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Admin
• Assignment 5 is due 11:55pm today
• Assignment 6 will be released today

• Final exam is Wednesday, June 23
– 24-hour take-home exam (NOT timed!)
– Prep materials will go up Wednesday, June 16
– Monday’s lectures will be cut-off for testable materials
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Assignment 7
• Assignment 7 will be released next Friday-ish

– Optional, but “due” Wednesday, June 30
– Outside final exam coverage
– Covers things previously not covered in assignments

• E.g. automatic differentiation and backpropagation

• Graded on completeness not correctness
– If you submit A7, I will

replace your lowest assignment grade with A7 grade

• Office hours will be upon request for A7 3



In This Lecture
1. Non-Negative Matrix Factorization

– Projected gradient method
2. Other Matrix Factorization Methods
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Last Time: PCA with Orthogonal/Sequential Basis
• When k = 1, PCA has a scaling problem.
• When k > 1, have scaling, rotation, and label switching.

– Standard fix: use normalized orthogonal rows Wc of ‘W’.

– And fit the rows in order: 
• First row “explains the most variance” or “reduces error the most”.
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Last Time: SVD and Other Methods
• SVD: linear-algebraic solution to get X = ZW

– Enforces normalization and orthogonality
• Alternating minimization: use gradients!

– Optimize f(W,Z) with respect to W
– Then optimize f(W,Z) with respect to Z
– Repeat until happy

6
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MORE EIGENFACES
Coming Up Next
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VQ vs. PCA vs. NMF
• How should we represent faces?

– Vector quantization (k-means).
• Replace face by a _____________.
• Can’t distinguish between people in the same cluster 

(only ‘k’ possible faces). 
• Almost certainly not true: too few canonical faces.
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VQ vs. PCA vs. NMF
• How should we represent faces?

– Vector quantization (k-means). 
– PCA (orthogonal basis).

• Global average plus ________________ of “eigenfaces”.
• But “eigenfaces” are not intuitive ingredients for faces.

– PCA tends to use positive/negative cancelling bases.
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VQ vs. PCA vs. NMF
• How should we represent faces?

– Vector quantization (k-means). 
– PCA (orthogonal basis).
– NMF (non-negative matrix factorization):

• Instead of orthogonality/ordering in W, 
require W and Z to be non-negative.

• Example of “sparse coding”:
– The zi are sparse so each face is coded by a small number of eigenfaces.
– The wc are sparse so eigenfaces tend to be “parts” of the face.
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Why sparse coding?
– “Parts” are intuitive, and brains seem to use sparse representation.
– Energy efficiency if using sparse code.
– Increase number of concepts you can memorize

• Some evidence in fruit fly olfactory system.

http://www.columbia.edu/~jwp2128/Teaching/W4721/papers/nmf_nature.pdf 11



NON-NEGATIVE MATRIX 
FACTORIZATION
Coming Up Next
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Warm-up to NMF: Non-Negative Least Squares
• Consider our usual least squares problem:

• But assume yi and elements of xi are non-negative:
– Could be sizes (‘height’, ‘milk’, ‘km’) or counts (‘vicodin’, ‘likes’, ‘retweets’).
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Q: Does it make sense 
to have any wj < 0?



Warm-up to NMF: Non-Negative Least Squares

• Allow wj ∈ (−∞, +∞) → some weights are negative 
to cancel out ____________ weights

• Idea: constrain wj ∈ [0, +∞) → sparsity and regularization
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Sparsity and Non-Negative Least Squares
• Consider 1D non-negative least squares objective:

• Plotting the (constrained) objective function:

• In this case, non-negative solution is least squares solution.
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Sparsity and Non-Negative Least Squares
• Consider 1D non-negative least squares objective:

• Plotting the (constrained) objective function:

• In this case, non-negative solution is w = 0.
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Sparsity and Non-Negativity
• Similar to L1-regularization, non-negativity leads to sparsity.

– Also regularizes: wj are smaller since can’t “cancel” negative values.
– Sparsity leads to cheaper predictions and often to more interpretability.

• Non-negative weights are often also more interpretable.
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Sparsity and Non-Negativity
• How can we minimize f(w) with non-negative constraints?

– Naive approach: solve least squares problem, set negative wj to 0.

– This is correct when d = 1.
– Can be worse than setting w = 0 when d ≥ 2.  
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PROJECTED GRADIENT
Coming Up Next
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Projected Gradient
• Use projected gradient algorithm:

• Run a gradient descent iteration:

• After each step, set negative values to 0.

• Repeat.

20

Parameter space
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Projected Gradient
• Projected gradient algorithm:

– Similar properties to gradient descent:
• Guarantees decrease if step size 𝛼𝛼𝑡𝑡 is small enough.
• Reaches local minimum under weak assumptions 

(global minimum for convex ‘f’).
– Least squares objective is still convex 

when restricted to non-negative variables.
• Solution is a “fixed point”: w* = max{0, w* - 𝛼𝛼t 𝛻𝛻f(w*)}.

– Use this to decide when to stop.

