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Summer 2021



Admin

» Assignment 5 is due 11:55pm today
« Assignment 6 will be released today

* Final exam is Wednesday, June 23
— 24-hour take-home exam (NOT timed!)
— Prep materials will go up Wednesday, June 16
— Monday’s lectures will be cut-off for testable materials



Assignment 7/

« Assignment 7 will be released next Friday-ish
— Optional, but “due” Wednesday, June 30
— Qutside final exam coverage

— Covers things previously not covered in assignments
- E.g. automatic differentiation and backpropagation

 Graded on completeness not correctness

—If you submit A7, | will
replace your lowest assignment grade with A7 grade

« Office hours will be upon request for A7



In This Lecture

1. Non-Negative Matrix Factorization
— Projected gradient method

2. Other Matrix Factorization Methods



Last Time: PCA with Orthogonal/Sequential Basis

 When k =1, PCA has a scaling problem.

 When k > 1, have scaling, rotation, and label switching.
— Standard fix: use normalized orthogonal rows W_ of ‘W".

“Wc”:' and \«/L—rwc\‘-'O Lor '#¢

— And fit the rows in order:
* First row “explains the most variance” or “reduces error the most”.
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Last Time: SVD and Other Methods

» SVD: linear-algebraic solution to get X = ZW
— Enforces normalization and orthogonality

- Alternating minimization: use gradients!
— Optimize f(W,Z) with respect to W
— Then optimize f(W,Z) with respect to Z
— Repeat until happy
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MORE EIGENFACES



VQ vs. PCA vs. NMF

« How should we represent faces?
— Vector quantization (k-means).

- Can’t distinguish between people in the same cluster
(only ‘k’ possible faces).

« Almost certainly not true: too few canonical faces.
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VQ vs. PCA vs. NMF

« How should we represent faces?

— Vector quantization (k-means).

— PCA (orthogonal basis).
« Global average plus __\lvi&g\_r_gmb\_ﬂ_o\:\m__ of “eigenfaces”.

- But “eigenfaces” are not intuitive ingredients for faces.
— PCA tends to use positive/negative cancelling bases.
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VQ vs. PCA vs. NMF

« How should we represent faces?
— Vector gquantization (k-means).
— PCA (orthogonal basis).

— NMF (non-negative matrix factorization):

 Instead of orthogonality/ordering in W,
require W and Z to be non-negative.

- Example of “sparse coding”:
— The z, are sparse so each face is coded by a small number of eigenfaces.
— The w_ are sparse so eigenfaces tend to be “parts” of the face.
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Wwhy sparse coding?

— “Parts” are intuitive, and brains seem to use sparse representation.
— Energy efficiency if using sparse code.

— Increase number of concepts you can memorize
« Some evidence in fruit fly olfactory system.
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NON-NEGATIVE MATRIX
FACTORIZATION



Warm-up to NMF: Non-Negative Least Squares

Consider our usual least squares problem:
2 2
| T

‘F(V\) 2 .=,(W J )’.7

But assume y, and elements of x; are non-negative:
— Could be sizes (‘height’, ‘milk’, ‘km’) or counts (‘vicodin’, ‘likes’, ‘retweets’).

Q: Does it make sense
to have any w; < 07
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Warm-up to NMF: Non-Negative Least Squares

n

Flw) =220y

* Allow w; € (—%,+») - some weights are negative
to cancel out I—\\A(rﬁggﬁ._w_,_ weights

- Idea: constrain w; € [0,+o) — sparsity and regularization



Sparsity and Non-Negative Least Squares

« Consider 1D non-negative least squares objective:

)= ,%(w X; “7.')2 wilth W20

- Plotting the (constrained) objective function:
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- In this case, non-negative solution is least squares solution.



Sparsity and Non-Negative Least Squares

« Consider 1D non-negative least squares objective:

Ho)= 3 '%(w X; "‘)’.‘)2 wilh W 20

- Plotting the (constrained) objective function:

Const rainei MY i
w/

 In this case, non-negative solution is w = 0.



