
CPSC 340:
Machine Learning and Data Mining

Principal Component Analysis
Summer 2021

1

Admin
• Assignment 5 due Friday at 11:55pm

– Extended by 12+ hours
– We will cover all relevant details today

• This lecture will be 75 minutes long

• Office hours and tutorials had low attendance
– I promise they save you TONS of time in the long run
– We have 10+ office hours per week
– Going to a few office hours will probably get most of

the work out of the way
2

In This Lecture
1. MAP Estimation
2. Wrapping Up Part 3
3. Principal Component Analysis

3

Last Time: MLE of Gaussian Likelihood
• Let’s assume that yi = wTxi + εi, with εi following standard normal:

• This leads to a Gaussian likelihood for example ‘i’ of the form:

• Finding MLE (minimizing NLL) is least squares:

4

“Heavy” Tails vs. “Light” Tails
• We know that L1-norm is more robust than L2-norm.

– What does this mean in terms of probabilities?

– Gaussian has “light tails”: assumes everything is close to mean.
– Laplace has “heavy tails”: assumes some data is far from mean.
– Student ‘t’ is even more heavy-tailed/robust, but NLL is non-convex.

http://austinrochford.com/posts/2013-09-02-prior-distributions-for-bayesian-regression-using-pymc.html
5

Last Time: MLE of Sigmoid Likelihood
• For IID regression problems the conditional NLL can be written:

• Logistic regression assumes sigmoid(wTxi) conditional likelihood:

• Plugging in the sigmoid likelihood, the NLL is the logistic loss:

6

MLE Interpretation of Logistic Regression
• Instead of “smooth convex approximation of 0-1 loss”, we now have that

logistic regression is doing MLE in a probabilistic model.
– “Maximize +1-ness of +1 examples and -1-ness of -1 examples”

– The training and prediction would be the same as before.
• We still minimize the logistic loss in terms of ‘w’.

– But MLE justifies using sigmoid with learned w to get +1-ness:

– Softmax function and softmax loss are also connected via NLL
• See Piazza for derivations

7

MAXIMUM A POSTERIORI
ESTIMATION
Coming Up Next

8

Maximum Likelihood Estimation and Overfitting
• In our abstract setting with data D the MLE is:

• But conceptually MLE is a bit weird:
– “Find the ‘w’ that makes ‘D’ have the highest probability given ‘w’.”

• And MLE often leads to overfitting:
– Data could be very likely for some very unlikely ‘w’.
– For example, a complex model that overfits by memorizing the data.

• What we really want:
– “Find the ‘w’ that has the highest probability given the data D.” 9

Maximum a Posteriori (MAP) Estimation
• Maximum a posteriori (MAP) estimate maximizes the reverse probability:

– This is what we want: the probability of ‘w’ given our data.

• MLE and MAP are connected by Bayes rule:

• So MAP maximizes the likelihood p(D|w) times the prior p(w):
– Prior is our “belief” that ‘w’ is correct before seeing data.
– Prior can reflect that complex models are likely to overfit.

10

“Prior”

11

Feature space

La
be

l s
pa

ce

Parameter space

Q: What if this is overfitting?
How do we discourage w from going here?

“Prior”

12

Feature space

La
be

l s
pa

ce

Parameter space

Q: Is this a good value
according to the prior? Prior p(w)

“Prior”

13

Feature space

La
be

l s
pa

ce

Parameter space

Q: Is this a good value
according to the prior? Prior p(w)

Q: Haven’t we seen
a similar concept before?

MAP Estimation and Regularization
• From Bayes rule, the MAP estimate with IID examples Di is:

• By again taking the negative of the logarithm as before we get:

• So we can view the negative log-prior as a regularizer:
– Many regularizers are equivalent to negative log-priors.

14

L2-Regularization and MAP Estimation
• We obtain L2-regularization under an independent Gaussian assumption:

• This implies that:

• So we have that:

• With this prior, the MAP estimate with IID training examples would be

15

MAP Estimation and Regularization
• MAP estimation gives link between probabilities and loss functions.

