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Admin

« Assighment 5 due Friday at 11:55pm
— Extended by 12+ hours
— We will cover all relevant details today

« This lecture will be 75 minutes long

« Office hours and tutorials had low attendance
— | promise they save you TONS of time in the long run
— We have 10+ office hours per week

— Going to a few office hours will probably get most of
the work out of the way



In This Lecture

1. MAP Estimation
2. Wrapping Up Part 3
3. Principal Component Analysis



Last Time: MLE of Gaussian Likelihood

« Let's assume that y, = wTx, + ¢, with g following standard normal:
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« This leads to a Gaussian likelihood for example ‘i’ of the form:
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« Finding MLE (minimizing NLL) is Least squares:
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“Heavy” Tails vs. “Light” Talils

« We know that L1-norm is more robust than L2-norm.
— What does this mean in terms of probabilities?
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— Gaussian has “light tails”: assumes everything is close to mean.
— Laplace has “heavy tails”: assumes some data is far from mean.
— Student ‘t’ is even more heavy-tailed/robust, but NLL is non-convex.



Last Time: MLE of Sigmoid Likelihood

« For IID regression problems the conditional NLL can be written:
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« Logistic regression assumes sigmoid(w'x;) conditional likelihood:

| _ |
[1] F(% )XI)W) ~ L\(y',W7XI'> \/Vh{/C "\(Z,'>= l+€x'o(‘z‘-)

« Plugging in the sigmoid likelihood, the NLL is the logistic loss:
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MLE Interpretation of Logistic Regression

Instead of “smooth convex approximation of 0-1 loss”, we now have that
logistic regression is doing MLE in a probabilistic model.

— “Maximize +1-ness of +1 examples and -1-ness of -1 examples”

— The training and prediction would be the same as before.
« We still minimize the logistic loss in terms of ‘w’.

— But MLE justifies using sigmoid with learned w to get +1-ness:
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— Softmax function and softmax Loss are also connected via NLL
« See Piazza for derivations
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Maximum Likelihood Estimation and Overfitting

In our abstract setting with data D the MLE is:
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But conceptually MLE is a bit weird: ?(D\')i\?\ - |o,1]
— “Find the ‘w’ that makes ‘D’ have the highest probability given ‘w".”

And MLE often leads to overfitting:
— Data could be very likely for some very unlikely ‘w’.
— For example, a complex model that overfits by memorizing the data.

What we really want: P(' ‘D) R‘—W [0, 1]

— “Find the ‘w’ that has the highest probability given the data D.”



Maximum a Posteriori (MAP) Estimation

Maximum a posteriori (MAP) estimate maximizes the reverse probability:
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— This is what we want: the probability of ‘w’ given our data. \\
Sare W

MLE and MAP are connected by Bayes rule:
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So MAP maximizes the likelihood p(D|w) times the prior p(w):
— Prior is our “belief” that ‘w’ is correct before seeing data.
— Prior can reflect that complex models are likely to overfit.
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Label space

“Prior”

How do we discourage w from going here?

Q: What if this is overfitting?
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Feature space

Parameter space
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Label space

“Prior”

Q: Is this a good value
according to the prior?
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Feature space
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Prior p(w)
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Parameter space
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Label space

“Prior”

Q: Is this a good value
according to the prior?

O

O
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Prior p(w)

B \gv

Feature space

Q: Haven’'t we seen
a similar concept before?

Parameter space

(ARG
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MAP Estimation and Regularization

From Bayes rule, the MAP estimate with IID examples D, is:
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So we can view the negative log-prior as a regularizer:
— Many regularizers are equivalent to negative Log-priors.
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L2-Regularization and MAP Estimation

« We obtain L2-regularization under an independent Gaussian assumption:
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« W.ith this prior, the MAP estimate with IID training examples would be
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MAP Estimation and Regularization

- MAP estimation gives link between probabilities and loss functions.
— Gaussian likelihood (o = 1) + Gaussian prior gives L2-regularized least squares.

T ppbo) wesp(=C57) -l wenp(-74)
TL\W\ MAP er’)mq{f"" Is egu('vw’f'n‘/' ‘}0 m'v»im'/a)n? ?(w):j"’”)(w_y,/z—’"%”w”z

— Laplace likelihood (¢ = 1) + Gaussian prior give L2-regularized robust regression:
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— As ‘'n’ goes to infinity, effect of prior/regularizer goes to zero.
— Unlike with MLE, the choice of ¢ changes the MAP solution for these models.




