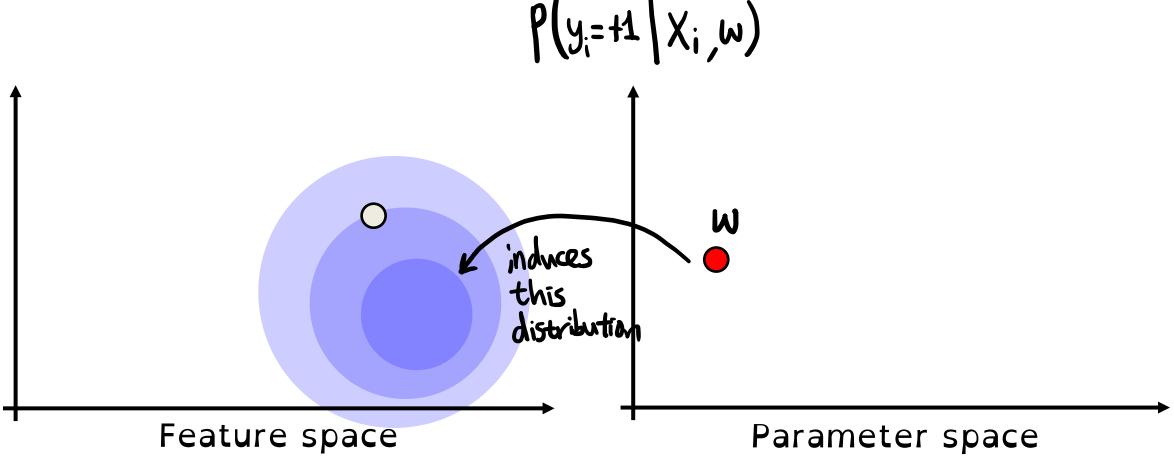
Now: "Likelihood" $P(X=x_i,Y=y_i|w)$ W induces this distribution Label space Feature space Parameter space

Now: "Likelihood" $P(X=x_i,Y=y_i|w)$ Label space Feature space Parameter space

+1-ness Also Depends on Parameters



+1-ness Also Depends on Parameters $p(u-\mu \mid v \mid \omega)$



Model = Assumption

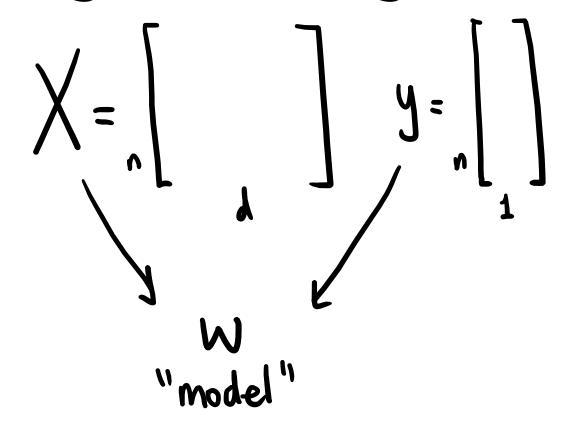
$$X = \begin{bmatrix} \\ \\ \\ \end{bmatrix} \rightarrow y = \begin{bmatrix} \\ \\ \\ \end{bmatrix}$$

$$\text{e.g. } y = Xw^* + \varepsilon$$

$$\varepsilon \sim N(0, \sigma^2)$$
There parameters $\int_{1}^{1} \int_{1}^{1} \int_{1}$

 Linear models assume that the data was generated according to some linear combination

Learning = Finding Parameters

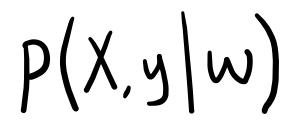


- Given data, "learning a model" means approximating the parameters of the data generating process
 - e.g. feature coefficients for a linear model

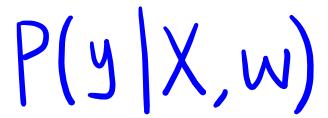
"Likelihood"

P(D|w)

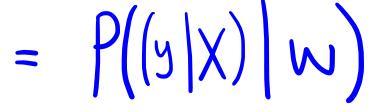
Probability of seeing dataset D given parameters w



Probability of seeing dataset X,y given parameters w



Probability of seeing labels y given parameters w and features X



Probability of seeing labeled dataset X,y given parameters w

- A parameter value induces a distribution called "likelihood"
 - "Probability of seeing the given data"
 - Corresponds to the assumption about how data is generated

Signature of Likelihood Function

$$P(\cdot \mid w): \mathbb{R}^{n\times d} \times \mathbb{R}^{n} \rightarrow [0,1]$$

fixed w, varying data (unsupervised)

$$P(y|X,.): \mathbb{R}^d \to [0, 1]$$
fixed data, varying w

- Be careful about what's being varied:
 - Given same w, we can vary examples
 - We are usually doing this during prediction
 - Given same examples, we can vary w
 - Varying w changes the induced distribution
 - · We are usually doing this during training

Coming Up Next

MAXIMUM LIKELIHOOD ESTIMATION

"argmin" and "argmax"

We've repeatedly used the min and max functions:

$$\min_{w} \{ w^{2} \} = 0$$
 $\max_{w} \{ \cos(w) \} = 1$

- Minimum (or maximum) value achieved by a function.
- A related set of functions are the argmin and argmax:
 - The set of parameter values achieving the minimum (or maximum).

$$\min_{\mathbf{w}} \{ (\mathbf{w} - 1)^{2} \} = 0$$

$$\min_{\mathbf{w}} \{ (\mathbf{w} - 1)^{2} \} = 1$$

$$\max_{\mathbf{w}} \{ (\mathbf{w} - 1)^{2} \} = 1$$

$$\max_{\mathbf$$

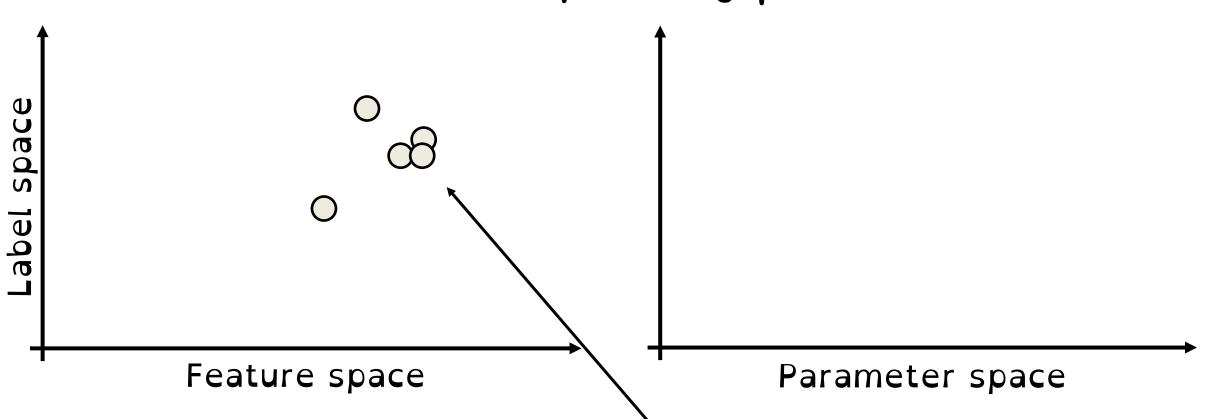
"argmin" and "argmax"

- The last slide is a little sloppy for the following reason:
 - There may be multiple values achieving the min and/or max.
 - So the argmin and argmax return sets.