– Gaussian likelihood (σ = 1) + Gaussian prior gives L2-regularized least squares.

– Laplace likelihood (σ = 1) + Gaussian prior give L2-regularized robust regression:

– As ‘n’ goes to infinity, effect of prior/regularizer goes to zero.
– Unlike with MLE, the choice of σ changes the MAP solution for these models.

16

Summary of MAP Estimation
• Many of our loss functions and regularizers have probabilistic interpretations.

– Laplace likelihood leads to absolute error.
– Laplace prior leads to L1-regularization.

• The choice of likelihood corresponds to the choice of loss.
– Our assumptions about how the yi-values can come from the xi and ‘w’.

• The choice of prior corresponds to the choice of regularizer.
– Our assumptions about which ‘w’ values are plausible.

17

Regularizing Other Models
• We can view priors in other models as regularizers.

• Remember the problem with MLE for naïve Bayes:
• The MLE of p(‘lactase’ = 1| ‘spam’) is: count(spam,lactase)/count(spam).
• But this caused problems if count(spam,lactase) = 0.

• Our solution was Laplace smoothing:
– Add “+1” to our estimates: (count(spam,lactase)+1)/(counts(spam)+2).
– This corresponds to a “Beta” prior so Laplace smoothing is a regularizer.

18

Why do we care about MLE and MAP?
• Unified way of thinking about many of our tricks?

– Probabilitic interpretation of logistic loss.
– Laplace smoothing and L2-regularization are doing the same thing.

• Remember our two ways to reduce overfitting in complicated models:
– Model averaging (ensemble methods).
– Regularization (linear models).

• “Fully”-Bayesian methods (CPSC 440) combine both of these.
– Average over all models, weighted by posterior (including regularizer).
– Can use extremely-complicated models without overfitting.

19

Losses for Other Discrete Labels
• MLE/MAP gives loss for classification with basic labels:

– Least squares and absolute loss for regression.
– Logistic regression for binary labels {“spam”, “not spam”}.
– Softmax regression for multi-class {“spam”, “not spam”, “important”}.

• But MLE/MAP lead to losses with other discrete labels (bonus):
– Ordinal: {1 star, 2 stars, 3 stars, 4 stars, 5 stars}.
– Counts: 602 ‘likes’.
– Survival rate: 60% of patients were still alive after 3 years.
– Unbalanced classes: 99.9% of examples are classified as +1.

• Define likelihood of labels, and use NLL as the loss function.

• We can also use ratios of probabilities to define more losses (bonus):
– Binary SVMs, multi-class SVMs, and “pairwise preferences” (ranking) models.

20

End of Part 3: Linear Models

21

End of Part 3: Key Concepts
• Linear models predict based on linear combination(s) of features:

• We model non-linear effects using a change of basis:
– Replace d-dimensional xi with k-dimensional zi and use vTzi.
– Examples include polynomial basis and (non-parametric) RBFs.

• Regression is supervised learning with continuous labels.
– Logical error measure for regression is squared error:

– Can be solved as a system of linear equations.

22

End of Part 3: Key Concepts
• Gradient descent finds local minimum of smooth objectives.

– Converges to a global optimum for convex functions.
– Can use smooth approximations (Huber, log-sum-exp)

• Stochastic gradient methods allow huge/infinite ‘n’.
– Though very sensitive to the step-size.

• Kernels let us use similarity between examples, instead of features.
– Lets us use some exponential- or infinite-dimensional features.

• Feature selection is a messy topic.
– Classic method is forward selection based on L0-norm.
– L1-regularization simultaneously regularizes and selects features.

23

End of Part 3: Key Concepts
• We can reduce over-fitting by using regularization:

• Squared error is not always right measure:
– Absolute error is less sensitive to outliers.
– Logistic loss and hinge loss are better for binary yi.
– Softmax loss is better for multi-class yi.

• MLE/MAP perspective:
– We can view loss as log-likelihood and regularizer as log-prior.
– Allows us to define losses based on probabilities.

24

The Story So Far…
• Part 1: Supervised Learning.

– Methods based on counting and distances.