Summary of MAP Estimation

« Many of our loss functions and regularizers have probabilistic interpretations.
— Laplace likelihood leads to absolute error.
— Laplace prior leads to L1l-regularization.

« The choice of likelihood corresponds to the choice of loss.
— OQur assumptions about how the y,-values can come from the x; and ‘w’.

« The choice of prior corresponds to the choice of regularizer.
— OQur assumptions about which ‘w’ values are plausible.



Regularizing Other Models

 We can view priors in other models as regularizers.

« Remember the problem with MLE for naive Bayes:
« The MLE of p(‘lactase’ = 1| ‘spam’) is: count(spam,lactase)/count(spam).
« But this caused problems if count(spam,lactase) = 0.

e Qur solution was Laplace smoothing:
— Add “+1"” to our estimates: (count(spam,lactase)+1)/(counts(spam)+2).
— This corresponds to a “Beta” prior. Laplace smoothing is a regularizer.



Why do we care about MLE and MAP?

Unified way of thinking about many of our tricks
— Probabilitic interpretation of logistic loss.
— Laplace smoothing and L2-regularization are doing the same thing.

Remember our two ways to reduce overfitting in complicated models:
— Model averaging (ensemble methods).
— Regularization (linear models).

“Fully”-Bayesian methods (CPSC 440) combine both of these.
— Average over all models, weighted by posterior (including regularizer).
— Can use extremely-complicated models without overfitting.



Losses for Other Discrete Labels

MLE/MAP gives loss for classification with basic Labels:

— Least squares and absolute loss for regression.

— Logistic regression for binary labels {“spam”, “not spam”}.

— Softmax regression for multi-class {“spam”, “not spam”, “important”}.

But MLE/MAP lead to losses with other discrete labels (bonus):
— Ordinal: {1 star, 2 stars, 3 stars, 4 stars, 5 stars}.

— Counts: 602 ‘likes’.

— Survival rate: 60% of patients were still alive after 3 years.

— Unbalanced classes: 99.9% of examples are classified as +1.

Define likelihood of labels, and use NLL as the Loss function.

We can also use ratios of probabilities to define more Losses (bonus):
— Binary SVMs, multi-class SVMs, and “pairwise preferences” (ranking) models.



End of Part 3: Linear Models



End of Part 3: Key Concepts

Linear models predict based on linear combination(s) of features:
T _ 44
w X, - WXy + W, Xia T wy XY

wWe model non-linear effects using a change of basis:
— Replace d-dimensional x; with k-dimensional z; and use vTz.
— Examples include polynomial basis and (non-parametric) RBFs.

Regression is supervised learning with continuous labels.
— Logical error measure for regression is squared error:

— Can be solved as a system of linear equations.
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End of Part 3: Key Concepts

Gradient descent finds local minimum of smooth objectives.
— Converges to a global optimum for convex functions.
— Can use smooth approximations (Huber, log-sum-exp)

Stochastic gradient methods allow huge/infinite ‘n’.
— Though very sensitive to the step-size.

Kernels Llet us use similarity between examples, instead of features.

— Lets us use some exponential- or infinite-dimensional features.

Feature selection is a messy topic.
— Classic method is forward selection based on LO-norm.
— Ll-regularization simultaneously regularizes and selects features.
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End of Part 3: Key Concepts

- Reduce over-fitting by using regularization:

() = 3 0=y I+ 21

e Squared error is not always right measure:
— Absolute error is Less sensitive to outliers.
— Logistic loss and hinge loss are better for binary vy..
— Softmax loss is better for multi-class vy..

« MLE/MAP perspective:

— View loss as log-likelihood and regularizer as log-prior.
— Allows us to define losses based on probabilities.

24



The Story So Far...

Part 1: Supervised Learning.
— Methods based on counting and distances.

Part 2: Unsupervised Learning.
— Methods based on counting and distances.

Part 3: Supervised Learning (just finished).
— Methods based on linear models and gradient descent.

Part 4: Unsupervised Learning (starting now).
— Methods based on linear models and gradient descent.