argmin
$$\{(w-1)^2\}$$
 = $\{1\}^{e}$ "set containing the element 1 " "sets are equivalent" argmax $\{(os(w))\}$ = $\{..., -417, -217, 0, 277, 477, ...\}$ argmax $\{\frac{1}{2}||\chi_{w}-\gamma||^2\}$ = $\{w \mid \chi^{7}\chi_{w}=\chi^{7}\chi^{7}\}$

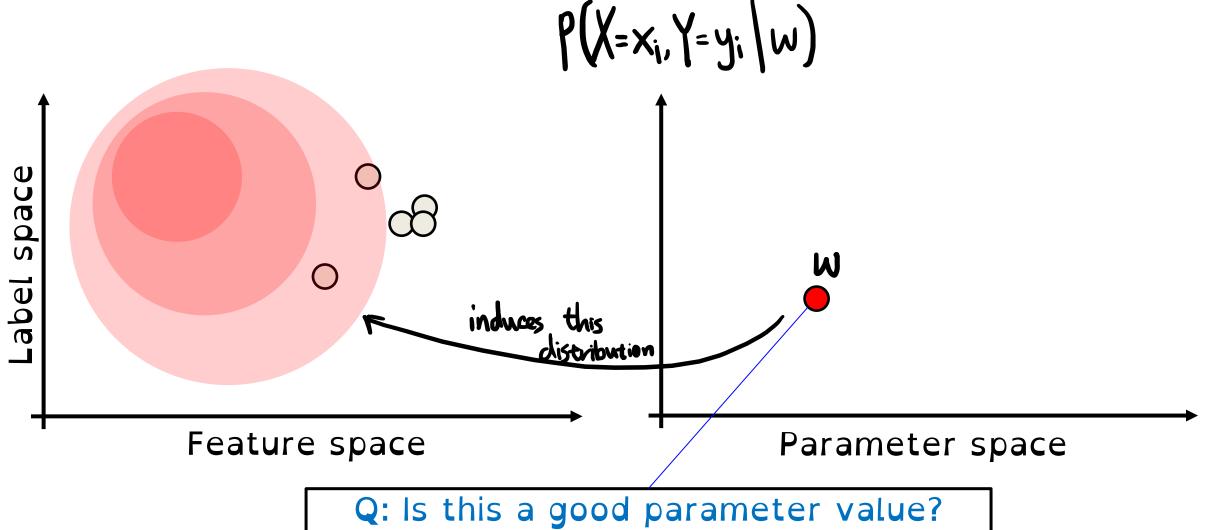
- And we don't say a variable "is" the argmax, but that it "is in" the argmax.

Maximum Likelihood Estimation ρ(χ=x_i, γ=y_i\w)

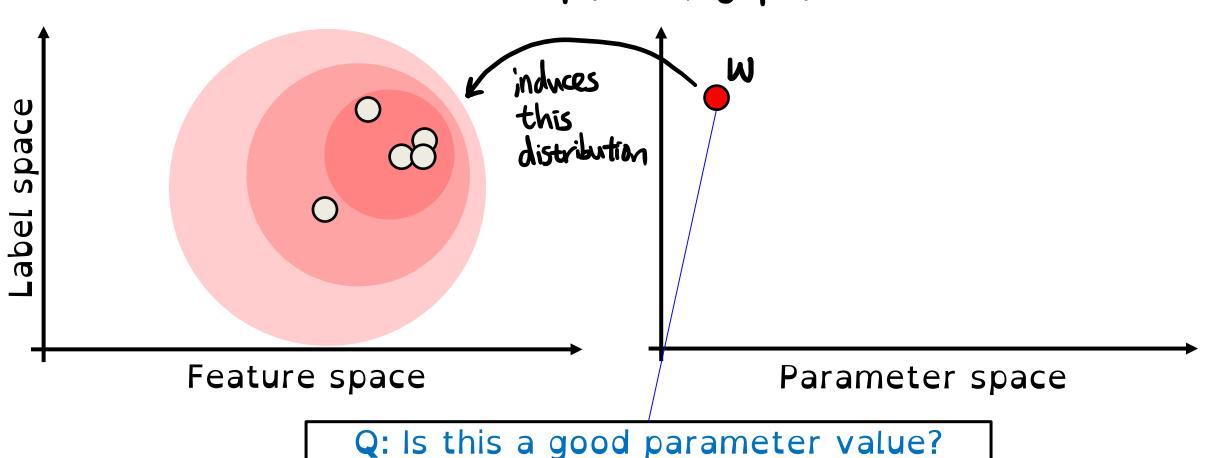


Q: What is the parameter value that makes these examples most likely?

Maximum Likelihood Estimation

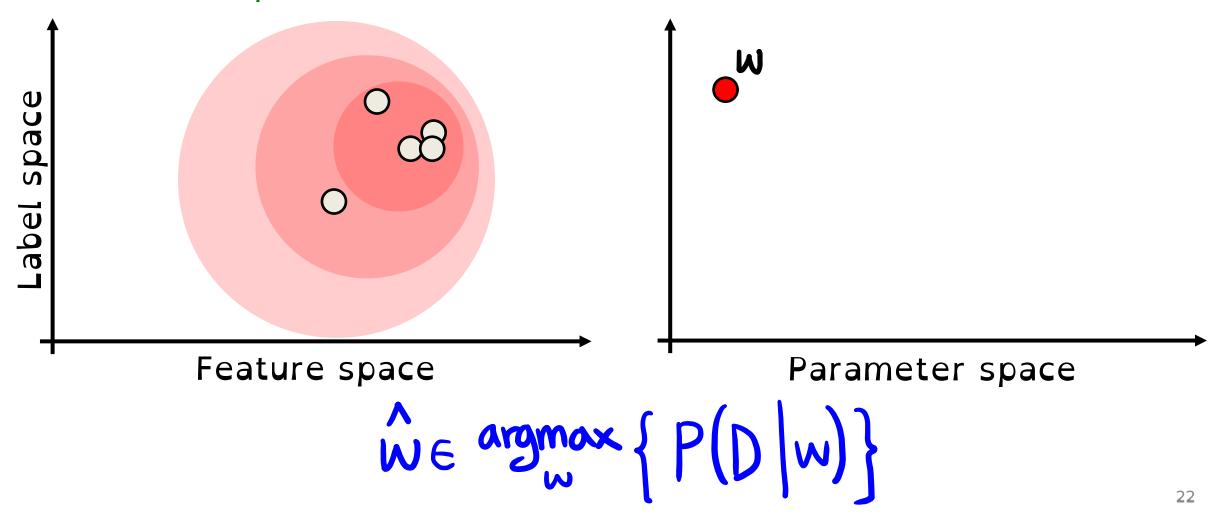


Maximum Likelihood Estimation ρ(X=x_i, Y=y_i\w)



Maximum Likelihood Estimation

- Maximum likelihood estimation (MLE):
 - Choose parameters that maximize the likelihood:



MLE for Binary Variables (General Case)

• Consider a binary feature:

Using 'w' as "probability of 1", the maximum likelihood estimate is:

- This is the "estimate" for the probabilities we used in naïve Bayes.
 - The conditional probabilities we used in naïve Bayes are also MLEs.
 - The derivation is tedious, but if you're interested I put it here.

Coming Up Next

MAXIMUM LIKELIHOOD ESTIMATION AND NEGATIVE LOG LIKELIHOOD

Maximum Likelihood Estimation (MLE)

- Maximum likelihood estimation (MLE) for fitting probabilistic models.
 - We have a dataset D.
 - We want to pick parameters 'w'.
 - We define the likelihood as a probability mass/density function p(D | w).
 - We choose the model \widehat{w} that maximizes the likelihood:

- Appealing "consistency" properties as n goes to infinity (take STAT 4XX).
 - "This is a reasonable thing to do for large data sets".

