CPSC 340:
Machine Learning and Data Mining



In This Lecture

1. How to Learn PCA:

— Sequential Fitting and SVD
— Alternating Minimization

2. Eigenfaces



PCA OBJECTIVE FUNCTION



PCA Qbjective Function

 In PCA we minimize thegsquared error of the approximation:
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 This is equivalent to the k-means objective:

— Think of z; as one-hot encoding of y;

« But in PCA, z can be any real number.
— We approximate x; as a linear combination of all factors.



PCA Qbjective Function

 In PCA we minimize the squared error of the approximation:
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 We can also view this as solving ‘d’ regression problems:

— Each wl is a model predicting column x/ from the features of z. w\ohx.('f\(% ,)@)
« The output “y,” = each feature of x.

— Unlike in regression: learn the features of z.



Principal Component Analysis (PCA)

« The 3 different ways to write the PCA objective function:
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Digression: Data Centering (Important)

« In PCA, we assume that the data X is “centered”.
— Each column of X has a mean of zero.

« |t's easy to center the data:
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« There are PCA variations that estimate “bias in each coordinate”.
— In basic model this is equivalent to centering the data.



NON-UNIQUENESS OF PCA AND
SPANS OF FACTORS



Non-Unigueness of PCA

- Unlike k-means, we can efficiently find global optima of f(W,Z).
— Algorithms coming later.

- Unfortunately, PCA never has a unique global optimum.
— Several different sources of non-unigueness (coming up soon)

« To understand these, we'll use “span” from linear algebra.

— Helps explain the geometry of PCA.
— Some global optima may be better than others. (coming up soon)
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Span of 1 Vector

- Consider a single vector w; (k=1).




Span of 1 Vector

- Consider a single vector w; (k=1).
 The span(w,) is all vectors of the form z,w, for a scalar z.
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Span of 1 Vector

- Consider a single vector w; (k=1).
 The span(w,) is all vectors of the form z,w, for a scalar z.

* If w; 2 0, this forms a line.
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Span of 1 Vector

Span of many different vectors gives same line.
— Mathematically: aw, defines the same line as w; for any scalar a = 0.
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— PCA solution is non-unique: (solution * scalar) is still PCA solution. 2
+ If (W,Z) is a solution, then (aW,(1/)Z) is also a solution. || (°(W>('Z|(Z)"X(/F2:”W21'3X,f



Span of 2 Vectors

« Consider two vectors w; and w, (k=2).




Span of 2 Vectors

Consider two vectors w; and w, (k=2).
— The span(w,,w,) is all vectors of form z;w; + z,w, for any scalars z; and z..
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Span of 2 Vectors

Consider two vectors w; and w, (k=2).
— The span(w,,w,) is all vectors of form z;w; + z,w, for any scalars z; and z..
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Span of 2 Vectors

Consider two vectors w; and w, (k=2).

— The span(w,,w,) is all vectors of form z;w; + z,w, for any scalars z; and z..
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— For most non-zero 2d vectors, span(w;,w,) is a plane.
« In the case of two vectors in R?, the plane will be *all* of R2,
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Span of 2 Vectors

Consider two vectors w; and w, (k=2).
— The span(w,,w,) is all vectors of form z;w; + z,w, for any scalars z; and z..

— For most non-zero 2d vectors, span(w,,w,) is plane.
« Exception is if w, is in span of w; (“collinear”), then span(w;,w5) is just a line.
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Span of 2 Vectors

Consider two vectors w; and w, (k=2).
— The span(w,,w,) is all vectors of form z;w; + z,w, for any scalars z; and z..
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l
— New issues for PCA (k >= 2):

« We have label switching: span(w;,w,) = span(w,,w).
« We can rotate factors within the plane (if not rotated to be collinear).
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Span of 2 Vectors

« 2 tricks to make vectors defining a plane “more unique”:
— Normalization: enforce that ||w,]| = 1 and ||w,|| = 1.




Span of 2 Vectors

« 2 tricks to make vectors defining a plane “more unique”:
— Normalization: enforce that ||w,]| = 1 and ||w,[| = 1.




Span of 2 Vectors

« 2 tricks to make vectors defining a plane “more unique”:
— Normalization: enforce that ||w,]| = 1 and ||w,[| = 1.
— Orthogonality: enforce that w;Tw, = 0 (“perpendicular”).
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— Can’t grow/shrink vectors (though | can still reflect).
— Can’t rotate one vector (but | can still rotate *both*).
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Digression: PCA only makes sense for kK < d

« Remember our clustering dataset with 4 clusters:

e It doesn’t make sense to use PCA with k=4 on this dataset.

— Only need two vectors [1 0] and [0 1] to exactly represent all 2d points.

« With k=2, set Z=X and W=l to get X=ZW exactly.
23



Span in Higher Dimensions

In higher-dimensional spaces:
— Span of 1 non-zero vector w; is a line.

— Span of 2 non-zero vectors w,; and w, is a plane (if not collinear).
« Can be visualized as a 2D plot.

— Span of 3 non-zeros vectors {w;, w,, w3} is a 3d space (if not “coplanar”).