– A generalization is “proximal gradient”:
• Instead of constraints, allows non-smooth terms 

(OptimizerGradientDescentProximalL1). 21



Projected Gradient for NMF
• Back to the non-negative matrix factorization (NMF) objective:

– Different ways to use projected gradient:
• Alternate between projected gradient steps on ‘W’ and on ‘Z’.
• Or run projected gradient on both at once.
• Or sample a random ‘i’ and ‘j’ and do stochastic projected gradient.
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Projected Gradient for NMF

– Non-convex
– Sensitive to initialization (unlike PCA)
– Hard to find the global optimum.

• Typically use random initialization.
• Also, we usually don’t center the data with NMF.
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Application: Sports Analytics
• NBA shot charts:

• NMF (using “KL divergence” loss with k=10 and smoothed data).
– Negative

values would
not make 
sense here.

http://jmlr.org/proceedings/papers/v32/miller14.pdf
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Application: Cancer “Signatures”
• What are common sets of mutations in different cancers?

– May lead to new treatment options.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3588146/
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OTHER MATRIX FACTORIZATIONS
Coming Up Next
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Beyond Squared Error
• Our objective for latent-factor models (LFM):

• As before, there are alternatives to squared error.

• If X consists of +1 and -1 values, we could use logistic loss:
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Robust PCA (A6)
• Robust PCA methods use the absolute error:

• Will be robust to outliers in the matrix ‘X’.
• Encourages “residuals” rij to be ___________.

– Non-zero rij are where the “outliers” are.

http://statweb.stanford.edu/~candes/papers/RobustPCA.pdf
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Regularized Matrix Factorization
• Consider L2-regularized PCA:

• Replaces normalization/orthogonality/sequential-fitting.
– Often gives lower reconstruction error on test data.
– But requires hyper-parameters 𝜆𝜆1 and 𝜆𝜆2.

• Need to regularize both W and Z because of scaling problem.
– If you only regularize ‘W’ it doesn’t do anything. (WHY?)

– Similarly, if you only regularize ‘Z’ it doesn’t do anything.
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Sparse Matrix Factorization
• Instead of non-negativity, we could use L1-regularization:

– Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).
• Disadvantage of using L1-regularization over non-negativity:

– Sparsity controlled by 𝜆𝜆1 and 𝜆𝜆2 so you need to set these.
• Advantage of using L1-regularization:

– Sparsity controlled by 𝜆𝜆1 and 𝜆𝜆2, so you can control amount of sparsity.
– Negative coefficients often do make sense. (WHY?)
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Matrix Factorization with L1-Regularization

http://www.jmlr.org/papers/volume11/mairal10a/mairal10a.pdf
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Sparse Matrix Factorization
• Instead of non-negativity, we could use L1-regularization:

– Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).
• Many variations exist:

– Mixing L2-regularization and L1-regularization.
• Or normalizing ‘W’ (in L2-norm or L1-norm) and regularizing ‘Z’.

– K-SVD constrains each zi to have at most ‘k’ non-zeroes:
• K-means is special case where k = 1.
• PCA is special case where k = d.
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Recent Work: Structured Sparsity
• “Structured sparsity” considers dependencies in sparsity patterns.

– Can enforce that “parts” are convex regions.

http://jmlr.org/proceedings/papers/v9/jenatton10a/jenatton10a.pdf
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Summary
• Non-negative matrix factorization: LFM with no negative values.

– Non-negativity constraints lead to sparse solution.
– Projected gradient adds constraints to gradient descent.

• Many of our regression tricks can be used with LFMs:
– Robust PCA uses absolute error to be robust to outliers.
– L1-regularization leads to sparse factors/weights.

• Next time: the million-dollar Netflix challenge.
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Review Questions
• Q1: How is k-means clustering an instance of latent factor methods?

• Q2: How do we encourage sparsity and regularization for Z and W without penalty 
terms?

• Q3: How are PCA with L1-loss and PCA with L1-regularization different?

• Q4: Why is it necessary to regularize for both Z and W for matrix factorization?

• Q5: Why would L1-regularization make negative coefficients more interpretable?
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Robust PCA

http://jbhuang0604.blogspot.ca/2013/04/miss-korea-2013-contestants-face.html

• Miss Korea contestants and robust PCA:
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Proof: “Synthesis” View = “Analysis” View (WWT = I)

• The variance of the zij (maximized in “analysis” view):

• The distance to the hyper-plane (minimized in “synthesis” view):
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Canonical Correlation Analysis (CCA)
• Suppose we have two matrices, ‘X’ and ‘Y’.
• Want to find matrices WX and WY that maximize correlation.

– “What are the latent factors in common between these datasets?”
• Define the correlation matrices:

• Canonical correlation analysis (CCA) maximizes

– Subject to WX and WY having orthogonal rows.
• Computationally, equivalent to PCA with a different matrix.

– Using the “analysis” view that PCA maximizes Tr(WTWXTX).
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Kernel PCA
• From the “analysis” view (with orthogonal PCs) PCA maximizes: 

• It can be shown that the solution has the form (see here):

• Re-parameterizing in terms of ‘U’ gives a kernelized PCA:

• It’s hard to initially center data in ‘Z’ space, 
but you can form the centered kernel matrix (see here).
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Probabilistic PCA
• With zero-mean (“centered”) data, in PCA we assume that

• In probabilistic PCA we assume that

• Integrating over ‘Z’ the marginal likelihood given ‘W’ is 
Gaussian,

• Regular PCA is obtained as the limit of σ2 going to 0.
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Generalizations of Probabilistic PCA
• Probabilistic PCA model:

• Why do we need a probabilistic interpretation?