Least Squares is Gaussian MLE

- It turns out that most objectives have an MLE interpretation:
 - For example, consider minimizing the squared error:

$$f(w) = \frac{1}{2} \| \chi_w - \gamma \|^2$$

This gives MLE of a linear model with IID noise from a normal distribution:

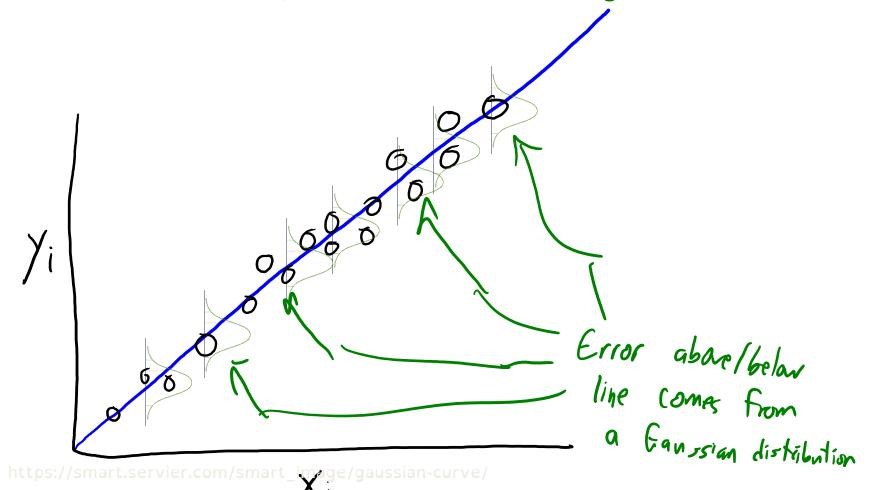
$$y_i = \mathbf{w}^T \mathbf{x}_i + \boldsymbol{\varepsilon}_i$$

where each & is sampled independently from standard normal

- "Gaussian" is another name for the "normal" distribution.
- Remember that least squares solution is called the "normal equations".

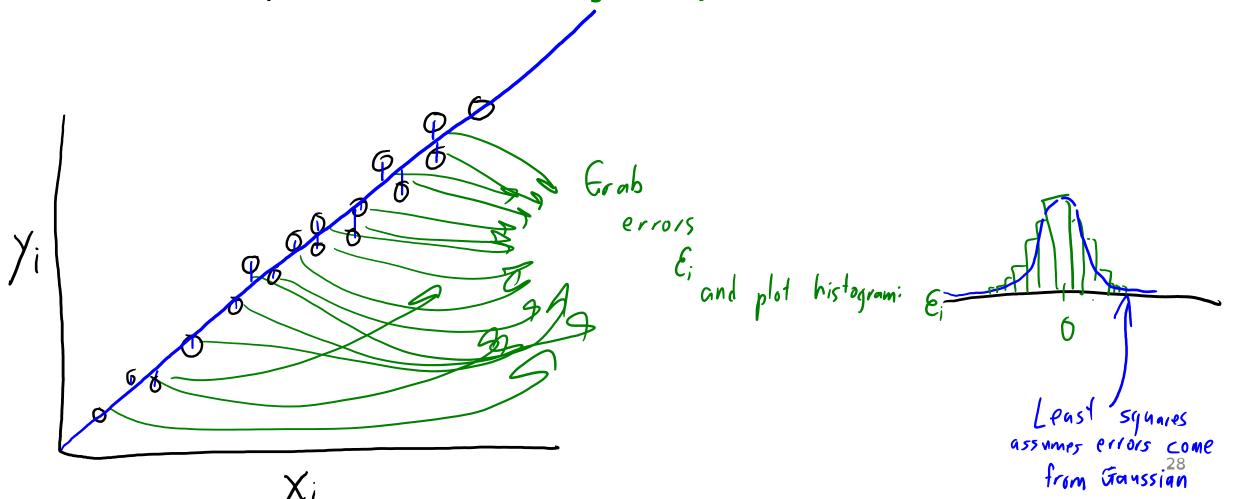
Least Squares is Gaussian MLE

- It turns out that most objectives have an MLE interpretation:
 - For example, consider minimizing the squared error:



Least Squares is Gaussian MLE

- It turns out that most objectives have an MLE interpretation:
 - For example, consider minimizing the squared error:



Minimizing the Negative Log-Likelihood (NLL)

- To compute MLE, usually we equivalently minimize the negative "log-likelihood" (NLL):
 - "Log-likelihood" is short for "logarithm of the likelihood".

- Why are these equivalent?
 - Logarithm is strictly monotonic: if $\alpha > \beta$, then $\log(\alpha) > \log(\beta)$.
 - So location of maximum doesn't change if we take logarithm.
 - Changing sign flips max to min.
- See Max and Argmax notes if this seems strange.

Minimizing the Negative Log-Likelihood (NLL)

We use log-likelihood because it turns multiplication into addition:

$$\log(\alpha\beta) = \log(\alpha) + \log(\beta)$$

More generally:

$$\log\left(\frac{\bigcap}{\bigcap} a_i\right) = \sum_{i=1}^{n} \log(a_i)$$

• If data is 'n' IID samples then $p(D|w) = \prod_{i=1}^{n} p(D_i|w)$ example 'i'

and our MLE is
$$\hat{W} \in \operatorname{argmax} \left\{ \prod_{i=1}^{n} \rho(D_i | W) \right\} \equiv \operatorname{argmin} \left\{ -\sum_{i=1}^{n} \log \left(\rho(D_i | W) \right) \right\}$$

Least Squares is Gaussian MLE (Gory Details)

Let's assume that $y_i = w^T x_i + \varepsilon_i$, with ε_i following standard normal:

$$P(\mathcal{E}_i) = \frac{1}{\sqrt{2\pi}} exp(-\frac{\mathcal{E}_i^2}{2})$$

distribution

This leads to a Gaussian likelihood for example 'i' of the form:

$$\rho(y_i | x_i, w) = \frac{1}{2\pi} exp\left(-\frac{(w^7 x_i - y_i)^2}{2}\right)$$

Finding MLE (minimizing NLL) is least squares:

• Finding MLE (minimizing NLL) is least squares:

[1]
$$f(w) = -\sum_{i=1}^{n} \log (\rho(y_i | w_i, x_i))$$

$$f(w) = -\sum_$$

Coming Up Next

MORE DETAILS ON MAXIMUM LIKELIHOOD ESTIMATES

Digression: "Generative" vs. "Discriminative"

- Discriminative model:
 - Optimize parameters to maximize "+1-ness" for +1 examples, etc.

$$\hat{W} \in \underset{w}{\operatorname{argmax}} \left\{ P\left(\underbrace{y \mid X, W} \right) \right\} \quad P(\underline{y \mid X, w}) = P(\underline{y \mid X, w})$$
del:

Generative model:

Optimize parameters to maximize "data likelihood"

