CPSC 340: Machine Learning and Data Mining

More PCA Summer 2021

In This Lecture

- 1. Formal Details of PCA
- 2. Sequential Fitting and SVD
- 3. Alternative Optimization

PCA OBJECTIVE FUNCTION AND "VARIANCE EXPLAINED"

Coming Up Next

PCA Objective Function

• In PCA we minimize the squared error of the approximation:

$$f(W,Z) = \hat{z} ||W^{T}z_{i} - x_{i}||^{2}$$

- This is equivalent to the k-means objective:
 - In k-means z_i only has a single '1' value and other entries are zero.
- But in PCA, z_i can be any real number.
 - We approximate x_i as a linear combination of all factors.

PCA Objective Function

• In PCA we minimize the squared error of the approximation:

$$f(W_{j}Z) = \sum_{i=1}^{2} ||W_{Z_{i}}^{T} - x_{i}||^{2} = \sum_{i=1}^{n} \sum_{j=1}^{d} (\langle w_{j}Z_{j}^{T} - x_{ij} \rangle)^{2}$$

- We can also view this as solving 'd' regression problems:
 - Each w^j is trying to predict column ' $x^{j'}$ from the basis z_i .
 - The output " y_i " we try to predict here is actually the features " x_i ".
 - And unlike in regression we are also learning the features z_i .

Principal Component Analysis (PCA)

• The 3 different ways to write the PCA objective function:

$$f(W, z) = \sum_{i=1}^{n} \sum_{j=1}^{d} (\langle w_{j}^{j} z_{i}^{j} - x_{ij}^{j} \rangle^{2} \quad (approximating \ x_{ij} \ by \ \langle w_{j}^{j} z_{i}^{j} \rangle^{2} \\ = \sum_{i=1}^{n} ||W^{\mathsf{T}} z_{i}^{j} - x_{i}^{j}||^{2} \quad (approximating \ x_{i} \ by \ W_{Z_{i}}^{\mathsf{T}}) \\ = ||ZW - X||_{F}^{2} \quad (approximating \ X \ by \ ZW)$$

Digression: Data Centering (Important)

- In PCA, we assume that the data X is "centered".
 - Each column of X has a mean of zero.
- It's easy to center the data:

Set
$$M_j = -\frac{1}{n} \sum_{i=1}^{n} x_{ij}$$
 (mean of colum 'j')
Replace each x_{ij} with $(x_{ij} - M_j)$

- There are PCA variations that estimate "bias in each coordinate".
 - In basic model this is equivalent to centering the data.

Coming Up Next NON-UNIQUENESS OF PCA

Non-Uniqueness of PCA

- Unlike k-means, we can efficiently find global optima of f(W,Z).
 - Algorithms coming later.
- Unfortunately, there never exists a unique global optimum.
 - There are actually several different sources of non-uniqueness.
- To understand these, we'll need idea of "span" from linear algebra.
 - This also helps explain the geometry of PCA.
 - We'll also see that some global optima may be better than others.

Consider a single vector w₁ (k=1).

- Consider a single vector w₁ (k=1).
- The span(w_1) is all vectors of the form $z_i w_1$ for a scalar z_i .

- Consider a single vector w₁ (k=1).
- The span(w_1) is all vectors of the form $z_i w_1$ for a scalar z_i .

• If $w_1 \neq 0$, this forms a line.

- Span of many different vectors gives same line.
 - Mathematically: αw_1 defines the same line as w_1 for any scalar $\alpha \neq 0$.

- PCA solution can only be defined up to scalar multiplication.
 - If (W,Z) is a solution, then $(\alpha W,(1/\alpha)Z)$ is also a solution.

 $\|(_{\alpha}W)(\frac{1}{\alpha}Z) - X\|_{F}^{2} = \|W2 - X\|_{F}^{2}$

• Consider two vector w_1 and w_2 (k=2).

- Consider two vector w_1 and w_2 (k=2).
 - The span(w_1, w_2) is all vectors of form $z_{i1}w_1 + z_{i2}w_2$ for a scalars z_{i1} and z_{i2} .

- Consider two vector w_1 and w_2 (k=2).
 - The span(w_1, w_2) is all vectors of form $z_{i1}w_1 + z_{i2}w_2$ for a scalars z_{i1} and z_{i2} .

- Consider two vector w_1 and w_2 (k=2).
 - The span(w_1, w_2) is all vectors of form $z_{i1}w_1 + z_{i2}w_2$ for a scalars z_{i1} and z_{i2} .

- For most non-zero 2d vectors, span(w_1, w_2) is a plane.
 - In the case of two vectors in R^2 , the plane will be *all* of R^2 .