—WNy—
— —
This is how the W matrix in PCA defines lines, planes, spaces, etc.
— Each time we increase ‘k’, we add an extra “dimension” to the “subspace”.

24



Making PCA Unique

we've identified several reasons that optimal W is non-unique:
— Multiply any w_ by any non-zero scalar.
— Rotate any w_ almost arbitrarily within the span.
— Switch any w_ with any other w..
Ke & Compindy At (onone)
PCA implementations add constraints to make solution unique:
— Normalization: enforce that [jw || = 1. ij&.w
— Orthogonality: enforce that w.Tw. = 0 for all ¢ # ¢'. ‘X{_w\ e

— Sequential fitting: First fit w, (“first principal component”) glvmg llne S_
« Then fit w, given w; (“second principal component”) giving a plane.
« Then we fit w3 given w; and w, (“third principal component”) giving a\eﬁaa‘é‘.“ ore
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SEQUENTIAL FITTING AND SVD



Basis, Orthogonality, Sequential Fitting
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Basis, Orthogonality, Sequential Fitting

Q: What is f(W,Z)

when we add the green line?
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Basis, Orthogonality, Sequential Fitting

Any two non-parallel lines
give an optimal solution
(lLossless compression)
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Basis, Orthogonality, Sequential Fitting
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http://setosa.io/ev/principal-component-analysis

PCA Computation: SVD

« How do we fit with normalization/orthogonality/sequential-fitting?
— It can be done with the “singular value decomposition” (SVD).
— Take CPSC 302 or MATH 307

4 lines of Python code:

— mu = np.mean(X,axi1s=0) _ _
_ X -= mu « Computing £ is cheaper now:
- U, s, Vh = np.linalg.svd(X) ~
— W = Vh[:k, :] Z = XW’(\VW) =XW'
A sl (N
WV\/ -WZ - \4//,7\1{, W:}
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ALTERNATING MINIMIZATION



PCA Computation

With linear regression, we had the normal equations

— But we also could do it with gradient descent, SGD, etc.
With PCA we have the SVD

— But we can also do it with gradient descent, SGD, etc.

Gradient-based methods don’t enforce uniqueness

— Sensitive to initialization, don’t enforce normalization, orthogonality, ordered PCs.
— But you can do this in post-processing if you want.

why would we want this? We can use our tricks from Part 3 of the course:
— We can do things like “robust” PCA (A6), “regularized” PCA, “sparse” PCA, “binary” PCA.
— We can fit huge datasets where SVD is too expensive.



PCA Computation: Alternating Minimization

With centered data, the PCA objective is:
N A . 2
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In k-means we optimized this with alternating minimization:
— Fix “cluster assignments” Z and find the optimal “means” W.
— Fix “means” W and find the optimal “cluster assignments” Z.

Converges to a local optimum.
— But may not find a global optimum (sensitive to initialization).
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PCA Computation: Alternating Minimization

« With centered data, the PCA objective is:

n 4
'F( W)Z7 :Z é (<wi)7—i7_ Xj )2

 In PCA we can also use alternating minimization:
— Fix “scores” Z, find optimal “factors” W.
— Fix “factors” W, find optimal “scores” Z.

« Converges to a local optimum.
— Which will be a global optimum (if we randomly initialize W and 2Z).



PCA Computation: Alternating Minimization

With centered data, the PCA objective is:

f(Ww,2)= Z _Z (w2~ x,J)

Alternating minimization steps
— If we fix Z, this is a quadratic function of W (least squares column-wise):
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— If we fix W, this is a quadratic function of Z (transpose due to d|men5|ons)

N Fw2)=zww™ XWT 5o 2= XW' (ww\)

(7
—nm.:e are VLSvm//

inve1: /’/L’; Sna Aczh ewji:cl




PCA Computation: Alternating Minimization

« With centered data, the PCA objective is:

f(W,2)= 5 Z(<w)27 x,J)

,-l ',[

Good local minimum Strict saddle

« This objective is not jointly convex in W and Z.

— You will find different W and Z depending on the initialization.
« For example, if you initialize with all w_ = 0, then they will stay at zero.

— But it’s possible to show that all “stable” local optima are global optima.

* You will converge to a global optimum in practice if you initialize randomly.
— Randomization means you don’t start on one of the unstable non-global critical points.
- E.g., sample each initial z;; from a normal distribution.
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PCA Computation: Stochastic Gradient

« For big X matrices, you can also use stochastic gradient:
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« Other variables stay the same, cost per iteration is only O(k). ..



PCA Computation: Prediction

- At the end of training, the “model” is the M, and the W matrix.
— PCA is parametric.

« PCA prediction phase:

— Given new data X, we can use M; and W this to form Z:
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PCA Computation: Prediction

- At the end of training, the “model” is the M, and the W matrix.
— PCA is parametric.

« PCA prediction phase:
— Given new data X, we can use M; and W this to form Z:
— The “reconstruction error” is how close approximation is to X:

IZw=xI?