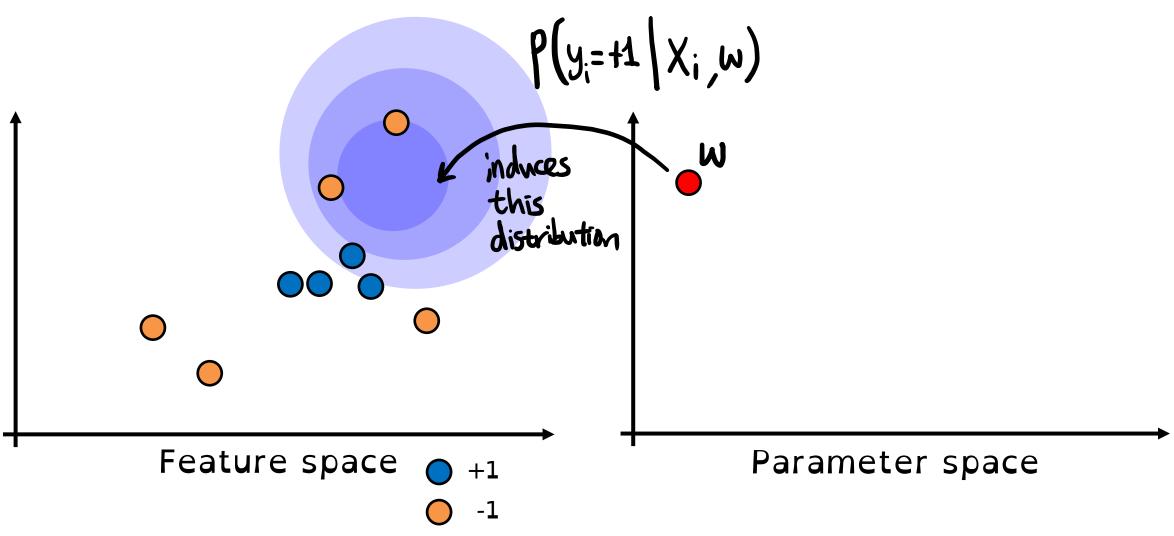
$$\hat{W} \in \underset{W}{\operatorname{argmax}} \{ P(\underline{y}, X | W) \}$$

- Prediction time:
 - both discriminative and generative models aim to predict "+1-ness"

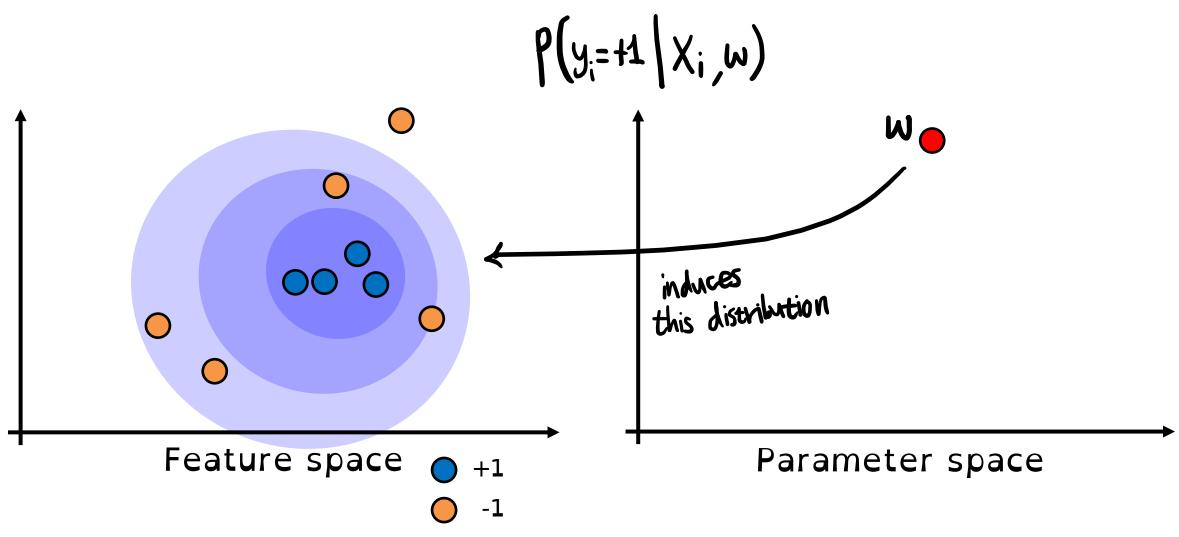
Digression: "Generative" vs. "Discriminative"

- For least squares, maximize conditional p(y | X, w), not the likelihood p(y, X | w).
 - We did MLE "conditioned" on the features 'X' being fixed (no "likelihood of X").
 - This is called a "discriminative" supervised learning model.
 - A "generative" model (like naïve Bayes) would optimize p(y, X | w).
- Discriminative probabilistic models:
 - Least squares, robust regression, logistic regression.
 - Can use complicated features because you don't model 'X'.
- Example of generative probabilistic models:
 - Naïve Bayes, linear discriminant analysis (makes Gaussian assumption).
 - Often need strong assumption because they model 'X'.
- "Folk" belief: generative models are often better with small 'n'.

Discriminative MLE



Discriminative MLE



Loss Functions and Maximum Likelihood Estimation

• So least squares is MLE under Gaussian likelihood.

If
$$p(y_i|x_i,w) = \frac{1}{\sqrt{2\pi}} exp(-(\frac{w^2k_i-y_i)^2}{2})$$

then MLE of $|w|$ is minimum of $f(w) = \frac{1}{2}||Xw-y||^2$

With a Laplace likelihood you would get absolute error.

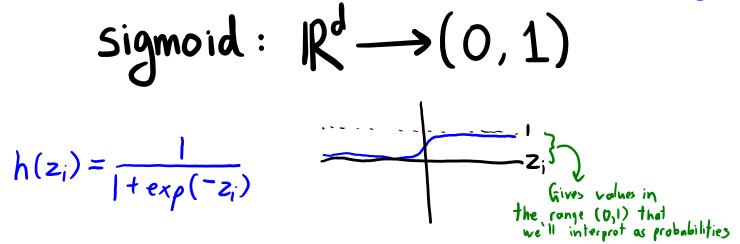
If
$$p(y_i|x_i,w) = \frac{1}{2} exp(-lw^Tx_i-y_i)$$

then MLE is minimum of $f(w) = ||Xw-y||_1$

Other likelihoods lead to different errors ("sigmoid" -> logistic loss).

Sigmoid: transforming w^Tx_i to a Probability

Recall we got probabilities from binary linear models with sigmoid:



- 1. The linear model w^Tx_i gives us a number z_i in $(-\infty, \infty)$.
- 2. We'll map $z_i = w^T x_i$ to a probability with the sigmoid function.
- We can show that MLE with this model gives logistic loss.

Sigmoid: transforming w^Tx_i to a Probability

• We'll define $p(y_i = +1 \mid z_i) = h(z_i)$, where 'h' is the sigmoid function.

[1] So
$$p(y_i = -1/z_i) = 1 - p(y_i = +1/z_i)$$

 $= 1 - h(z_i)$ can show from $= h(-z_i)$ \neq definition of 'h'

- With y_i in $\{-1,+1\}$, we can write both cases as $p(y_i \mid z_i) = h(y_i z_i)$.
- So we convert $z_i = w^T x_i$ into "probability of y_i " using:

[4]
$$\rho(y_i|w_jx_i) = h(y_i|w_jx_i)$$

$$= \frac{1}{1 + e_{xy}(-y_i|w_jx_i)}$$

• MLE with this likelihood is equivalent to minimizing logistic loss.