Sparsity and Non-Negativity

- Similar to Ll-regularization, non-negativity leads to sparsity.
— Also regularizes: w; are smaller since can’t “cancel” negative values.

— Sparsity leads to cheaper predictions and often to more interpretability.
- Non-negative weights are often also more interpretable.

Const rainei MYNvh
w/
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Sparsity and Non-Negativity
« How can we minimize f(w) with non-negative constraints?
— Naive approach: solve least squares problem, set negative w; to 0.
Comrufc w = (XT)()\()(-'\/)
Se‘f MG: mayzo)%;

— This is correct when d = 1.
— Can be worse than setting w = 0 when d = 2.



PROJECTED GRADIENT



Projected Gradient

« Use projected gradient algorithm:
« Run a gradient descent iteration:

t+4
w = Wt "o(tV-F(wt)

. After each step, set negative values to 0. j/‘
1 t*'/zf ’.\

J

0 \,
- Repeat.

Parameter space
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Projected Gradient

* Projected gradient algorithm:

€+ 1 €+l
\Y, J = Wt vo(tv‘r(wé) Wy~ MGYEO) W) JJ{

— Similar properties to gradient descent:

« Guarantees decrease if step size at is small enough.

« Reaches local minimum under weak assumptions
(global minimum for convex ‘f’).

— Least squares objective is still convex
when restricted to non-negative variables.

« Solution is a “fixed point”: w* = max{0, w* - at Vf(w*)}.
— Use this to decide when to stop.

— A generalization is “proximal gradient”:

 Instead of constraints, allows non-smooth terms
(OptimizerGradientDescentProximallLl).



Projected Gradient for NMF

- Back to the non-negative matrix factorization (NMF) objective:

n d '
O(W,2)= 22 Kum—x.)? with w70
) = )<t ')
=)=t am& Zu 20
— Different ways to use projected gradient:
- Alternate between projected gradient steps on ‘W’ and on ‘Z".
« Or run projected gradient on both at once.

« Or sample a random ‘i’ and ‘j’ and do stochastic projected gradient.
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Projected Gradient for NMF
P(%2)= 53 ki)t Wit ;70

=1 )=t amd ZU 0

St 272~ F WD) and (G0t — ot Flw2)

— Non-convex
— Sensitive to initialization (unlike PCA)

— Hard to find the global optimum.
 Typically use random initialization.
« Also, we usually don’t center the data with NMF.
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Application: Sports Analytics

« NBA shot charts:

Stephen Curry (940 shots)

LeBron James (315 shots)

« NMF (using “KL divergence” loss with k=10 and smoothed data).

— Negative
values would
not make
sense here. Z

» D » D) *D) i D ) ) 3| > ) >D) D) | 2D
LeBron James 0.2 0.16 0.12 0.09 0.04 0.07 0.00 0.07 0.08 0.17
Brook Lopez 0.06 0.27 0.43 0.09 0.01 0.03 0.08 0.03 0.00 0.01
Tyson Chandler  0.26 0.65 0.03 0.00 0.01 0.02 0.01 0.01 0.02 0.01
Marc Gasol 0.19 0.02 0.17 0.01 0.33 0.25 0.00 0.01 0.00 0.03
Tony Parker 0.12 0.22 0.17 0.07 0.21 0.07 0.08 0.06 0.00 0.00
Kyrie Irving 0.13 0.10 0.09 0.13 0.16 0.02 0.13 0.00 0.10 0.14
Stephen Curry  0.08 0.03 0.07 0.01 0.10 0.08 0.22 0.05 0.10 0.24
James Harden  0.34 0.00 0.11 0.00 0.03 0.02 0.13 0.00 0.11 0.26
Steve Novak 0.00 0.01 0.00 0.02 0.00 0.00 0.01 0.27 035  20.34




Application: Cancer “Signatures”

« What are common sets of mutations in different cancers?
— May lead to new treatment options.
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OTHER MATRIX FACTORIZATIONS



Beyond Squared Error

« Qur objective for latent-factor models (LFM):