Part 4: Latent Factor Models



The “Encoder Learning Problem”

 The Encoder Learning Problem

— Input: Feature matrix ‘X’
— Qutput: An “encoder” model that can transform examples
n x d

« The Encoding Problem

— Input: A test example X; and a learned encoder model
— Qutput: The “encoded” example Z;

g
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Motivation: Human vs. Machine Perception

Huge difference between what we see and what computer sees:

What we see: What the computer “sees”:

But maybe images shouldn’t be written as combinations of pixels.
— Can we learn a better representation?
— In other words, can we learn good features?
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Encoding Images

O
°
O
Example image Learned encoder
>

Learned feature space

» This is like feature engineering!
— Find a better feature space for analyzing the data

- But now, we're learning the feature spacel N



Part 4: Latent-Factor Models

(— 1) 2

« Part 4 is about learning the encoder from data.
e Qur encoders are linear models that use “latent factors”




Motivation: Pixels vs. Parts

« Can view 28x28 image as weighted sum of “single pixel on” images:

\l

3
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— We have one image/feature for each pixel.
— The weights specify “how much of this pixel is in the image”.
« A weight of zero means that pixel is white, a weight of 1 means it’s black.

 This is non-intuitive, isn’t a “3"” made of small number of “parts”?

1
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— Now the weights are “how much of this part is in the image”.



Motivation: Pixels vs. Parts

We could represent other digits as different combinations of “parts”:

3: = v &y 1 v L0 t0| %
g

5: =10 4|4 4 +| +0 0%
g

8 = - + | 4 + +I Hi + | +/ L 3
g

Consider replacing images x; by the weights z, of the different parts:

— The 784-dimensional x; for the “5” image is replaced by 7 numbers: z, =[1 01110 1].
— Features like this could make learning much easier.
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why Latent Factors?

Xd@ R\

- ¥ |

- I o t

 These “parts” are called “factors”
« Factors are learned from data




Latent Factor Models are Useful

Supervised learning:
— we could use learned features as input features.

Outlier detection:
— example might be an outlier if isn’t a combination of usual parts.

Dimension reduction:
— compress data into limited number of “part weights”.

Visualization:
— If we have only 2 “part weights”, we can view data as a scatterplot.

Interpretation:
— we can try and figure out what the “parts” represent.



PRINCIPAL COMPONENT ANALYSIS
INTRO



Principal Component Analysis (PCA) Applications

* Principal component analysis (PCA) has been invented many times:

PCA was invented in 1901 by Karl F'earsanr[” as an analogue of the principal axis theorem in standard deviation of 3 i‘n r{;ughly the
(0.878, 0.478) direction and of 1 in th
orthogonal direction. The vectors
shown are the eigenvectors of the

mechanics; it was later independently developed (and named) by Harold Hotelling in the
1930s Depending on the field of application, it 1s also named the discrete Kosambi-

Karhunen—Loéve transform (KLT) in signal processing, the Hotelling transform in multivanate covariance matrix scaled by the squa
quality control, proper orthogonal decomposition (POD) in mechanical engineering, singular root of the corresponding eigenvalue,
and shifted so their tails are at the

value decomposition (SVD) of X (Golub and Van Loan, 1983), eigenvalue decomposition

(EVD) of XX in linear algebra, factor analysis (for a discussion of the differences between mean

PCA and factor analysis see Ch. 7 of [3]), Eckart—Young theorem (Harman, 1960), or Schmidt

—Mirsky theorem in psychometrics, empirical orthogonal functions (EOF) in meteorological science, empirical eigenfunction
decomposition (Sirovich, 1987), empincal component analysis (Lorenz, 1956), quasiharmonic modes (Brooks et al_, 1988), spectral

decomposition in noise and vibration, and empirical modal analysis in structural dynamics.
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wWhat 1s PCA?

“PCA” := Principal Component Analysis

An instance of latent factors model

— Learn the factors from data — principal components (PCs)
— Use factors to transform data

- 1 .

- ‘

Assumption: an example in feature space is a linear
combination of factors



Visualizing Factors

red=204

(204, 51, 153)

blue=153

¢ (204, 51, 153) is the RGB value of this colour

« Given these RGB factors,
the features are “factor-ness” scores

38



Visualizing Factors

24

2z

(101, --)

W)

« (101, © ) is NOT the RGB value of this colour
 But it represents the influence of these colours!