MLE Interpretation of Logistic Regression

· For IID regression problems the conditional NLL can be written:

[1]
$$-\log(\rho(y|X,w)) = -\log(\frac{\pi}{|x|}\rho(y_i|x_i,w)) = -\frac{2}{|x|}\log(\rho(y_i|x_i,w))$$

$$= -\frac{2}{|x|}\log(\rho(y_i|x_i,w))$$
Product inlosum

• Logistic regression assumes sigmoid($\mathbf{w}^T\mathbf{x}_i$) conditional likelihood:

[2]
$$p(y_i|x_{i,w}) = h(y_iw^7x_i)$$
 where $h(z_i) = \frac{1}{1 + e \times p(-z_i)}$

• Plugging in the sigmoid likelihood, the NLL is the logistic loss:

[3]
$$NLL(w) = -\sum_{i=1}^{n} \log(\frac{1}{1 + exp(-y_i w^i x_i)}) = \sum_{i=1}^{n} \log(1 + exp(-y_i w^i x_i))$$
(since $\log(1) = 0$) 40

MLE Interpretation of Logistic Regression

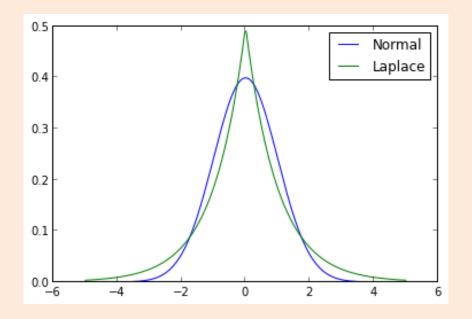
- Instead of "smooth convex approximation of 0-1 loss", we now have that logistic regression is doing MLE in a probabilistic model.
 - "Maximize +1-ness of +1 examples and -1-ness of -1 examples"
 - The training and prediction would be the same as before.
 - We still minimize the logistic loss in terms of 'w'.
 - But MLE justifies using sigmoid with learned w to get +1-ness:

$$p(y_i \mid x_i, w) = \frac{1}{1 + exp(-y_i w^T x_i)}$$

- Softmax function and softmax loss are also connected via NLL
 - See Piazza for derivations

"Heavy" Tails vs. "Light" Tails

- We know that L1-norm is more robust than L2-norm.
 - What does this mean in terms of probabilities?



Here "tail" means

"mass of the

distribution away

from the mean!

- Gaussian has "light tails": assumes everything is close to mean.
- Laplace has "heavy tails": assumes some data is far from mean.
- Student 't' is even more heavy-tailed/robust, but NLL is non-convex.

Coming Up Next

MAXIMUM A POSTERIORI ESTIMATION

Maximum Likelihood Estimation and Overfitting

In our abstract setting with data D the MLE is:

• But conceptually MLE is a bit weird:
$$P(D|\cdot): \mathbb{R}^d \to [0,1]$$

- "Find the 'w' that makes 'D' have the highest probability given 'w'."
- And MLE often leads to overfitting:
 - Data could be very likely for some very unlikely 'w'.
 - For example, a complex model that overfits by memorizing the data.
- What we really want: $P(\cdot \mid D): \mathbb{R}^4 \rightarrow [0,1]$
 - "Find the 'w' that has the highest probability given the data D."

Maximum a Posteriori (MAP) Estimation

Maximum a posteriori (MAP) estimate maximizes the reverse probability:

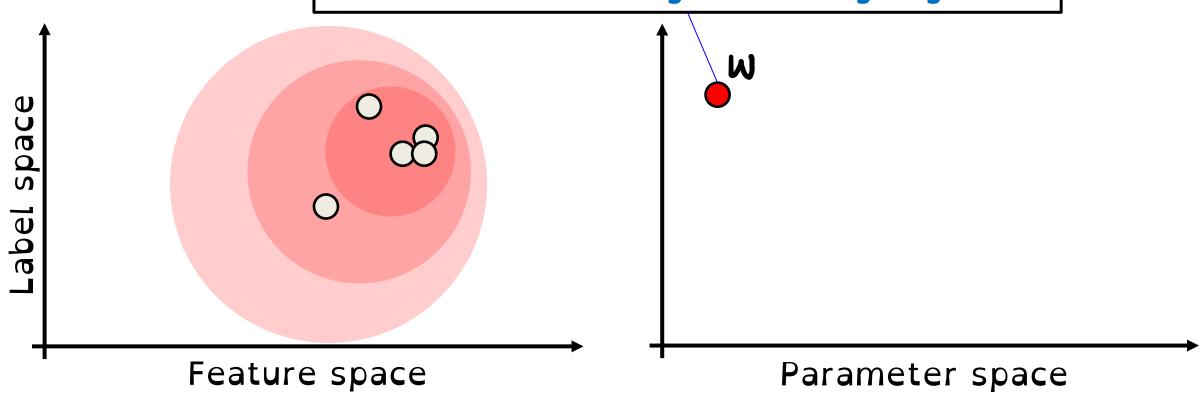
- This is what we want: the probability of 'w' given our data.
- MLE and MAP are connected by Bayes rule:

$$\rho(w|D) = \rho(D|w)\rho(w) \propto \rho(D|w)\rho(w)$$
posterior
$$\rho(D) = \rho(D|w)\rho(w) \propto \rho(D|w)\rho(w)$$
likelihood prior

- So MAP maximizes the likelihood p(D|w) times the prior p(w):
 - Prior is our "belief" that 'w' is correct before seeing data.
 - Prior can reflect that complex models are likely to overfit.

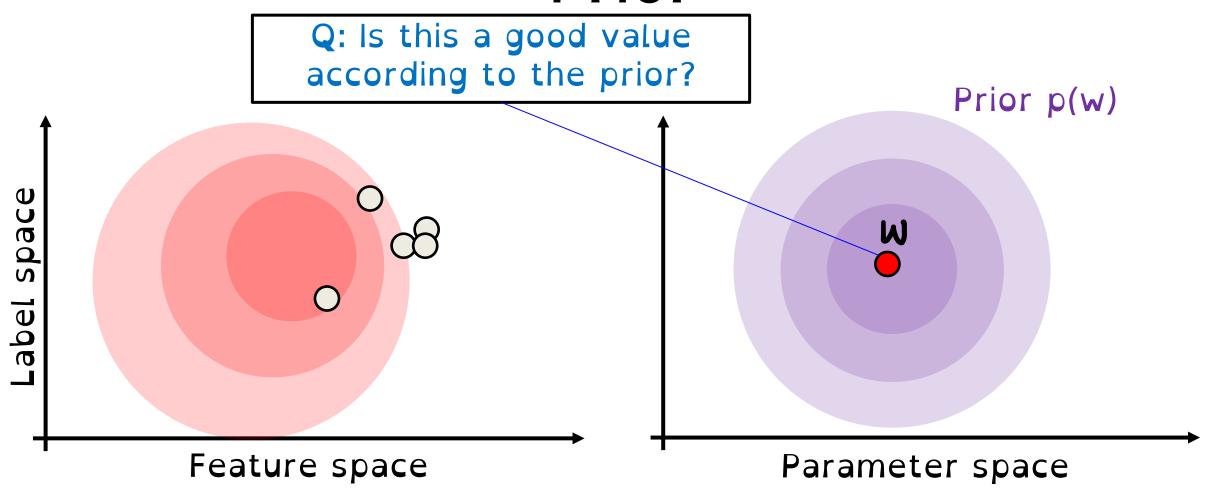
"Prior"

Q: What if this is overfitting? How do we discourage w from going here?



"Prior" Q: Is this a good value according to the prior? Prior p(w) W Label space Feature space Parameter space

"Prior"



Q: Haven't we seen a similar concept before?

MAP Estimation and Regularization

From Bayes rule, the MAP estimate with IID examples D_i is:

$$\hat{\mathbf{w}} \in \operatorname{argmax} \left\{ p(\mathbf{w} | D) \right\} \equiv \operatorname{argmax} \left\{ \prod_{i=1}^{n} \left[p(D_i | \mathbf{w}) \right] p(\mathbf{w}) \right\}$$

· By again taking the negative of the logarithm as before we get:

$$\hat{w}^{\epsilon}$$
 argmin $\{-\sum_{i=1}^{n} [\log (p(D_{i}|w))] - \log (p(w))\}$

- So we can view the negative log-prior as a regularizer:
 - Many regularizers are equivalent to negative log-priors.