• Shows that PCA fits a Gaussian with restricted covariance.
– Hope is that WTW + σ2I is a good approximation of XTX.

• Gives precise connection between PCA and factor analysis.
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Factor Analysis
• Factor analysis is a method for discovering latent factors.
• Historical applications are measures of intelligence and personality.

• A standard tool and widely-used across science and engineering.
https://new.edu/resources/big-5-personality-traits
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PCA vs. Factor Analysis
• PCA and FA both write the matrix ‘X’ as

• PCA and FA are both based on a Gaussian assumption.

• Are PCA and FA the same?
– Both are more than 100 years old.
– People are still arguing about whether they are the same:

• Doesn’t help that some packages run PCA when you call their FA method.
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PCA vs. Factor Analysis
• In probabilistic PCA we assume:

• In FA we assume for a diagonal matrix D that:

• The posterior in this case is:

• The difference is you have a noise variance for each dimension.
– FA has extra degrees of freedom.
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PCA vs. Factor Analysis
• In practice there often isn’t a huge difference:

http://stats.stackexchange.com/questions/1576/what-are-the-differences-between-factor-analysis-and-principal-component-analysi
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Factor Analysis Discussion
• Differences with PCA:

– Unlike PCA, FA is not affected by scaling individual features.
– But unlike PCA, it’s affected by rotation of the data.
– No nice “SVD” approach for FA, you can get different local optima.

• Similar to PCA,  FA is invariant to rotation of ‘W’.
– So as with PCA you can’t interpret multiple factors as being unique.
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Motivation for ICA
• Factor analysis has found an enormous number of applications.

– People really want to find the “hidden factors” that make up their data.

• But PCA and FA can’t identify the factors.
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Motivation for ICA
• Factor analysis has found an enormous number of applications.

– People really want to find the “hidden factors” that make up their data.

• But PCA and FA can’t identify the factors.
– We can rotate W and obtain the same model.

• Independent component analysis (ICA) is a more recent approach.
– Around 30 years old instead of > 100.
– Under certain assumptions it can identify factors.

• The canonical application of ICA is blind source separation.
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Blind Source Separation
• Input to blind source separation:

– Multiple microphones recording multiple sources.

• Each microphone gets different mixture of the sources.
– Goal is reconstruct sources (factors) from the measurements.

http://music.eecs.northwestern.edu/research.php
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Independent Component Analysis Applications
• ICA is replacing PCA and FA in many applications:

• Recent work shows that ICA can often resolve direction of causality.

https://en.wikipedia.org/wiki/Independent_component_analysis#Applications
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Limitations of Matrix Factorization
• ICA is a matrix factorization method like PCA/FA,

• Let’s assume that X = ZW for a “true” W with k = d.
– Different from PCA where we assume k ≤ d.

• There are only 3 issues stopping us from finding “true” W.
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3 Sources of Matrix Factorization Non-Uniquness
• Label switching: get same model if we permute rows of W.

– We can exchange row 1 and 2 of W (and same columns of Z).
– Not a problem because we don’t care about order of factors.

• Scaling: get same model if you scale a row.
– If we mutiply row 1 of W by α, could multiply column 1 of Z by 1/α.
– Can’t identify sign/scale, but might hope to identify direction.

• Rotation: get same model if we rotate W.
– Rotations correspond to orthogonal matrices Q, such matrices have QTQ = I.
– If we rotate W with Q, then we have (QW)TQW = WTQTQW = WTW.

• If we could address rotation, we could identify the “true” directions.
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A Unique Gaussian Property
• Consider an independent prior on each latent features zc.

– E.g., in PPCA and FA we use N(0,1) for each zc.

• If prior p(z) is independent and rotation-invariant (p(Qz) = p(z)),
then it must be Gaussian (only Gaussians have this property).

• The (non-intuitive) magic behind ICA:
– If the priors are all non-Gaussian, it isn’t rotationally symmetric.
– In this case, we can identify factors W (up to permutations and scalings).
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PCA vs. ICA

http://www.inf.ed.ac.uk/teaching/courses/pmr/lectures/ica.pdf
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Independent Component Analysis
• In ICA we approximate X with ZW, 

assuming p(zic) are non-Gaussian.

• Usually we “center” and “whiten” the data before applying ICA.

• There are several penalties that encourage non-Gaussianity:
– Penalize low kurtosis, since kurtosis is minimized by Gaussians.
– Penalize high entropy, since entropy is maximized by Gaussians.

• The fastICA is a popular method maximizing kurtosis.
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ICA on Retail Purchase Data
• Cash flow from 5 stores over 3 years:

http://www.stat.ucla.edu/~yuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf
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ICA on Retail Purchase Data
• Factors found using ICA:

http://www.stat.ucla.edu/~yuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf
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