* |dea: use (101, =) as features

— Given factors w; w, the edge weights z;;, z;,
are “factor-ness’” scores
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Visualizing Factors

(r2r 92; bz)

Raw factors Learned factors

)

Learned features
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Visualizing Factors

(204, 51, 153)

Raw features

(rzr 92; bz)

Raw factors Learned factors Learned features

Fac.-ks : Xiﬂ.’ 2;1 ry +'Z.'2 Va R(

s ryn 2
® A :#z‘ @ Xz Zyd1 +Za3, —)*\1}3 o1 81\\23 )

Xiaz Zigoy +F, b, . by b,



Visualizing Factors

W)

(ry, 91, 01)

£ 6\\0\ — W,— N

-—n )
-y, -

LY 31 \’1 —W,—

(ry, 92, 0,) /

Learned factors Q: What'’s the shape of this?
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PCA Notation (MEMORIZE)

PCA takes in a matrix ‘X’ and an input ‘k’, and outputs two matrices:

(— 2/ —]
—pT—

=4 Nn -
\/‘\/—/
K

Row c of W - w..

— d-by-1 vector, called a “factor” or “principal component”.

Row i of £ » z.

— k-by-1 vector, called “factor loadings” (or “scores”).

gh Ve

|

Il

|
LRl

\_,/\I-u

— We have k factors, so this corresponds to k different “factor-ness” values

Column j of W — wi,
— k-by-1 vector, index j of all the k “factors”

— e.g. redness of w; and w,
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ohl: (K‘=3) .
" PCA Notation (MEMORIZE)

PCA takes in a matrix ‘X’ and an input ‘k’, and outputs two matrices:

—

—w,— 7
27|~ — g”‘ W= | —vi— §)« = V\|/‘\!/z"~\~d g//
_._/-;Zn'ts._’ VV\I'VTK_‘ I l

With this notation, we can write our approximation of one x;; as:
LI S k —— T o \j
X, = ZyW ly + ZIIWLJ 1 +z'l'(w’(i - 2 Z WCJ' - (wJ) Z, ~ <\’V Z >
c= |

(Vew A/omr 1)

~

Q,,,,Z,?

We can write approximation of the vector x; as: )/}; <*~3’i> W 12-’
" I

J
|

c{" [ <w;‘,7,-7 Jdx bk x)



Different views (MEMORIZE)

PCA approximates each x;; by the inner product < w/, z; >.
PCA approximates each x; by the matrix-vector product W'z,
PCA approximates matrix ‘X’ by the matrix-matrix product ZW.

n*d nxk kxd

X * 2ZW

— PCA is also called a “matrix factorization” model.
— Both ‘Z’ and ‘W’ are variables.

This can be viewed as a “change of basis” from x; to z; values.
— The “basis vectors” are the rows of W, the w..
— z;is example i in the new feature space
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APPLICATIONS OF PCA



PCA Applications

« Applications of PCA:

— Dimensionality reduction: replace ‘X’ with lower-dimensional ‘Z’.
 If kK << d, then compresses data.
« Often better approximation than vector quantization.
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PCA Applications

« Applications of PCA:

— Dimensionality reduction: replace ‘X’ with lower-dimensional ‘Z’.
 If kK << d, then compresses data.
« Often better approximation than vector quantization.
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PCA Applications

« Applications of PCA:

— Dimensionality reduction: replace ‘X’ with lower-dimensional ‘Z’.
 If kK << d, then compresses data.
« Often better approximation than vector quantization.
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PCA Applications

« Applications of PCA:

— Dimensionality reduction: replace ‘X’ with lower-dimensional ‘Z’.

 If kK << d, then compresses data.
« Often better approximation than vector quantization.

File Edit View |Inset Tools Desktop Window Help
Ddde | A0V LEL- S |0EH a@d
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PCA Applications

 Applications of PCA:

— Qutlier detection: if PCA gives poor approximation of x;, could be ‘outlier’.
« Though due to squared error PCA is sensitive to outliers.

¥
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PCA Applications

« Applications of PCA:

— Partial least squares: uses PCA scores as basis for linear model.
Camfm‘e c«/»,oroy}mqf’bﬂ X®ZW
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PCA Applications

« Applications of PCA:

— Data visualization: plot z, with k = 2 to visualize high-dimensional objects.

