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In This Lecture
1. Formal Details of PCA
2. Sequential Fitting and SVD
3. Alternative Optimization



PCA OBJECTIVE FUNCTION AND
“VARIANCE EXPLAINED”
Coming Up Next



PCA Objective Function
• In PCA we minimize the squared error of the approximation:

• This is equivalent to the k-means objective:
– In k-means zi only has a single ‘1’ value and other entries are zero.

• But in PCA, zi can be any real number.
– We approximate xi as a linear combination of all factors.



PCA Objective Function
• In PCA we minimize the squared error of the approximation:

• We can also view this as solving ‘d’ regression problems:
– Each wj is trying to predict column ‘xj’ from the basis zi.

• The output “yi” we try to predict here is actually the features “xi”. 

– And unlike in regression we are also learning the features zi.



Principal Component Analysis (PCA)
• The 3 different ways to write the PCA objective function:



Digression: Data Centering (Important)
• In PCA, we assume that the data X is “centered”.

– Each column of X has a mean of zero.

• It’s easy to center the data:

• There are PCA variations that estimate “bias in each coordinate”.
– In basic model this is equivalent to centering the data.



NON-UNIQUENESS OF PCA
Coming Up Next



Non-Uniqueness of PCA
• Unlike k-means, we can efficiently find global optima of f(W,Z).

– Algorithms coming later.

• Unfortunately, there never exists a unique global optimum.
– There are actually several different sources of non-uniqueness.

• To understand these, we’ll need idea of “span” from linear algebra.
– This also helps explain the geometry of PCA.
– We’ll also see that some global optima may be better than others.



Span of 1 Vector
• Consider a single vector w1 (k=1).



Span of 1 Vector
• Consider a single vector w1 (k=1).
• The span(w1) is all vectors of the form ziw1 for a scalar zi.



Span of 1 Vector
• Consider a single vector w1 (k=1).
• The span(w1) is all vectors of the form ziw1 for a scalar zi.

• If w1 ≠ 0, this forms a line.



• Span of many different vectors gives same line.
– Mathematically: 𝛼𝛼w1 defines the same line as w1 for any scalar 𝛼𝛼 ≠ 0.

– PCA solution can only be defined up to scalar multiplication.
• If (W,Z) is a solution, then (𝛼𝛼W,(1/𝛼𝛼)Z) is also a solution.

Span of 1 Vector



Span of 2 Vectors
• Consider two vector w1 and w2 (k=2).
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Span of 2 Vectors
• Consider two vector w1 and w2 (k=2).

– The span(w1,w2) is all vectors of form zi1w1 + zi2w2 for a scalars zi1 and zi2.

– For most non-zero 2d vectors, span(w1,w2) is a plane.
• In the case of two vectors in R2, the plane will be *all* of R2.



• Consider two vector w1 and w2 (k=2).
– The span(w1,w2) is all vectors of form zi1w1 + zi2w2 for a scalars zi1 and zi2.

– For most non-zero 2d vectors, span(w1,w2) is plane.
• Exception is if w2 is in span of w1 (“collinear”), then span(w1,w2) is just a line.

Span of 2 Vectors



Span of 2 Vectors
• Consider two vector w1 and w2 (k=2).

– The span(w1,w2) is all vectors of form zi1w1 + zi2w2 for a scalars zi1 and zi2.

– New issues for PCA (k >= 2):
• We have label switching: span(w1,w2) = span(w2,w1).
• We can rotate factors within the plane (if not rotated to be  collinear).



Span of 2 Vectors
• 2 tricks to make vectors defining a plane “more unique”:

– Normalization: enforce that ||w1|| = 1 and ||w2|| = 1.
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Span of 2 Vectors
• 2 tricks to make vectors defining a plane “more unique”:

– Normalization: enforce that ||w1|| = 1 and ||w2|| = 1.
– Orthogonality: enforce that w1Tw2 = 0 (“perpendicular”).

– Now I can’t grow/shrink vectors (though I can still reflect).
– Now I can’t rotate one vector (but I can still rotate *both*).



Digression: PCA only makes sense for k ≤ d
• Remember our clustering dataset with 4 clusters:

• It doesn’t make sense to use PCA with k=4 on this dataset.
– We only need two vectors [1 0] and [0 1] to exactly represent all 2d points.

• With k=2, I could set Z=X and W=I to get X=ZW exactly.