F(W) 2)= % % (<w")2->— )(;J')z

;:’IJ:I

« As before, there are alternatives to squared error.

rod | |
g(W)Z)z ii IOS.SC<w")z;7) )(',\.J Froor for {)/eJict’H Cu' 2z

151 {2\ :

- If X consists of +1 and -1 values, we could use logistic loss:
- n d ;
T 202 5 5 log (4 exp~xs03)
T
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Robust PCA (A6)

e Robust PCA methods use the absolute error:
n
F( W) 2—7 ~ Z ? \(WJZ-P — vy.. ,
=1 5= ) X'~\

« WIll be robust to outliers in the matrix ‘X’.

+ Encourages “residuals” r; to be ety O

— Non-zero r;; are where the “outliers” are.
ij

AW’"/*’Q robust P(A
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Regularized Matrix Factorization

- Consider L2-regularized PCA:
Fw 20 =2)1zw=XIF + 2 Jlwlle + %)iz I

- Replaces normalization/orthogonality/sequential-fitting.
— Often gives lower reconstruction error on test data.
— But requires hyper-parameters 4, and A,.

- Need to regularize both W and £ because of scaling problem.

— If you only regularize ‘W’ it doesn’t do anything. (WHY?)
W=25mnll 2 big.

— Similarly, if you only regularize ‘Z’ it doesn’t do anything.
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Sparse Matrix Factorization

« Instead of non-negativity, we could use Ll-regularization:

POW,2) = 2w=XIR +J 3l + %2 I,

— Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).

- Disadvantage of using L1-regularization over non-negativity:
— Sparsity controlled by 1, and 4, so you need to set these.
- Advantage of using L1l-regularization:

— Sparsity controlled by 1, and 4,, so you can control amount of sparsity.
— Negative coefficients often do make sense. (WHY?)

30



Matrix Factorization with L1-Regularization
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Sparse Matrix Factorization

« Instead of non-negativity, we could use Ll-regularization:
n d
Fwy 2= Jzw=xIig + 220l + %2 i,

— Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).

« Many variations exist:
— Mixing L2-regularization and L1l-regularization.
« Or normalizing ‘W’ (in L2-norm or L1-norm) and regularizing ‘Z’.
— K-SVD constrains each z; to have at most ‘K’ non-zeroes:

« K-means is special case where k = 1.
« PCA is special case where k = d.



Recent Work: Structured Sparsity

« “Structured sparsity” considers dependencies in sparsity patterns.
— Can enforce that “parts” are convex regions.
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summary

« Non-negative matrix factorization: LFM with no negative values.
— Non-negativity constraints lead to sparse solution.
— Projected gradient adds constraints to gradient descent.
 Many of our regression tricks can be used with LFMs:
— Robust PCA uses absolute error to be robust to outliers.
— Ll-regularization leads to sparse factors/weights.

 Next time: the million-dollar Netflix challenge.



Review Questions

Q1l: How is k-means clustering an instance of latent factor methods?

Q2: How do we encourage sparsity and regularization for £ and W without penalty
terms?

Q3: How are PCA with L1-loss and PCA with L1-regularization different?
Q4: Why is it necessary to regularize for both £ and W for matrix factorization?

Q5: Why would L1-regularization make negative coefficients more interpretable?

35



Robust PCA

e Miss Korea contestants and robust PCA:

Original image Low rank Sparse error

ruction
http://jbhuang0604.blogspot.ca/2013/04/miss-korea-2013-contestants-face.html EREaRGE D
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Proof: “Synthesis” View = “Analysis” View (WWT = 1)

- The variance of the z; (maximized in “analysis” view):

\ Z’/z, ‘,{,(,ZHQ = = ﬁ” Wx, (/0(2 and 2= Wx, it w (=1 O'V'a/ W', 0)
I

7_[ i W Wy, = | ZTr(x WWx)“‘ | er(WVl/xx m

C}/c/(“

Tr( W xix, ) = i H(WTW X X) pripecty of
[inearity fé/ nK '\'}\f\/ \h‘d((
trace X'X
« The dlstam;ﬁ_to_th_e\hﬂogr_@e_(\mmlmlzed in “syntheSIS view):
2[ |ZW-XIIE = 1) YW W= XIIE = T ( Xw'w=x)" (xw’w=X)) Soled é,
/f/)//ﬁ’lr(/’/’) l- 'r(WTWX XWTW) 27 ( W7WX X) + T, )(7)() Sam e \4/