Component 2 (0.08% variance)

Franch
Spanish
Slovak
Genman
Balgium
Czech

UK
Hunganian
Palish
Romanian
Morway
Sweden
Russian
CEU

- R0 = ¥ +

o % < 4 4

Component 1 (0.21% variance)

2i
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PCA Applications

« Applications of PCA:

— Data visualization: plot z; with k = 2 to visualize high-dimensional objects.
« Can augment other visualizationS'

Cluster group
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PCA Applications

« Applications of PCA:

— Data interpretation: we can try to assign meaning to latent factors w..
 Hidden “factors” that influence all the variables.

Trait Description

Being curious, original, intellectual, creative, and open to

Openness :
P new ideas.

Being organized, systematic, punctual, achievement-

Conscientiousness oriented, and dependable.

Being outgoing, talkative, sociable, and enjoying

Extraversmn social situations.

Being affable, tolerant, sensitive, trusting, kind,

Agreeableness T

Necuroticism Being anxious, irritable, temperamental, and moody.

"Most Personality Quizzes Are Junk Science. | Found One That Isn't." 5>



https://fivethirtyeight.com/features/most-personality-quizzes-are-junk-science-i-found-one-that-isnt/

Coming Up Next

GEOMETRIC INTUITION FOR P
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Overhead Map and Latent-Factor Models

- Consider these crazy goats trying to get some salt:
— Ignoring height gives poor approximation of goat Location.

AR SN UOR A g WA
-V i LT y\\:.\ . Pl
@ S Pl
¢ il e - 2
ki YR ¥ . S X

& ) \ o
¥ \

Sy
\

Top-down view of a dam

- But the “goat space” is basically a two-dimensional plane.
— Better k=2 approximation: define ‘W’ so that combinations give the plane.
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Overhead Map and Latent-Factor Models

Consider these crazy goats trying to get some salt:
— Ignoring height gives poor approximation of goat Location.

SR \ K
; \ &
o
¥ v f2 7
]

e s i it i

But the “goat space” is basically a two-dimensional plane.
— Better k=2 approximation: define ‘W’ so that combinations give the plane.
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Overhead Map and Latent-Factor Models

A goat i's location in the world can be described by 3 coordinates:

Wi = X5 < "X'\ f(ao/o(ihv\)f
) X3 e ly“ ( oovd: V\n"c
X]S F ”Z_'\ LOOrJl'V\m‘le

The overhead view approximates these 3 coordinates with only 2:

(g — "x" Coordinale
4" Z;zl «—" 7" coordinate
Our k=2 latent factors are the following:

wl?

. . . N [ O
So our approximation of x; is: X, = & E%l + 2 [l ]
\
0

59



Overhead Map and Latent-Factor Models

 The “overhead map” approximation just ignores the “height”.

— This is a good approximation if the world is flat.
— But it’s a poor approximation if heights are different.
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PCA with d=2 and k =1
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https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues/2700#2700
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PCA with d=2 and k =1
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PCA with d=2 and k =1
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PCA with d=2 and k =1
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PCA with d=3 and k=2.

With d=3, PCA (k=1) finds Line minimizing squared distance to x.
With d=3, PCA (k=2) finds plane minimizing squared distance to x.
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summary

MAP estimation directly models p(w | X, y).

— Gives probabilistic interpretation to regularization.

Losses for weird scenarios are possible using MLE/MAP:

— Ordinal labels, count labels, censored labels, unbalanced labels.

Latent-factor models:
— Try to learn basis Z from training examples X.
— Usually, the z; are “part weights” for “parts” w..
— Useful for dimensionality reduction, visualization, factor discovery, etc.
Principal component analysis:
— Writes each training examples as linear combination of parts.
« We learn both the “parts” ‘W’ and the “features” Z.
— We can view ‘W’ as best lower-dimensional hyper-plane.
— We can view ‘Z’ as the coordinates in the lower-dimensional hyper-plane.

Next time: PCA in 4 lines of code.



Review Questions

Ql: How does Bayes’ rule connect likelihood and prior?
Q2: How is regularization related to prior?
Q3: What does it mean for PCA to compress the data?

Q4: What is the difference between the residuals of linear
regression and the residuals of PCA?
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