Span in Higher Dimensions
• In higher-dimensional spaces:

– Span of 1 non-zero vector w1 is a line.
– Span of 2 non-zero vectors w1 and w2 is a plane (if not collinear).

• Can be visualized as a 2D plot.
– Span of 3 non-zeros vectors {w1, w2, w3} is a 3d space (if not “coplanar”).
– …

• This is how the W matrix in PCA defines lines, planes, spaces, etc.
– Each time we increase ‘k’, we add an extra “dimension” to the “subspace”.



Making PCA Unique
• We’ve identified several reasons that optimal W is non-unique:

– Multiply any wc by any non-zero scalar.
– Rotate any wc almost arbitrarily within the span.
– Switch any wc with any other wc’.

• PCA implementations add constraints to make solution unique:
– Normalization: we enforce that ||wc|| = 1.
– Orthogonality: we enforce that wcTwc’ = 0 for all c ≠ c’.
– Sequential fitting: We first fit w1 (“first principal component”) giving a line.

• Then fit w2 given w1 (“second principal component”) giving a plane.
• Then we fit w3 given w1 and w2 (“third principal component”) giving a space.



SEQUENTIAL FITTING AND SVD
Coming Up Next



Basis, Orthogonality, Sequential Fitting



Basis, Orthogonality, Sequential Fitting



Basis, Orthogonality, Sequential Fitting



Basis, Orthogonality, Sequential Fitting

http://setosa.io/ev/principal-component-analysis

http://setosa.io/ev/principal-component-analysis


PCA Computation: SVD
• How do we fit with normalization/orthogonality/sequential-fitting?

– It can be done with the “singular value decomposition” (SVD).
– Take CPSC 302 or MATH 307

• 4 lines of Python code:
– mu = np.mean(X,axis=0)
– X -= mu
– U, s, Vh = np.linalg.svd(X)
– W = Vh[:k, :]
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• Computing Z is cheaper now:



ALTERNATING MINIMIZATION
Coming Up Next



PCA Computation
• With linear regression, we had the normal equations

– But we also could do it with gradient descent, SGD, etc.
• With PCA we have the SVD

– But we can also do it with gradient descent, SGD, etc.

– These other methods typically don’t enforce the uniqueness “constraints”.
• Sensitive to initialization, don’t enforce normalization, orthogonality, ordered PCs.

– But you can do this in post-processing if you want.
– Why would we want this? We can use our tricks from Part 3 of the course:

• We can do things like “robust” PCA, “regularized” PCA, “sparse” PCA, “binary” PCA.
• We can fit huge datasets where SVD is too expensive.
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PCA Computation: Alternating Minimization
• With centered data, the PCA objective is:

• In k-means we tried to optimize this with alternating minimization:
– Fix “cluster assignments” Z and find the optimal “means” W.
– Fix “means” W and find the optimal “cluster assignments” Z.

• Converges to a local optimum.
– But may not find a global optimum (sensitive to initialization).



PCA Computation: Alternating Minimization
• With centered data, the PCA objective is:

• In PCA we can also use alternating minimization:
– Fix “features” Z, find optimal “factors” W.
– Fix “factors” W, find optimal “features” Z.

• Converges to a local optimum.
– Which will be a global optimum (if we randomly initialize W and Z).



PCA Computation: Alternating Minimization
• With centered data, the PCA objective is:

• Alternating minimization steps:
– If we fix Z, this is a quadratic function of W (least squares column-wise):

– If we fix W, this is a quadratic function of Z (transpose due to dimensions):



PCA Computation: Alternating Minimization
• With centered data, the PCA objective is:

• This objective is not jointly convex in W and Z.
– You will find different W and Z depending on the initialization.

• For example, if you initialize with all wc = 0, then they will stay at zero.

– But it’s possible to show that all “stable” local optima are global optima.
• You will converge to a global optimum in practice if you initialize randomly.

– Randomization means you don’t start on one of the unstable non-global critical points.
• E.g., sample each initial zij from a normal distribution.

http://www.offconvex.org/2018/11/07/optimization-beyond-landscape/



PCA Computation: Stochastic Gradient
• For big X matrices, you can also use stochastic gradient:

• Other variables stay the same, cost per iteration is only O(k).



PCA Computation: Prediction
• At the end of training, the “model” is the µj and the W matrix.