=Xw' — ’f(\/\/ wlwxl)() ) 'r(W W X X)*/’ /f(XT)()j
= ~ [, (\/\/7\/\/ )(T)() + ((omsfavﬂ)



Canonical Correlation Analysis (CCA)

Suppose we have two matrices, ‘X’ and ‘Y’.

Want to find matrices W, and W, that maximize correlation.
— “What are the latent factors in common between these datasets?”

Define the correlation matrices:
n . N
= | - 7
Z(x “h g"i"i Z‘('r: 7",-;}"'/:' 2)(%"’:4

N
7

]

i<l

Canonical correlation analysis (CCA) maximizes
)T 4 4
T(WY\A/)( 2)(;() i)’i'é ‘))

— Subject to W, and W, having orthogonal rows.

Computationally, equivalent to PCA with a different matrix.
— Using the “analysis” view that PCA maximizes Tr(WTwXTX).



Kernel PCA

« From the “analysis” view (with orthogonal PCs) PCA maximizes:

Tr(W'WXX)

It can be shown that the solution has the form (see here):

W=Ux
lexd ot nk

- Re-parameterizing in terms of ‘U’ gives a kernelized PCA:

TV U00) =T (VX k)

. It’s hard to initially center data in ‘2’ space, [ K
but you can form the centered kernel matrix (see here).


https://www.ics.uci.edu/%7Ewelling/classnotes/papers_class/Kernel-PCA.pdf
https://www.ics.uci.edu/%7Ewelling/classnotes/papers_class/Kernel-PCA.pdf

Probabilistic PCA

With zero-mean (“centered”) data, in PCA we assume that

.
X W Z,
In probabilistic PCA we assume that

X v /\/(WTZ,-) 021—) Z, v /\/(0)1>

Integrating over ‘Z’ the marginal likelihood given ‘W’ is

Gaussian, . | W~ /\/(07 W_,W+021>

Regular PCA is obtained as the limit of o2 going to 0.



Generalizations of Probabilistic PCA

« Probabilistic PCA model:

| W~ VO, WW+ 0T )
« Why do we need a probabilistic interpretation?

 Shows that PCA fits a Gaussian with restricted covariance.
— Hope is that WTW + o4l is a good approximation of XTX.

 Gives precise connection between PCA and factor analysis.



Factor Analysis

- Factor analysis is a method for discovering latent factors.
- Historical applications are measures of intelligence and personality.

Trait Description

Being curious, original, intellectual, creative, and open to

Openness -
P new ideas.

Being organized, systematic, punctual, achievement-

Conscientiousness oriented, and dependable.

Being outgoing, talkative, sociable, and enjoying

Extraversion social situations.

Being affable, tolerant, sensitive, trusting, kind,

Agreeableness aridl war.

Neuroticism Being anxious, irritable, temperamental, and moody.

« A standard tool and widely-used across science and engineering.



PCA vs. Factor Analysis

« PCA and FA both write the matrix ‘X’ as

XxZW

« PCA and FA are both based on a Gaussian assumption.

« Are PCA and FA the same?

— Both are more than 100 years old.

— People are still arguing about whether they are the same:
- Doesn’t help that some packages run PCA when you call their FA method.



GO gle pca vs. factor analysis

Al Images Videos Mews Maps More = Search tools

About 358,000 results (0.17 seconds)

[FBFl Principal Component Analysis versus Exploratory Factor .
www2.sas.com/proceedings/sugi30/203-30 pdf ~

oy DD Suhr - Cited by 118 - Related articles

1. Paper 203-30. Principal Component Analysis vs. Exploratory Factor Analysis.
Diana D. Suhr, Ph.D. University of Morthern Colorado. Abstract. Principal ...

pca - What are the differences between Factor Analysis and ...
stats_stackexchange.com/.._fwhat-are-the-differences-between-factor-anal .. ~
Aug 12, 2010 - Principal Component Analysis (PCA) and Common Factor Analysis
(CFA) ... differently one has to interpret the strength of loadings in PCA vs.