- Consider two vector w_1 and w_2 (k=2).
 - The span(w_1, w_2) is all vectors of form $z_{i1}w_1 + z_{i2}w_2$ for a scalars z_{i1} and z_{i2} .

- For most non-zero 2d vectors, span(w_1, w_2) is plane.
 - Exception is if w_2 is in span of w_1 ("collinear"), then span(w_1, w_2) is just a line.

- Consider two vector w_1 and w_2 (k=2).
 - The span(w_1, w_2) is all vectors of form $z_{i1}w_1 + z_{i2}w_2$ for a scalars z_{i1} and z_{i2} .

- New issues for PCA (k \geq = 2):
 - We have label switching: $span(w_1, w_2) = span(w_2, w_1)$.
 - We can rotate factors within the plane (if not rotated to be collinear).

- 2 tricks to make vectors defining a plane "more unique":
 - Normalization: enforce that $||w_1|| = 1$ and $||w_2|| = 1$.

- 2 tricks to make vectors defining a plane "more unique":
 - Normalization: enforce that $||w_1|| = 1$ and $||w_2|| = 1$.

- 2 tricks to make vectors defining a plane "more unique":
 - Normalization: enforce that $||w_1|| = 1$ and $||w_2|| = 1$.
 - Orthogonality: enforce that $w_1^T w_2 = 0$ ("perpendicular").

- Now I can't grow/shrink vectors (though I can still reflect).
- Now I can't rotate one vector (but I can still rotate *both*).

Digression: PCA only makes sense for $k \leq d$

• Remember our clustering dataset with 4 clusters:

- It doesn't make sense to use PCA with k=4 on this dataset.
 - We only need two vectors [1 0] and [0 1] to exactly represent all 2d points.
 - With k=2, I could set Z=X and W=I to get X=ZW exactly.

Span in Higher Dimensions

- In higher-dimensional spaces:
 - Span of 1 non-zero vector w_1 is a line.
 - Span of 2 non-zero vectors w_1 and w_2 is a plane (if not collinear).
 - Can be visualized as a 2D plot.
 - Span of 3 non-zeros vectors $\{w_1, w_2, w_3\}$ is a 3d space (if not "coplanar").

- ...

- This is how the W matrix in PCA defines lines, planes, spaces, etc.
 - Each time we increase 'k', we add an extra "dimension" to the "subspace".

Making PCA Unique

- We've identified several reasons that optimal W is non-unique:
 - Multiply any w_c by any non-zero scalar.
 - Rotate any w_c almost arbitrarily within the span.
 - Switch any w_c with any other $w_{c'}$.
- PCA implementations add constraints to make solution unique:
 - Normalization: we enforce that $||w_c|| = 1$.
 - Orthogonality: we enforce that $w_c^T w_{c'} = 0$ for all $c \neq c'$.
 - Sequential fitting: We first fit w_1 ("first principal component") giving a line.
 - Then fit w_2 given w_1 ("second principal component") giving a plane.
 - Then we fit w_3 given w_1 and w_2 ("third principal component") giving a space.

SEQUENTIAL FITTING AND SVD

Coming Up Next

— optimal solution with one PC Xiz X_{il}

PCA Computation: SVD

- How do we fit with normalization/orthogonality/sequential-fitting?
 - It can be done with the "singular value decomposition" (SVD).
 - Take CPSC 302 or MATH 307
- 4 lines of Python code:
 - mu = np.mean(X,axis=0)
 - X -= mu
 - U, s, Vh = np.Linalg.svd(X)
 - -W = Vh[:k, :]

• Computing Z is cheaper now:

$$Z = X W^{T} (W W^{T})^{-1} = X W^{T}$$

$$W W^{T} = \begin{bmatrix} -W_{1} - \\ -W_{2} - \\ \vdots \\ -W_{K} - \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ W_{1}^{T} W_{2}^{T} \cdots W_{K}^{T} \\ 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1000 - 0 \\ 610 & 0 \\ 0 & - 0 \end{bmatrix} = I$$

$$31$$

Coming Up Next **ALTERNATING MINIMIZATION**

PCA Computation

- With linear regression, we had the normal equations
 - But we also could do it with gradient descent, SGD, etc.
- With PCA we have the SVD
 - But we can also do it with gradient descent, SGD, etc.
 - These other methods typically don't enforce the uniqueness "constraints".
 - Sensitive to initialization, don't enforce normalization, orthogonality, ordered PCs.
 But you can do this in post-processing if you want.
 - Why would we want this? We can use our tricks from Part 3 of the course:
 - We can do things like "robust" PCA, "regularized" PCA, "sparse" PCA, "binary" PCA.
 - We can fit huge datasets where SVD is too expensive.