– PCA is parametric.
• PCA prediction phase:

– Given new data �𝑋𝑋, we can use µj and W this to form �𝑍𝑍:



PCA Computation: Prediction
• At the end of training, the “model” is the µj and the W matrix.

– PCA is parametric.
• PCA prediction phase:

– Given new data �𝑋𝑋, we can use µj and W this to form �𝑍𝑍:
– The “reconstruction error” is how close approximation is to �𝑋𝑋:

– Our “error” from replacing the xi with the zi and W. 



Choosing ‘k’ by “Variance Explained”
• Common to choose ‘k’ based on variance of the xij.

– For a given ‘k’ we compute (variance of errors)/(variance of xij):

– Gives a number between 0 (k=d) and 1 (k=0), giving “variance remaining”.
• If you want to “explain 90% of variance”, choose smallest ‘k’ where ratio is < 0.10.



“Variance Explained” in the Goat Situation
• Recall: Crazy goats:

• Interpretation of “variance remaining” formula:

• If we had a 3D map the “variance remaining” would be 0.
https://en.wikipedia.org/wiki/Doom_(1993_video_game)
https://forum.minetest.net/viewtopic.php?f=5&t=9666



EIGENFACES
Coming Up Next



Application: Face Detection
• Consider problem of face detection:

• Classic methods use “eigenfaces” as basis:
– PCA applied to images of faces.

https://developer.apple.com/library/content/documentation/GraphicsImaging/Conceptual/CoreImaging/ci_detect_faces/ci_detect_faces.html



Application: Face Detection



Eigenfaces
• Collect a bunch of images of faces under different conditions:



Eigenfaces



Eigenfaces
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Eigenfaces



Eigenfaces



Eigenfaces



Summary
• PCA objective:

– Minimizes squared error between elements of X and elements of ZW.
• Choosing ‘k’:

– We can choose ‘k’ to explain “percentage of variance” in the data.
• PCA non-uniqueness:

– Due to scaling, rotation, and label switching.
• Orthogonal basis and sequential fitting of PCs (via SVD):

– Leads to non-redundant PCs with unique directions.
• Alternating minimization and stochastic gradient:

– Iterative algorithms for minimizing PCA objective.

• Next time: cancer signatures and NBA shot charts.



Making PCA Unique
• PCA implementations add constraints to make solution unique:

– Normalization: we enforce that ||wc|| = 1.
– Orthogonality: we enforce that wcTwc’ = 0 for all c ≠ c’.
– Sequential fitting: We first fit w1 (“first principal component”) giving a line.

• Then fit w2 given w1 (“second principal component”) giving a plane.
• Then we fit w3 given w1 and w2 (“third principal component”) giving a space.
• …

• Even with all this, the solution is only unique up to sign changes:
– I can still replace any wc by –wc:

• -wc is normalized, is orthogonal to the other wc’, and spans the same space.
– Possible fix: require that first non-zero element of each wc is positive.
– And this is assuming you don’t have repeated singular values.

• In that case you can rotate the repeated ones within the same plane.



“Synthesis” View vs. “Analysis” View
• We said that PCA finds hyper-plane minimizing distance to data xi.

– This is the “synthesis” view of PCA (connects to k-means and least squares).

• “Analysis” view when we have orthogonality constraints: 
– PCA finds hyper-plane maximizing variance in zi space.
– You pick W to “explain as much variance in the data” as possible.



Colour Opponency in the Human Eye
• Classic model of the eye is with 4 photoreceptors:

– Rods (more sensitive to brightness).
– L-Cones (most sensitive to red).
– M-Cones (most sensitive to green).
– S-Cones (most sensitive to blue).

• Two problems with this system:
– Not orthogonal.

• High correlation in particular between red/green.
– We have 4 receptors for 3 colours.

http://oneminuteastronomer.com/astro-course-day-5/
https://en.wikipedia.org/wiki/Color_visio



Colour Opponency in the Human Eye
• Bipolar and ganglion cells seem to code using “opponent colors”:

– 3-variable orthogonal basis:

• This is similar to PCA (d = 4, k = 3).

http://oneminuteastronomer.com/astro-course-day-5/
https://en.wikipedia.org/wiki/Color_visio
http://5sensesnews.blogspot.ca/



Colour Opponency Representation

https://en.wikipedia.org/wiki/RGB_color_model
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