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In This Lecture
1. Latent Factor Models for Images
2. Latent Factor Models for Netflix

– Collaborative filtering
3. Latent Factor Models for Visualization
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Last Few Lectures: Latent-Factor Models
• We’ve been discussing latent-factor models of the form:

• We get different models under different conditions:
– K-means: each zi has one ‘1’ and the rest are zero.
– Least squares: we only have one variable (d=1) and the zi are fixed.
– PCA: no restrictions on W or Z.

• Orthogonal PCA: the rows wc have a norm of 1 and have an inner product of zero.
– NMF: all elements of W and Z are non-negative.
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Variations on Latent-Factor Models
• We can use all our tricks for linear regression in this context:

• Absolute loss gives robust PCA that is less sensitive to outliers.
• We can use L2-regularization.

– Though only reduces overfitting if we regularize both ‘W’ and ‘Z’.
• We can use L1-regularization to give sparse latent factors/features.
• Can use change of basis to learn non-linear latent-factor models.
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Application: Image Restoration

http://www.jmlr.org/papers/volume11/mairal10a/mairal10a.pdf
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Latent-Factor Models for Image Patches
• Consider building latent-factors for general image patches:
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Latent-Factor Models for Image Patches
• Consider building latent-factors for general image patches:

Typical pre-processing:
1. Usual variable centering 

2. “Whiten” patches.
(remove correlations - bonus)
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Latent-Factor Models for Image Patches

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
http://stackoverflow.com/questions/16059462/comparing-textures-with-opencv-and-gabor-filters

Orthogonal bases don’t seem right:
• Few PCs do almost everything.
• Most PCs do almost nothing.

Scientists say “simple cells” in visual cortex use:

‘Gabor’ filters
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Latent-Factor Models for Image Patches
• Results from a “sparse” (non-orthogonal) latent factor model:

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
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Latent-Factor Models for Image Patches
• Results from a “sparse” (non-orthogonal) latent factor model:

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
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Recent Work: Structured Sparsity
• Basis learned with a variant of “structured sparsity”:

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
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Beyond NMF: Topic Models
• For modeling data as combinations of non-negative parts,

NMF has been largely replaced by “topic models”.
– A “fully-Bayesian” model where sparsity arises naturally.
– Most popular example is called “latent Dirichlet allocation” (CPSC 440).

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf
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LATENT FACTOR MODELS AND 
THE NETFLIX PRIZE
Coming Up Next
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When you win the Netflix Prize with 
simple latent factor models and not 
overcomplicated neural networks



Recall: Netflix Show Recommendation
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x1 x2 x3 x4 x5

5 4 2 2 5
2 0 1 0 4
3 1 0 1 3
4 3 1 0 2
1 1 1 5 0

𝑥𝑥𝑖𝑖𝑖𝑖 ≔ user i’s rating of show j
0 if never watched

Q: I’ve never watched 
Space Force... would I like it?



Recommender System Motivation: Netflix Prize
• Netflix Prize:

– 100M ratings from 0.5M users on 18k movies.
– Grand prize was $1M for first team to reduce squared error by 10%.
– Started on October 2nd, 2006.
– Netflix’s system was first beat October 8th.
– 1% error reduction achieved on October 15th.
– Steady improvement after that.

• ML methods soon dominated.
– One obstacle was ‘Napolean Dynamite’ problem:

• Some movie ratings seem very difficult to predict.
• Should only be recommended to certain groups.
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“The Room”: 3.7/10 on IMDb



Lessons Learned from Netflix Prize
• Prize awarded in 2009:

– Ensemble method that averaged 107 models.
– Increasing diversity of models more important than improving models.

• Winning entry (and most entries) used collaborative filtering:
– Methods that only looks at ratings, not features of movies/users.