X ﬂ/CPf\fp{pA Version

— Qur “error” from replacing the x; with the z; and W.
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Choosing ‘k’ by “Variance Explained”

Common to choose ‘k’ based on variance of the Xij-

Var(X&[ Xiy /(A,U)] JE[XJJ ZZX,) 2;\3“)(”?
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— For a given k' we compute (variance of errors)/(variance of x;):
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quF 1
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— Gives a number between 0 (k=d) and 1 (k=0), giving “variance remaining”.
« If you want to “explain 90% of variance”, choose smallest ‘k’ where ratio is < 0.10. 41



“Variance Explained” in the Goat Situation

* Recall: Crazy goats:
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* Interpretation of “variance remaining” formula:
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- If we had a 3D map the “variance remaining” would be 0.
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EIGENFACES



Application: Face Detection

« Classic methods use “eigenfaces” as basis:
— PCA applied to images of faces.
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- Application: Face Detection e
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Eigenfaces

« Collect a bunch of images of faces under different conditions:
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Eigenfaces

RC(O"\SJHV\(J'}OA \«/}ﬂ\ l-(: 0

l(){ﬂfq(c !’C{)resx"w"faf}ow:

am-my-s
Vdf'&ncc ex,olamnl D /b PC' FC2 P5623

((rs/rowof V)




Eigenfaces
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Eigenfaces
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Eigenfaces
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Eigenfaces

Reconsteuction with k=5
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genfaces
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genfaces

Reconstenction with k=7]
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Eigenfaces
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summary

PCA objective:
— Minimizes squared error between elements of X and elements of ZW.
Choosing ‘k’

— We can choose ‘K’ to explain “percentage of variance” in the data.

PCA non-unigqueness:
— Due to scaling, rotation, and label switching.

Orthogonal basis and sequential fitting of PCs (via SVD):
— Leads to non-redundant PCs with unique directions.

Alternating minimization and stochastic gradient:
— Iterative algorithms for minimizing PCA objective.

Next time: cancer signatures and NBA shot charts.



Review Questions

Q1l: How is PCA’s objective function similar to k-means clustering’s
objective function?

Q2: What makes PCA solutions non-unique?

Q3: Why don’t normalization and orthogonality guarantee the uniqueness of
PCA solutions?

Q4: How are “variance remaining” and “variance explained” related?
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Making PCA Unique

« PCA implementations add constraints to make solution unique:
— Normalization: we enforce that ||w ] = 1.
— Orthogonality: we enforce that w_Tw_ = 0 for all ¢ # c'.
— Sequential fitting: We first fit w, (“first principal component”) giving a line.
- Then fit w, given w, (“second principal component”) giving a plane.
« Then we fit w3 given w; and w, (“third principal component”) giving a space.

« Even with all this, the solution is only unique up to sign changes:
— | can still replace any w_ by —w_.:
* -W_ is normalized, is orthogonal to the other w., and spans the same space.
— Possible fix: require that first non-zero element of each w_ is positive.

— And this is assuming you don’t have repeated singular values.
* In that case you can rotate the repeated ones within the same plane.



“Synthesis” View vs. “Analysis” View

We said that PCA finds hyper-plane minimizing distance to data X;.
— This is the “synthesis” view of PCA (connects to k-means and least squares).

Xig
N , , ) N\ , ‘
“Analysis  View: ~ X / Synthess” View
PCA maximizes \< PA minimizes
Vv ance qﬁ.?/ % — Xil J‘>+’"’|l€ +o h\/rer"/:’qnc
< tion. /
()VO)‘CC

“Analysis” view when we have orthogonality constraints:
— PCA finds hyper-plane maximizing variance in z; space.
— You pick W to “explain as much variance in the data” as possible.



Colour Opponency in the Human Eye

Classic model of the eye is with 4 photoreceptors:

- . Light Section
— Rods (more sensitive to brightness). l /—‘—
— L-Cones (most sensitive to red). %’g
.. Ganglion cells

— M-Cones (most sensitive to green). 'EE

— S-Cones (most sensitive to blue). Sipotar ot MMM, L __synapsis
'r*-?.r_f‘_ T-"Tff' Receptors

Cone '.""".-’L 1L

Rod

Two problems with this system: pgm—'-aaﬁ'_f

U

cells
— Not orthogonal. E—
A0 450 SO0 S50 600 650°° 70D

- High correlation in particular between red/green.
— We have 4 receptors for 3 colours.

Normalized cone response (linear energy)

Wavelength (nm)



Colour Opponency in the Human Eye

- Bipolar and ganglion cells seem to code using “opponent colors”:
— 3-variable orthogonal basis:

o Color Perception ™,

{ 1~ Absolute Quantity: N\
1. Brightniess (Strength of A) |

i| 2. Hue (Ratio of C, t0 C,-Cy) ||
@ 3. Colorfuiness ;
: (Strength of C, and C,-Cy) |;

) :5 + Relative Quantity: :
i \hLianessIEhmma!Eatumlin}Ji

ra 1'-. l"i;
Merve Fiber Visual Cortex

wnioeds a|gisin

e This is similar to PCA (d = 4, k = 3).




Colour Opponency Representation
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