• Part 2: Unsupervised Learning.
– Methods based on counting and distances.

• Part 3: Supervised Learning (just finished).
– Methods based on linear models and gradient descent.

• Part 4: Unsupervised Learning (starting now).
– Methods based on linear models and gradient descent.

25

Part 4: Latent Factor Models

26

The “Encoder Learning Problem”
• The Encoder Learning Problem

– Input: Feature matrix ‘X’
– Output: An “encoder” model that can transform examples

• The Encoding Problem
– Input: A test example �𝑥𝑥𝑖𝑖 and a learned encoder model
– Output: The “encoded” example 𝑧̃𝑧𝑖𝑖

27

Motivation: Human vs. Machine Perception
• Huge difference between what we see and what computer sees:

• But maybe images shouldn’t be written as combinations of pixels.
– Can we learn a better representation?
– In other words, can we learn good features?

What we see: What the computer “sees”:

28

Encoding Images

• This is like feature engineering!
– Find a better feature space for analyzing the data

• But now, we’re learning the features! 29

Learned feature space

Example image Learned encoder

Part 4: Latent-Factor Models

• Part 4 is about learning the encoder from data.
• Our encoders are linear models that use “latent factors”

30

Motivation: Pixels vs. Parts
• Can view 28x28 image as weighted sum of “single pixel on” images:

– We have one image/feature for each pixel.
– The weights specify “how much of this pixel is in the image”.

• A weight of zero means that pixel is white, a weight of 1 means it’s black.
• This is non-intuitive, isn’t a “3” made of small number of “parts”?

– Now the weights are “how much of this part is in the image”. 31

Motivation: Pixels vs. Parts
• We could represent other digits as different combinations of “parts”:

• Consider replacing images xi by the weights zi of the different parts:
– The 784-dimensional xi for the “5” image is replaced by 7 numbers: zi = [1 0 1 1 1 0 1].
– Features like this could make learning much easier. 32

Why Latent Factors?

• These “parts” are called “factors”
• Factors are learned from data

33

Latent Factor Models are Useful
• Supervised learning:

– we could use learned features as input features.
• Outlier detection:

– example might be an outlier if isn’t a combination of usual parts.
• Dimension reduction:

– compress data into limited number of “part weights”.
• Visualization:

– if we have only 2 “part weights”, we can view data as a scatterplot.
• Interpretation:

– we can try and figure out what the “parts” represent.

34

PRINCIPAL COMPONENT ANALYSIS
INTRO
Coming Up Next

35

Principal Component Analysis (PCA) Applications
• Principal component analysis (PCA) has been invented many times:

https://en.wikipedia.org/wiki/Principal_component_analysis
36

What is PCA?
• “PCA” := Principal Component Analysis
• An instance of latent factors model

– Learn the factors from data → principal components (PCs)
– Use factors to transform data

• Assumption: an example in feature space is a linear
combination of factors

37

Visualizing Factors

• (204, 51, 153) is the RGB value of this colour
• Given these RGB factors,

the features are “factor-ness” scores
38

red=204

(204, 51, 153)

green=51

blue=153

Visualizing Factors

39

(101, 53)

• (101, 53) is NOT the RGB value of this colour
• But it represents the influence of these colours!
• Idea: use (101, 53) as features

– Given factors w1, w2, the edge weights are “factor-ness”
scores

Visualizing Factors

40

(r1, g1, b1)

(r2, g2, b2)

Learned factors Learned featuresRaw factors

(101, 7, 53)

Visualizing Factors

41

Raw features

(r1, g1, b1)

Learned factors Learned features

(204, 51, 153)

Raw factors

(101, 7, 53)

(r2, g2, b2)

Visualizing Factors

42

(r1, g1, b1)

(r2, g2, b2)
Learned factors Q: What’s the shape of this?

PCA Notation (MEMORIZE)
• PCA takes in a matrix ‘X’ and an input ‘k’, and outputs two matrices:

• Row c of W → wc.
– d-by-1 vector, called a “factor” or “principal component”.