PCA Computation: Alternating Minimization

• With centered data, the PCA objective is:

$$f(W_{j}z) = \hat{z}_{j=1}^{2} \hat{z}_{j=1}^{d} (\langle w_{j}^{i}z_{i}\rangle - x_{ij})^{2}$$

- In k-means we tried to optimize this with alternating minimization:
 - Fix "cluster assignments" Z and find the optimal "means" W.
 - Fix "means" W and find the optimal "cluster assignments" Z.
- Converges to a local optimum.
 - But may not find a global optimum (sensitive to initialization).

PCA Computation: Alternating Minimization

• With centered data, the PCA objective is:

$$f(W_{j}z) = \hat{z}_{j=1}^{2} \hat{z}_{j=1}^{d} (\langle w_{j}^{i}z_{i}\rangle - x_{ij})^{2}$$

- In PCA we can also use alternating minimization:
 - Fix "features" Z, find optimal "factors" W.
 - Fix "factors" W, find optimal "features" Z.
- Converges to a local optimum.
 - Which will be a global optimum (if we randomly initialize W and Z).

PCA Computation: Alternating Minimization

• With centered data, the PCA objective is:

$$f(W_{j}z) = \hat{z}_{i=1}^{2} \hat{z}_{j=1}^{d} (\langle w_{j}^{i}z_{i}\rangle - x_{ij})^{2}$$

- Alternating minimization steps:
 - If we fix Z, this is a quadratic function of W (least squares column-wise):

$$\nabla_{W} f(W,Z) = Z^{T}ZW - Z^{T}X \quad 50 \quad W = (Z^{T}Z)^{T}(Z^{T}X)$$
(writing gradient as a matrix)

Those are usually invertible since keep and keep

- If we fix W, this is a quadratic function of Z (transpose due to dimensions):

$$\nabla_z f(w, z) = ZWW^T - XW^T$$
 so $Z = XW^T(\underline{W})$

PCA Computation: Alternating Minimization

• With centered data, the PCA objective is:

- This objective is not jointly convex in W and Z.
 - You will find different W and Z depending on the initialization.
 - For example, if you initialize with all $w_c = 0$, then they will stay at zero.
 - But it's possible to show that all "stable" local optima are global optima.
 - You will converge to a global optimum in practice if you initialize randomly.
 - Randomization means you don't start on one of the unstable non-global critical points.
 - E.g., sample each initial z_{ij} from a normal distribution.

PCA Computation: Stochastic Gradient

• For big X matrices, you can also use stochastic gradient:

$$f(W_{j}z) = \hat{z}_{j=1} \hat{z}_{j=1} (\langle w_{j}^{i}z_{i}\rangle - x_{ij})^{2} = \sum_{\substack{(i,j) \ (i,j)}} (\langle w_{j}^{i}z_{i}\rangle - x_{ij})^{2} f(w_{j}^{i}z_{i}\rangle - x_{ij})^{2}$$

On each iteration, pick a random example 'i' and feature 'j'

$$\rightarrow$$
 Set w' to w' - x^t $\nabla_{w} f(w', z, x_{ij})$
 \rightarrow Set z_i to z_i - x^t $\nabla_{z_i} f(w', z_i, x_{ij})$

• Other variables stay the same, cost per iteration is only O(k).

PCA Computation: Prediction

- At the end of training, the "model" is the μ_j and the W matrix. – PCA is parametric.
- PCA prediction phase:
 - Given new data \tilde{X} , we can use μ_i and W this to form \tilde{Z} :

1. (enter: replace each
$$\tilde{x}_{ij}$$
 with $(\tilde{x}_{ij} - m_j)$
2. Find \tilde{Z} minimizing squared error:
 $\tilde{Z} = \tilde{X} W^T (WW^T)^T$
 $data$
(could just store
this dxk matrix)

PCA Computation: Prediction

- At the end of training, the "model" is the μ_j and the W matrix. – PCA is parametric.
- PCA prediction phase:
 - Given new data \tilde{X} , we can use μ_i and W this to form \tilde{Z} :
 - The "reconstruction error" is how close approximation is to \tilde{X} :

$$\frac{1}{\hat{X}} = \frac{1}{\hat{X}} = \frac{1$$

- Our "error" from replacing the x_i with the z_i and W.

Choosing 'k' by "Variance Explained"

Common to choose 'k' based on variance of the x_{ii}.

- For a given 'k' we compute (variance of errors)/(variance of x_{ij}):

$$\frac{||ZW - X||_{F}^{2}}{||X||_{F}^{2}}$$

- Gives a number between 0 (k=d) and 1 (k=0), giving "variance remaining".

• If you want to "explain 90% of variance", choose smallest 'k' where ratio is < 0.10.