• A simple collaborative filtering method that does really well (7% error):
– “Regularized matrix factorization”. Now adopted by many companies.

http://bits.blogs.nytimes.com/2009/09/21/netflix-awards-1-million-prize-and-starts-a-new-contest/?_r=0
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Two Approaches to Recommender Systems
1. Content-based filtering (supervised).
2. Collaborative filtering (unsupervised).
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What is Content-Based Filtering?
• Supervised learning:

– Extract features xi of users and items, building model to 
predict rating yi given xi.

– Apply model to prediction for new users/items.
• Example: Gmail’s “important messages” 

(personalization with “local” features).

18



What is Collaborative Filtering?
• “Unsupervised” learning

(have label matrix ‘Y’ but no features):
• We only have labels yij (rating of user ‘i’ for movie ‘j’).

– Example: Amazon recommendation algorithm.
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COLLABORATIVE FILTERING
Coming Up Next
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Collaborative Filtering Problem
• Collaborative filtering is ‘filling in’ the user-item matrix:

• We have some ratings available with values {1,2,3,4,5}.
• We want to predict ratings “?” by looking at available ratings.
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Collaborative Filtering Problem
• Collaborative filtering is ‘filling in’ the user-item matrix:

• What rating would I give to “Space Force”?
– Why is this not completely crazy? We may have similar users and movies.
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Q: Can we use latent factors to solve this?



Matrix Factorization for Collaborative Filtering
• Our standard latent-factor model for entries in matrix ‘Y’:

• User ‘i’ has latent features zi.
• Movie ‘j’ has latent features wj. 23



Matrix Factorization for Collaborative Filtering
• Our standard latent-factor model for entries in matrix ‘Y’:

• User ‘i’ has latent features zi.
• Movie ‘j’ has latent features wj.

• Idea:
1. Learn Y ≈ ZW based on ________________
2. Reconstruct: �𝑌𝑌 = ZW
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Latent Factor Loss Function for CF
• Our loss functions sums over available ratings ‘R’:

• And we add L2-regularization to both types of features.
– Regularized PCA on the available entries of Y.
– Typically fit with SGD. (WHY?)

• This simple method gives you a 7% improvement on the Netflix problem.
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Adding Global/User/Movie Biases
• Our standard latent-factor model for entries in matrix ‘Y’:

• Sometimes we don’t assume the yij have a mean of zero:
– We could add bias β reflecting average overall rating:

– We could also add a user-specific bias βi and item-specific bias βj.

• Some users rate things higher on average, and movies are rated better on average.
• These might also be regularized.
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Beyond Accuracy in Recommender Systems
• Winning system of Netflix Challenge was never adopted.
• Other issues important in recommender systems:

– Diversity: how different are the recommendations?
• If you like ‘Battle of Five Armies Extended Edition’, recommend Battle of Five Armies?
• Even if you really really like Star Wars, you might want non-Star-Wars suggestions.

– Persistence: how long should recommendations last?
• If you keep not clicking on ‘Hunger Games’, should it remain a recommendation?

– Trust: tell user why you made a recommendation.
• Quora gives explanations for recommendations.

– Social recommendation: what did your friends watch?
– Freshness: people tend to get more excited about new/surprising things.

• Collaborative filtering does not predict well for new users/movies.
– New movies don’t yet have ratings, and new users haven’t rated anything.
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Content-Based vs. Collaborative Filtering
• Collaborative filtering: latent factors approach (Part 4):
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Q: Can collaborative filtering 
predict preference of a new user/movie?



Content-Based vs. Collaborative Filtering
• Content-based filtering: supervised learning approach (Part 3):

– Can predict on new users/movies, but can’t learn about each user/movie.
• Does the user like Steve Carell?
• Does the movie have Steve Carell?
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Hybrid Approaches
• Hybrid approaches combine content-based/collaborative filtering:

– SVDfeature (won “KDD Cup” in 2011 and 2012).

– Note that xij is a feature vector. Also, ‘w’ and ‘wj’ are different parameters.
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Stochastic Gradient for SVDfeature
• Common approach to fitting SVDfeature is stochastic gradient.
• Previously you saw stochastic gradient for supervised learning:

• Stochastic gradient for SVDfeature (formulas as bonus):
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Social Regularization
• Many recommenders are now connected to social networks.