• Row i of Z → zi.
– k-by-1 vector, called “factor loadings” (or “features”).
– We have k factors, so this corresponds to k different “factor-ness” values

• Column j of W →wj.
– k-by-1 vector, index j of all the k “factors”
– e.g. redness of w1 and w2

43

PCA Notation (MEMORIZE)
• PCA takes in a matrix ‘X’ and an input ‘k’, and outputs two matrices:

• With this notation, we can write our approximation of one xij as:

• We can write approximation of the vector xi as:

44

Different views (MEMORIZE)
• PCA approximates each xij by the inner product < wj, zi >.
• PCA approximates each xi by the matrix-vector product WTzi.
• PCA approximates matrix ‘X’ by the matrix-matrix product ZW.

– PCA is also called a “matrix factorization” model.
– Both ‘Z’ and ‘W’ are variables.

• This can be viewed as a “change of basis” from xi to zi values.
– The “basis vectors” are the rows of W, the wc.
– The “coordinates” in the new basis of each xi are the zi.

45

APPLICATIONS OF PCA
Coming Up Next

46

• Applications of PCA:
– Dimensionality reduction: replace ‘X’ with lower-dimensional ‘Z’.

• If k << d, then compresses data.
• Often better approximation than vector quantization.

PCA Applications

47

• Applications of PCA:
– Dimensionality reduction: replace ‘X’ with lower-dimensional ‘Z’.

• If k << d, then compresses data.
• Often better approximation than vector quantization.

PCA Applications

48

• Applications of PCA:
– Dimensionality reduction: replace ‘X’ with lower-dimensional ‘Z’.

• If k << d, then compresses data.
• Often better approximation than vector quantization.

PCA Applications

https://monsterlegacy.net/2013/03/04/rancor-star-wars/
49

• Applications of PCA:
– Dimensionality reduction: replace ‘X’ with lower-dimensional ‘Z’.

• If k << d, then compresses data.
• Often better approximation than vector quantization.

PCA Applications

https://monsterlegacy.net/2013/03/04/rancor-star-wars/
50

• Applications of PCA:
– Outlier detection: if PCA gives poor approximation of xi, could be ‘outlier’.

• Though due to squared error PCA is sensitive to outliers.

PCA Applications

51

• Applications of PCA:
– Partial least squares: uses PCA features as basis for linear model.

PCA Applications

52

• Applications of PCA:
– Data visualization: plot zi with k = 2 to visualize high-dimensional objects.

http://infoproc.blogspot.ca/2008/11/european-genetic-substructure.html

PCA Applications

53

• Applications of PCA:
– Data visualization: plot zi with k = 2 to visualize high-dimensional objects.

• Can augment other visualizations:

https://www.sciencedaily.com/releases/2018/01/180125140943.htm

PCA Applications

54

• Applications of PCA:
– Data interpretation: we can try to assign meaning to latent factors wc.

• Hidden “factors” that influence all the variables.

https://new.edu/resources/big-5-personality-traits

PCA Applications

"Most Personality Quizzes Are Junk Science. I Found One That Isn't." 55

https://fivethirtyeight.com/features/most-personality-quizzes-are-junk-science-i-found-one-that-isnt/

GEOMETRIC INTUITION FOR PCA
Coming Up Next

56

Overhead Map and Latent-Factor Models
• Consider these crazy goats trying to get some salt:

– Ignoring height gives poor approximation of goat location.

• But the “goat space” is basically a two-dimensional plane.
– Better k=2 approximation: define ‘W’ so that combinations give the plane.

www.momtastic.com/webecoist/2010/11/07/some-fine-dam-climbing-goats-scaling-steep-vertical-wall
https://www.quora.com/What-is-a-simplified-explanation-and-proof-of-the-Johnson-Lindenstrauss-lemma

57

Top-down view of a dam

Overhead Map and Latent-Factor Models
• Consider these crazy goats trying to get some salt:

– Ignoring height gives poor approximation of goat location.