"Variance Explained" in the Goat Situation

• Recall: Crazy goats:

• Interpretation of "variance remaining" formula:

• If we had a 3D map the "variance remaining" would be 0.

nttps://en.wikipedia.org/wiki/Doom_(1993_video_game nttps://forum.minetest.net/viewtopic.php?f=5&t=9666

Coming Up Next
EIGENFACES

Application: Face Detection

• Consider problem of face detection:

Classic methods use "eigenfaces" as basis:
 PCA applied to images of faces.

Application: Face Detection

Contacting

 \odot

0

00

 \triangleleft

-

S.

• Collect a bunch of images of faces under different conditions:

Each row of X will be pixels in one image: X = xn -M

Compute top 'k' PCs on centered duta:

"Eigenface" representation

+ Zi2 🕐 +·· $+Z_{il}$ +Ziz Ξ PC3 ∧ Xi PC2 PCI (first row of W) M

"Eigenface" representation:

	-	18. An	-		10. IS.	-	-	18. AL	-
and the second	TR. Br.	TR. Br.	THE REAL	THE REAL	The star	THE ER.	THE REAL	THE REAL	THE REAL
-								-	
	-		12 B		22 B		19. (S. 11.	20. 16. 	
-			19. SS.		19. 16. 				
-						-	18. 18. 11.		
-					10 10 11			-	
-									
-	-		18. IS.		18. 16. 	-			
100 million (1990)		and the second	100 C		100 m				and the second second

Variance explained: 0%

"Eigenface" representation +Z_{il} +z_{i2} +Ziz +.. \sim ∧ Xi PC3 PCI (first row of W) PC2 N

PCA Visualization

Reconstruction with K=3

Variance explained: 76%

1000 500 0 -500 -1000 -1500 -4000 2000 4000 3000 2000 1000 0 -2000 -1000 -2000 -3000 -4000

"Eigenface" representation

Variance explained: 86°/0

Variance explained: 85%

Variance explained: 90°/0

Variance explained: 95%

the

We can replace 1024 xi values by 54 z; values

Summary

- PCA objective:
 - Minimizes squared error between elements of X and elements of ZW.
- Choosing 'k':
 - We can choose 'k' to explain "percentage of variance" in the data.
- PCA non-uniqueness:
 - Due to scaling, rotation, and label switching.
- Orthogonal basis and sequential fitting of PCs (via SVD):
 - Leads to non-redundant PCs with unique directions.
- Alternating minimization and stochastic gradient:
 - Iterative algorithms for minimizing PCA objective.
- Next time: cancer signatures and NBA shot charts.

Making PCA Unique

- PCA implementations add constraints to make solution unique:
 - Normalization: we enforce that $||w_c|| = 1$.
 - Orthogonality: we enforce that $w_c^T w_{c'} = 0$ for all $c \neq c'$.
 - Sequential fitting: We first fit w_1 ("first principal component") giving a line.
 - Then fit w_2 given w_1 ("second principal component") giving a plane.
 - Then we fit w_3 given w_1 and w_2 ("third principal component") giving a space.
 - ...
- Even with all this, the solution is only unique up to sign changes:
 - I can still replace any w_c by $-w_c$:
 - w_c is normalized, is orthogonal to the other $w_{c'}$, and spans the same space.
 - Possible fix: require that first non-zero element of each w_c is positive.
 - And this is assuming you don't have repeated singular values.
 - In that case you can rotate the repeated ones within the same plane.

"Synthesis" View vs. "Analysis" View

- We said that PCA finds hyper-plane minimizing distance to data x_i.
 - This is the "synthesis" view of PCA (connects to k-means and least squares).

- "Analysis" view when we have orthogonality constraints:
 - PCA finds hyper-plane maximizing variance in z_i space.
 - You pick W to "explain as much variance in the data" as possible.

Colour Opponency in the Human Eye

- Classic model of the eye is with 4 photoreceptors:
 - Rods (more sensitive to brightness).
 - L-Cones (most sensitive to red).
 - M-Cones (most sensitive to green).
 - S-Cones (most sensitive to blue).
- Two problems with this system:
 - Not orthogonal.
 - High correlation in particular between red/green.
 - We have 4 receptors for 3 colours.

http://oneminuteastronomer.com/astro-course-day-5/ https://en.wikipedia.org/wiki/Color_visio

Colour Opponency in the Human Eye

- Bipolar and ganglion cells seem to code using "opponent colors":
 - 3-variable orthogonal basis:

• This is similar to PCA (d = 4, k = 3).

http://oneminuteastronomer.com/astro-course-day-5/ https://en.wikipedia.org/wiki/Color_visio http://5sensesnews.blogspot.ca/

Colour Opponency Representation

https://en.wikipedia.org/wiki/RGB_color_model