What are the differences between principal components ...
support.minitab.com/.__factor-analysis/differences-between-pca-and-facto...
Principal Components Analysis and Factor Analysis are similar because both
procedures are used to simplify the structure of a set ofvariables. However, the ...

FOFl Principal Components Analysis - UNT

https:/fwww.unt edu/rssiclass/ _/Principal%20Components%20Analysis p... =
PCA vs. Factor Analysis. = It is easy to make the mistake in assuming thatthese are
the same techniques, though in some ways exploratory factor analysis and ...

Factor analysis versus Principal Components Analysis (PCA)
psych.wisc.edu/henrigues/pca.html ~

Jun 19, 2010 - Factor analysis versus PCA. These techniques are typically used to
analyze groups of correlated variables representing one or more commaon ...

ORI Principal Component Analysis and Factor Analysis
www.stats.ox.ac.uk/~ripley/MultAnal_HT2007/PC-FA_ pdf =

where D is diagonal with non-negative and decreasing values and U and 'V ...
Factor analysis and PCA are often confused, and indeed SPSS has PCA as.

How can | decide between using principal components ..
https:/fwww.researchgate_net/.._/How_can_|_decide_between_using_prin... =
Factor analysis (FA) is a group of statistical methods used to understand and
simplify patterns ... Retrieved from hitp:/ipareonline.net/getvn.asp?v=108&n=7 ...
Principal component analysis (PCA) is a method of factor extraction (the second
step ..

[FoFl Exploratory Factor Analysis and Principal Component An...
www lesahoffman.com/948/948 L ecture2 EFA_PCA pdf

2 very different schools of thought on exploratory factor analysis (EFA) vs. principal
components analysis (PCA); > EFA and PCA are TWO ENTIRELY ...

Factor analysis - Wikipedia, the free encyclopedia

https:/fen wikipedia_org/wiki/Factor_analysis =

Jump to Exploratory factor analysis versus principal components ... - [edit]. See
also: Principal component analysis and Exploratory factor analysis.

ORI The Truth about PCA and Factor Analysis
www.stat.cmu.edu/~cshalizif350/lectures/13/lecture-13.pdf ~
Sep 28, 2009 - nents and factor analysis, we'll wrap up by looking at their uses and
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)

PCA vs. Factor Analysl%

In probabilistic PCA we assume: \\_’y =

X,‘ 44 /V( W_’Z,') aZI>

In FA we assume for a diagonal matrix D that:

X, v /V( WTZ{) D)

(il

.
The posterior in this case is: Xi , W~ /V( O; W W +0)

The difference is you have a noise variance for each dimen
— FA has extra degrees of freedom.

o



PCA vs. Factor Analysis

» In practice there often isn’t a huge difference:

Principal component analyzis Factor analyzis
L
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Factor Analysis Discussion

« Differences with PCA:

— Unlike PCA, FA is not affected by scaling individual features.
— But unlike PCA, it's affected by rotation of the data.
— No nice “SVD” approach for FA, you can get different local optima.

« Similar to PCA, FA is invariant to rotation of ‘W’
— S0 as with PCA you can’t interpret multiple factors as being unique.



Motivation for ICA

Factor analysis has found an enormous number of applications.
— People really want to find the “hidden factors” that make up their data.

But PCA and FA can’t identify the factors.

-2 -15 - -0.5 0 0.5 1 1.5

Latent data is sampled from the prior p(x;) cc exp(—5 Vlx;]) with the mixing matrix A
shown in green to create the observed two dimensional vectors y = Ax. The red lines are
the mixing matrix estimated by ica.m based on the observations. For comparison, PCA
produces the blue (dashed) components. Note that the components have been scaled to
improve visualisation. As expected, PCA finds the orthogonal directions of maximal
variation. ICA however, correctly estimates the directions in which the components were
independently generated.
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Motivation for ICA

Factor analysis has found an enormous number of applications.
— People really want to find the “hidden factors” that make up their data.