• But the “goat space” is basically a two-dimensional plane.
– Better k=2 approximation: define ‘W’ so that combinations give the plane.

www.momtastic.com/webecoist/2010/11/07/some-fine-dam-climbing-goats-scaling-steep-vertical-wall
https://www.quora.com/What-is-a-simplified-explanation-and-proof-of-the-Johnson-Lindenstrauss-lemma

58

Overhead Map and Latent-Factor Models
• A goat i’s location in the world can be described by 3 coordinates:

• The overhead view approximates these 3 coordinates with only 2:

• Our k=2 latent factors are the following:

• So our approximation of xi is:
59

Overhead Map and Latent-Factor Models
• The “overhead map” approximation just ignores the “height”.

– This is a good approximation if the world is flat.
– But it’s a poor approximation if heights are different.

60

PCA with d=2 and k =1

61

PCA with d=2 and k =1

62

PCA with d=2 and k =1

63

PCA with d=2 and k =1

PCA with d=3 and k=2.
• With d=3, PCA (k=1) finds line minimizing squared distance to xi.
• With d=3, PCA (k=2) finds plane minimizing squared distance to xi.

http://www.nlpca.org/fig_pca_principal_component_analysis.png 65

Summary
• MAP estimation directly models p(w | X, y).

– Gives probabilistic interpretation to regularization.
• Losses for weird scenarios are possible using MLE/MAP:

– Ordinal labels, count labels, censored labels, unbalanced labels.

• Latent-factor models:
– Try to learn basis Z from training examples X.
– Usually, the zi are “part weights” for “parts” wc.
– Useful for dimensionality reduction, visualization, factor discovery, etc.

• Principal component analysis:
– Writes each training examples as linear combination of parts.

• We learn both the “parts” ‘W’ and the “features” Z.
– We can view ‘W’ as best lower-dimensional hyper-plane.
– We can view ‘Z’ as the coordinates in the lower-dimensional hyper-plane.

• Next time: PCA in 4 lines of code.
66

	CPSC 340:�Machine Learning and Data Mining
	Admin
	In This Lecture
	Last Time: MLE of Gaussian Likelihood
	“Heavy” Tails vs. “Light” Tails
	Last Time: MLE of Sigmoid Likelihood
	MLE Interpretation of Logistic Regression
	Maximum A Posteriori�Estimation
	Maximum Likelihood Estimation and Overfitting
	Maximum a Posteriori (MAP) Estimation
	“Prior”
	“Prior”
	“Prior”
	MAP Estimation and Regularization
	L2-Regularization and MAP Estimation
	MAP Estimation and Regularization
	Summary of MAP Estimation
	Regularizing Other Models
	Why do we care about MLE and MAP?
	Losses for Other Discrete Labels
	End of Part 3: Linear Models
	End of Part 3: Key Concepts
	End of Part 3: Key Concepts
	End of Part 3: Key Concepts
	The Story So Far…
	Part 4: Latent Factor Models
	The “Encoder Learning Problem”
	Motivation: Human vs. Machine Perception
	Encoding Images
	Part 4: Latent-Factor Models
	Motivation: Pixels vs. Parts
	Motivation: Pixels vs. Parts
	Why Latent Factors?
	Latent Factor Models are Useful
	Principal Component Analysis�Intro
	Principal Component Analysis (PCA) Applications
	What is PCA?
	Visualizing Factors
	Visualizing Factors
	Visualizing Factors
	Visualizing Factors
	Visualizing Factors
	PCA Notation (MEMORIZE)
	PCA Notation (MEMORIZE)
	Different views (MEMORIZE)
	Applications of PCA
	PCA Applications
	PCA Applications
	PCA Applications
	PCA Applications
	PCA Applications
	PCA Applications
	PCA Applications
	PCA Applications
	PCA Applications
	Geometric Intuition For PCA
	Overhead Map and Latent-Factor Models
	Overhead Map and Latent-Factor Models
	Overhead Map and Latent-Factor Models
	Overhead Map and Latent-Factor Models
	PCA with d=2 and k =1
	PCA with d=2 and k =1
	PCA with d=2 and k =1
	PCA with d=2 and k =1
	PCA with d=3 and k=2.
	Summary