L2-Regularization and MAP Estimation

- We obtain L2-regularization under an independent Gaussian assumption:
- Assume each W; comes from a Gaussian with mean O and variance 1/2
 - This implies that:

[2]
$$p(w) = \prod_{j=1}^{d} p(w_j) \propto \prod_{j=1}^{d} exp(-\frac{\lambda}{2}w_j^2) = exp(-\frac{\lambda}{2}\sum_{j=1}^{d}w_j^2)$$

$$exp(-\frac{\lambda}{2}w_j^2) = exp(-\frac{\lambda}{2}\sum_{j=1}^{d}w_j^2)$$

So we have that:

[3]
$$-\log(\rho(w)) = -\log(\exp(-\frac{2}{2}||w||^2)) + (constant) = \frac{2}{2}||w||^2 + (constant)$$

With this prior, the MAP estimate with IID training examples would be

[4]
$$\hat{\omega} \in \operatorname{argmin} \{\xi - \log(p(y|X_{jw})) - \log(p(w))\} \equiv \operatorname{argmin} \{\xi - \{\xi [\log(p(y_i|X_{ij,w})) + \frac{1}{2}\|\tilde{\omega}\|^2\}$$

MAP Estimation and Regularization

- MAP estimation gives link between probabilities and loss functions.
 - Gaussian likelihood ($\sigma = 1$) + Gaussian prior gives L2-regularized least squares.

If
$$p(y_i \mid x_i, w) \propto exp(-(\frac{w^2x_i - y_i}{2})^2)$$
 $p(w_j) \propto exp(-\frac{2}{2}w_j^2)$
then MAP estimation is equivalent to minimizing $f(w) = \frac{1}{2} ||Xw - y||^2 + \frac{2}{2} ||w||^2$

- Laplace likelihood ($\sigma = 1$) + Gaussian prior give L2-regularized robust regression:

If
$$p(y_i|x_i,w) \propto \exp(-|w^Tx_i-y_i|)$$
 $p(w) \propto \exp(-\frac{1}{2}|w_i|^2)$
then MAP estimation is equivalent to minimizing $f(w) = ||x_w - y|| + \frac{1}{2}||w||^2$

- As 'n' goes to infinity, effect of prior/regularizer goes to zero.
- Unlike with MLE, the choice of σ changes the MAP solution for these models.

Summarizing the past few slides

- Many of our loss functions and regularizers have probabilistic interpretations.
 - Laplace likelihood leads to absolute error.
 - Laplace prior leads to L1-regularization.
- The choice of likelihood corresponds to the choice of loss.
 - Our assumptions about how the y_i -values can come from the x_i and 'w'.
- The choice of prior corresponds to the choice of regularizer.
 - Our assumptions about which 'w' values are plausible.

Regularizing Other Models

- We can view priors in other models as regularizers.
- Remember the problem with MLE for naïve Bayes:
 - The MLE of p('lactase' = 1| 'spam') is: count(spam,lactase)/count(spam).
 - But this caused problems if count(spam, lactase) = 0.
- Our solution was Laplace smoothing:
 - Add "+1" to our estimates: (count(spam,lactase)+1)/(counts(spam)+2).
 - This corresponds to a "Beta" prior so Laplace smoothing is a regularizer.

Why do we care about MLE and MAP?

- Unified way of thinking about many of our tricks?
 - Probabilitic interpretation of logistic loss.
 - Laplace smoothing and L2-regularization are doing the same thing.
- Remember our two ways to reduce overfitting in complicated models:
 - Model averaging (ensemble methods).
 - Regularization (linear models).
- "Fully"-Bayesian methods (CPSC 440) combine both of these.
 - Average over all models, weighted by posterior (including regularizer).
 - Can use extremely-complicated models without overfitting.

Losses for Other Discrete Labels

- MLE/MAP gives loss for classification with basic labels:
 - Least squares and absolute loss for regression.
 - Logistic regression for binary labels {"spam", "not spam"}.
 - Softmax regression for multi-class {"spam", "not spam", "important"}.
- But MLE/MAP lead to losses with other discrete labels (bonus):
 - Ordinal: {1 star, 2 stars, 3 stars, 4 stars, 5 stars}.
 - Counts: 602 'likes'.
 - Survival rate: 60% of patients were still alive after 3 years.
 - Unbalanced classes: 99.9% of examples are classified as +1.
- Define likelihood of labels, and use NLL as the loss function.
- We can also use ratios of probabilities to define more losses (bonus):
 - Binary SVMs, multi-class SVMs, and "pairwise preferences" (ranking) models.

Coming Up Next

SUMMARY OF PART 3

End of Part 3: Key Concepts

Linear models predict based on linear combination(s) of features:

$$W^{T}x_{i} = w_{i}x_{i1} + w_{2}x_{i2} + \cdots + w_{d}x_{id}$$

- We model non-linear effects using a change of basis:
 - Replace d-dimensional x_i with k-dimensional z_i and use v^Tz_i .
 - Examples include polynomial basis and (non-parametric) RBFs.
- Regression is supervised learning with continuous labels.
 - Logical error measure for regression is squared error:
 - Can be solved as a system of linear equations.

$$f(w) = \frac{1}{2} || \chi_w - y ||^2$$

End of Part 3: Key Concepts

- Gradient descent finds local minimum of smooth objectives.
 - Converges to a global optimum for convex functions.
 - Can use smooth approximations (Huber, log-sum-exp)
- Stochastic gradient methods allow huge/infinite 'n'.
 - Though very sensitive to the step-size.
- Kernels let us use similarity between examples, instead of features.
 - Lets us use some exponential- or infinite-dimensional features.
- Feature selection is a messy topic.
 - Classic method is forward selection based on L0-norm.
 - L1-regularization simultaneously regularizes and selects features.

End of Part 3: Key Concepts

We can reduce over-fitting by using regularization:

$$f(w) = \frac{1}{2} ||\chi_w - \chi||^2 + \frac{\lambda}{2} ||w||^2$$

- Squared error is not always right measure:
 - Absolute error is less sensitive to outliers.
 - Logistic loss and hinge loss are better for binary y_i.
 - Softmax loss is better for multi-class y_i.
- MLE/MAP perspective:
 - We can view loss as log-likelihood and regularizer as log-prior.
 - Allows us to define losses based on probabilities.

The Story So Far...

- Part 1: Supervised Learning.
 - Methods based on counting and distances.
- Part 2: Unsupervised Learning.
 - Methods based on counting and distances.
- Part 3: Supervised Learning (just finished).
 - Methods based on linear models and gradient descent.
- Part 4: Unsupervised Learning (next time).
 - Methods based on linear models and gradient descent.

Summary

- Maximum likelihood estimate viewpoint of common models.
 - Objective functions are equivalent to maximizing $p(y, X \mid w)$ or $p(y \mid X, w)$.
- MAP estimation directly models p(w | X, y).
 - Gives probabilistic interpretation to regularization.
- Losses for weird scenarios are possible using MLE/MAP:
 - Ordinal labels, count labels, censored labels, unbalanced labels.
- Next time:
 - What 'parts' is your personality made of?

Review Questions

 Q1: How is the likelihood different between supervised and unsupervised learning?

Q2: How is maximizing +1-ness for +1 examples related to the logistic loss?

 Q3: Why is the argmin of negative log likelihood the same as the argmax of likelihood?

Q4: How does Bayes' rule connect likelihood and prior?