But PCA and FA can’t identify the factors.
— We can rotate W and obtain the same model.

Independent component analysis (ICA) is a more recent approach.
— Around 30 years old instead of > 100.

— Under certain assumptions it can identify factors.

The canonical application of ICA is blind source separation.



Blind Source Separation

* |[nput to blind source separation:
— Multiple microphones recording multiple sources.

;.' { Source 1 e 2 ﬂ
I ||. il Il. .II ,.. = = ; |
f L WO Tr |l F v v ~o=
' -
Mixture *
A_A 'li..r'lll. |:I'I'.. .lf..l :
Source Separation

Estimate 1 &~ Tl Eﬁtimatc: 2

- Each microphone gets different mixture of the sources.
— Goal is reconstruct sources (factors) from the measurements.



Independent Component Analysis Applications

ICA is replacing PCA and FA in many applications:

Some ICA applications are listed below: !

« optical Imaging of neuronst!?!

« neuronal spike sorting('®!

. face recognition!®]

« modeling receptive fields of primary visual neurons=°!

. predicting stock market prices(®]

» mobile phone communications [22]

« color based detection of the ripeness of tomatoes!®3]

« removing artifacts, such as eye blinks, from EEG data.[#*]

Recent work shows that ICA can often resolve direction of causality.

Sl



Limitations of Matrix Factorization

« |CA is a matrix factorization method like PCA/FA,

K=2ZW

e Let's assume that X = ZW for a “true” W with k = d.
— Different from PCA where we assume k =< d.

 There are only 3 issues stopping us from finding “true” W.



3 Sources of Matrix Factorization Non-Uniguness

Label switching: get same model if we permute rows of W.
— We can exchange row 1 and 2 of W (and same columns of Z).
— Not a problem because we don’t care about order of factors.

Scaling: get same model if you scale a row.
— If we mutiply row 1 of W by «, could multiply column 1 of Z by 1/c.
— Can’t identify sign/scale, but might hope to identify direction.

Rotation: get same model if we rotate W.
— Rotations correspond to orthogonal matrices Q, such matrices have QTQ = I.

— If we rotate W with Q, then we have (QW)TQW = WTQTQW = WTw.

If we could address rotation, we could identify the “true” directions.



A Unique Gaussian Property

« Consider an independent prior on each latent features z._.
— E.g., in PPCA and FA we use N(0,1) for each z..

« |If prior p(z) is independent and rotation-invariant (p(Qz) = p(z)),
then it must be Gaussian (only Gaussians have this property).

« The (non-intuitive) magic behind ICA:
— If the priors are all non-Gaussian, it isn’t rotationally symmetric.
— In this case, we can identify factors W (up to permutations and scalings).



2 15 1 05 0 05 1 15

Figure : Latent data is sampled from the prior p(x;) cc exp(—5 Vixi) with the mixing matrix A
shown in green to create the observed two dimensional vectors y = Ax. The red lines are
the mixing matrix estimated by ica.m based on the observations. For comparison, PCA
produces the blue (dashed) components. Note that the components have been scaled to
improve visualisation. As expected, PCA finds the orthogonal directions of maximal
variation. ICA however, correctly estimates the directions in which the components were
independently generated.
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Independent Component Analysis

In ICA we approximate X with ZW,
assuming p(z,.) are non-Gaussian.

Usually we “center” and “whiten” the data before applying ICA.

There are several penalties that encourage non-Gaussianity:
— Penalize low kurtosis, since kurtosis is minimized by Gaussians.
— Penalize high entropy, since entropy is maximized by Gaussians.

The fastlCA is a popular method maximizing kurtosis.



ICA on Retall Purchase Data

« Cash flow from 5 stores over 3 years
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ICA on Retall Purchase Data

Factors found using ICA:
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