Discussion: Least Squares and Gaussian Assumption

- Classic justifications for the Gaussian assumption underlying least squares:
 - Your noise might really be Gaussian. (It probably isn't, but maybe it's a good enough approximation.)
 - The central limit theorem (CLT) from probability theory. (If you add up enough IID random variables, the estimate of their mean converges to a Gaussian distribution.)
- I think the CLT justification is wrong as we've never assumed that the x_{ij} are IID across 'j' values. We only assumed that the examples x_i are IID across 'i' values, so the CLT implies that our estimate of 'w' would be a Gaussian distribution under different samplings of the data, but this says nothing about the distribution of y_i given w^Tx_i .
- On the other hand, there are reasons *not* to use a Gaussian assumption, like it's sensitivity to outliers. This was (apparently) what lead Laplace to propose the Laplace distribution as a more robust model of the noise.
- The "student t" distribution (published anonymously by Gosset while working at the Guiness beer company) is even more robust, but doesn't lead to a convex objective.

Binary vs. Multi-Class Logistic

- How does multi-class logistic generalize the binary logistic model?
- We can re-parameterize softmax in terms of (k-1) values of z_c :

$$p(y|z_1,z_2,...,z_{k-1}) = \underbrace{\exp(z_y)}_{|+\sum_{c=1}^{k-1}\exp(z_c)} ; f y \neq K \text{ and } p(y|z_1,z_2,...,z_{k-1}) = \underbrace{1}_{|+\sum_{c=1}^{k-1}\exp(z_c)} ; f y \neq K$$

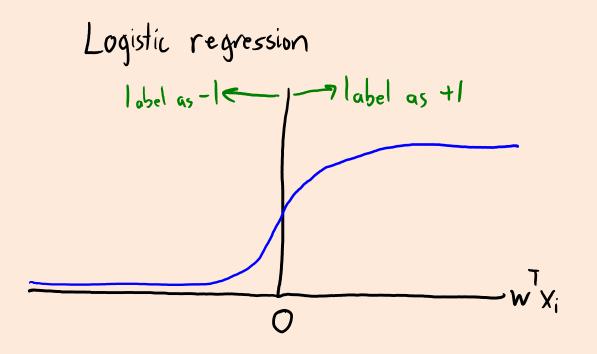
- This is due to the "sum to 1" property (one of the z_c values is redundant).
- So if k=2, we don't need a z_2 and only need a single 'z'.
- Further, when k=2 the probabilities can be written as:

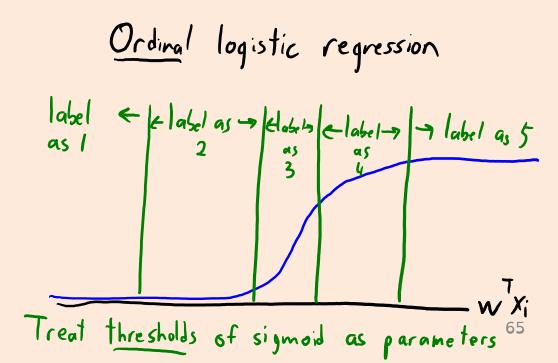
$$\rho(y=1|z) = \exp(z) = \frac{1}{1+\exp(z)} \qquad p(y=2|z) = \frac{1}{1+\exp(z)}$$

- Renaming '2' as '-1', we get the binary logistic regression probabilities.

Ordinal Labels

- Ordinal data: categorical data where the order matters:
 - Rating hotels as {'1 star', '2 stars', '3 stars', '4 stars', '5 stars'}.
 - Softmax would ignore order.
- Can use 'ordinal logistic regression'.





Count Labels

- Count data: predict the number of times something happens.
 - For example, $y_i = "602"$ Facebook likes.
- Softmax requires finite number of possible labels.
- We probably don't want separate parameter for '654' and '655'.
- Poisson regression: use probability from Poisson count distribution.
 - Many variations exist, a lot of people think this isn't the best likelihood.

Censored Survival Analysis (Cox Partial Likelihood)

- Censored survival analysis:
 - Target y_i is last time at which we know person is alive.
 - But some people are still alive (so they have the same y_i values).
 - The y_i values (time at which they die) are "censored".
 - We use $v_i=0$ is they are still alive and otherwise we set $v_i=1$.
- Cox partial likelihood assumes "instantaneous" rate of dying depends on x_i but not on total time they've been alive (not that realistic). Leads to likelihood of the "censored" data of the form:

$$p(y_i, v_i | x_i, w) = \exp(v_i w_{x_i}^T) \exp(-y_i \exp(w_{x_i}^T))$$

There are many extensions and alternative likelihoods.

Other Parsimonious Parameterizations

- Sigmoid isn't the way to model a binary $p(y_i \mid x_i, w)$:
 - Probit (uses CDF of normal distribution, very similar to logistic).
 - Noisy-Or (simpler to specify probabilities by hand).
 - Extreme-value loss (good with class imbalance).
 - Cauchit, Gosset, and many others exist...

Unbalanced Training Sets

- Consider the case of binary classification where your training set has 99% class -1 and only 1% class +1.
 - This is called an "unbalanced" training set
- Question: is this a problem?
- Answer: it depends!
 - If these proportions are representative of the test set proportions, and you care about both types of errors equally, then "no" it's not a problem.
 - You can get 99% accuracy by just always predicting -1, so ML can only help with the 1%.
 - But it's a problem if the test set is not like the training set (e.g. your data collection process was biased because it was easier to get -1's)
 - It's also a problem if you care more about one type of error, e.g. if mislabeling a +1 as a -1 is much more of a problem than the opposite
 - For example if +1 represents "tumor" and -1 is "no tumor"

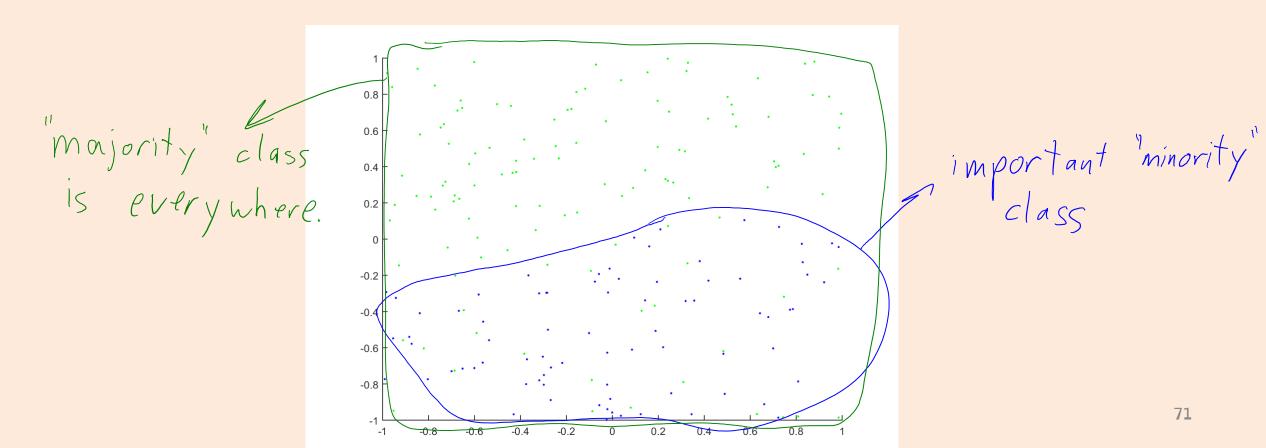
Unbalanced Training Sets

- This issue comes up a lot in practice!
- How to fix the problem of unbalanced training sets?
 - Common strategy is to build a "weighted" model:
 - Put higher weight on the training examples with $y_i=+1$.

- This is equivalent to replicating those examples in the training set.
- You could also subsample the majority class to make things more balanced.
- Boostrap: create a dataset of size 'n' where n/2 are sampled from +1, n/2 from -1.
- Another approach is to try to make "fake" data to fill in minority class.
- Another option is to change to an asymmetric loss function (next slides) that penalizes one type of error more than the other.
- Some discussion of different methods here.

Unbalanced Data and Extreme-Value Loss

- Consider binary case where:
 - One class overwhelms the other class ('unbalanced' data).
 - Really important to find the minority class (e.g., minority class is tumor).

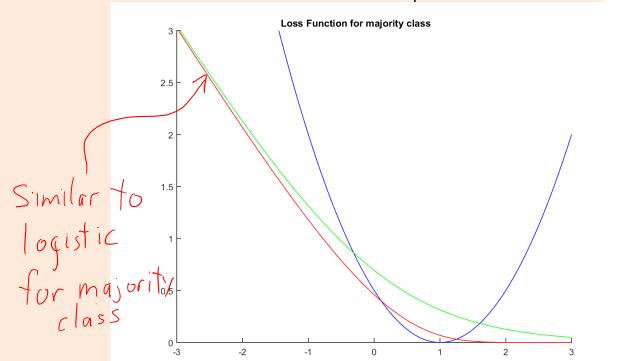


Unbalanced Data and Extreme-Value Loss

Extreme-value distribution:

$$p(y_i = +1|\hat{y}_i) = 1 - exp(-exp(\hat{y}_i)) \quad [+1 \text{ is majority class}] \quad \text{asymmetric}$$

$$To make it a probability, \quad p(y_i = -1|\hat{y}_i) = exp(-exp(\hat{y}_i))$$



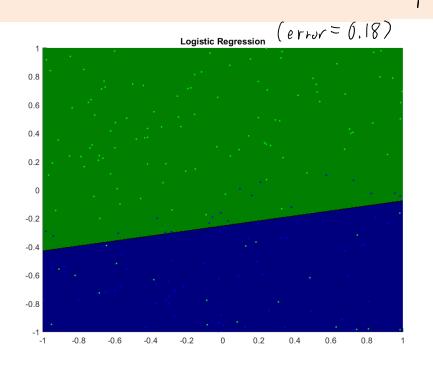


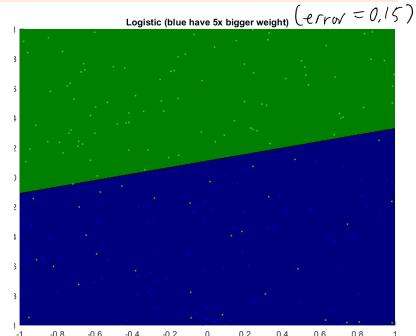
Unbalanced Data and Extreme-Value Loss

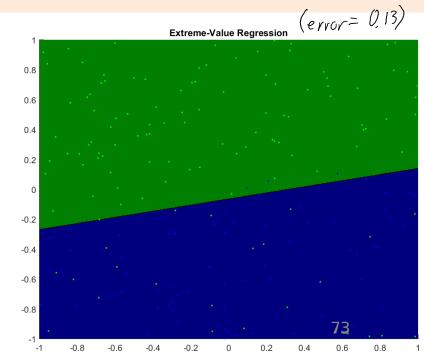
Extreme-value distribution:

$$p(y_i = +1|\hat{y}_i) = 1 - exp(-exp(\hat{y}_i)) \quad [+1 \text{ is majority class}] \quad \text{asymmetric}$$

$$To make it a probability, \quad p(y_i = -1|\hat{y}_i) = exp(-exp(\hat{y}_i))$$







- We've seen that loss functions can come from probabilities:
 - Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.
- Most other loss functions can be derived from probability ratios.
 - Example: sigmoid => hinge.

$$\rho(y_i|x_{i,j}w) = \frac{1}{1 + exp(-y_iw^7x_i)} = \frac{exp(\frac{1}{2}y_iw^7x_i)}{exp(\frac{1}{2}y_iw^7x_i) + exp(-\frac{1}{2}y_iw^7x_i)} \propto exp(\frac{1}{2}y_iw^7x_i)$$
Same normalizing constant
for $y_i = +1$ and $y_i = -1$

- We've seen that loss functions can come from probabilities:
 - Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.
- Most other loss functions can be derived from probability ratios.
 - Example: sigmoid => hinge.

$$p(y_i|x_{ij}w) \propto exp(\frac{1}{2}y_iw^{T}x_i)$$

To classify y_i correctly, it's sufficient to have $\frac{p(y_i|x_{ij}w)}{p(-y_i|x_{ij}w)} > \beta$ for some $\beta > 1$

Notice that normalizing constant doesn't matter:

 $\frac{exp(\frac{1}{2}y_iw^{T}x_i)}{exp(-\frac{1}{2}y_iw^{T}x_i)} > \beta$

- We've seen that loss functions can come from probabilities:
 - Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.
- Most other loss functions can be derived from probability ratios.
 - Example: sigmoid => hinge.

$$P(y_{i} \mid x_{i}, w) \propto exp(\frac{1}{2} y_{i} w^{T} x_{i})$$
We neel: $exp(\frac{1}{2} y_{i} w^{T} x_{i}) \geqslant \beta$

$$exp(-\frac{1}{2} y_{i} w^{T} x_{i}) \geqslant \beta$$

$$Take | \log \frac{1}{2} \left(\frac{exp(\frac{1}{2} y_{i} w^{T} x_{i})}{exp(-\frac{1}{2} y_{i} w^{T} x_{i})} \right) \geqslant \log(\beta)$$

$$\log \left(\frac{exp(\frac{1}{2} y_{i} w^{T} x_{i})}{exp(-\frac{1}{2} y_{i} w^{T} x_{i})} \right) \geqslant \log(\beta)$$

$$76$$

- We've seen that loss functions can come from probabilities:
 - Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.
- · Most other loss functions can be derived from probability ratios.
 - Example: sigmoid => hinge.

$$P(y_i|x_{i,w}) \propto exp(\frac{1}{2}y_{i}w^{T}x_{i})$$
We need: $exp(\frac{1}{2}y_{i}w^{T}x_{i}) > \beta$

$$exp(-\frac{1}{2}y_{i}w^{T}x_{i})$$
Or equivalently:
$$y_{i}w^{T}x_{i} > 1 \quad (for \beta = exp(1))$$

- General approach for defining losses using probability ratios:
 - 1. Define constraint based on probability ratios.
 - 2. Minimize violation of logarithm of constraint.
- Example: softmax => multi-class SVMs.

Assume:
$$p(y_i = c \mid x_{i,1}w) \propto exp(w_c \mid x_i)$$

Want: $p(y_i \mid x_{i,1}w) \Rightarrow \beta$ for all c'
 $p(y_i = c' \mid x_{i,1}w) \Rightarrow \beta$ for all c'

and some $\beta \neq 0$

For $\beta = exp(1)$ equivalent to

 $y = exp(1)$ equivalent to

Supervised Ranking with Pairwise Preferences

- Ranking with pairwise preferences:
 - We aren't given any explicit y_i values.
 - Instead we're given list of objects (i,j) where $y_i > y_j$.

Assume $p(y; | X, w) \propto exp(w^7x;)$ is probability that object 'i' has highest rank.

Want:
$$p(y_i | X_i w) > \beta$$
 for all preferences (i, j)

For
$$\beta = \exp(1)$$
 equivalent to

 $W_{X_i} - W_{X_j} > 1$

This are

We can use
$$f(w) = \sum_{(i,j) \in R} \max \{O_j \mid -w^T x_j + w^T x_j\}$$

This approach can also be used to define losses for total/partial orderings. (but this information is 19 hard to get)