– “Login using your Facebook account”.

• Often, people like similar movies to their friends.

• Recent recommender systems use social regularization.
– Add a “regularizer” encouraging friends’ weights to be similar:

– If we get a new user, recommendations are based on friend’s 
preferences.
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LATENT FACTOR MODELS FOR
VISUALIZATION
Coming Up Next
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Latent-Factor Models for Visualization
• PCA takes features xi and gives k-dimensional approximation zi.
• If k is small, we can use this to visualize high-dimensional data.

http://www.turingfinance.com/artificial-intelligence-and-statistics-principal-component-analysis-and-self-organizing-maps/
http://scienceblogs.com/gnxp/2008/08/14/the-genetic-map-of-europe/
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Motivation for Non-Linear Latent-Factor Models
• But PCA is a parametric linear model
• PCA may not find obvious low-dimensional structure.

• We could use change of basis or kernels: but still need to pick basis.

https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction
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Multi-Dimensional Scaling
• PCA for visualization:

– We’re using PCA to get the location of the zi values.
– We then plot the zi values as locations in a scatterplot.

• Multi-dimensional scaling (MDS):
– Use gradient-based optimization to get zi values.

• “Gradient descent on the points in a scatterplot”.
– Needs a “cost” function saying how “good” the zi locations are.

• Traditional MDS cost function:
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Multi-Dimensional Scaling
• Multi-dimensional scaling (MDS):

– Optimize the locations of zi values.
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Q: Wait... where is W???



MDS Method (“Sammon Mapping”) in Action

• Unfortunately, MDS often does not work well in practice.
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Summary
• Recommender systems try to recommend products.
• Collaborative filtering tries to fill in missing values in a matrix.

– Matrix factorization is a common approach.
• Multi-dimensional scaling is a non-parametric latent-factor model.

• Next time: making a scatterplot by gradient descent.
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Review Questions
• Q1: What is the difference between content-based filtering and 

collaborative filtering?

• Q2: How does a latent factor model predict the rating of a 
movie for a particular user?

• Q3: What is the downside of PCA when it comes to visualizing 
datapoints?
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Digression: “Whitening”
• With image data, features will be very redundant.

– Neighbouring pixels tend to have similar values.
• A standard transformation in these settings is “whitening”:

– Rotate the data so features are uncorrelated.
– Re-scale the rotated features so they have a variance of 1.

• Using SVD approach to PCA, we can do this with:
– Get ‘W’ from SVD (usually with k=d).
– Z = XWT (rotate to give uncorrelated features).
– Divide columns of ‘Z’ by corresponding singular values (unit variance).

• Details/discussion here.
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http://ufldl.stanford.edu/tutorial/unsupervised/PCAWhitening/


Motivation for Topic Models
• Want a model of the “factors” making up documents.

– Instead of latent-factor models, they’re called topic models.
– The canonical topic model is latent Dirichlet allocation (LDA).

– “Topics” could be useful for things like searching for relevant 
documents.

http://blog.echen.me/2011/08/22/introduction-to-latent-dirichlet-allocation/
42



Term Frequency – Inverse Document Frequency
• In information retrieval, classic word importance measure is TF-IDF.

• First part is the term frequency tf(t,d) of term ‘t’ for document ‘d’.
– Number of times “word” ‘t’ occurs in document ‘d’, divided by total words.
– E.g., 7% of words in document ‘d’ are “the” and 2% of the words are “Lebron”.

• Second part is document frequency df(t,D).
– Compute number of documents that have ‘t’ at least once.
– E.g., 100% of documents contain “the” and 0.01% have “LeBron”.

• TF-IDF is tf(t,d)*log(1/df(t,D)).
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Term Frequency – Inverse Document Frequency
• The TF-IDF statistic is tf(t,d)*log(1/df(t,D)).

– It’s high if word ‘t’ happens often in document ‘d’, but isn’t common.
– E.g., seeing “LeBron” a lot it tells you something about “topic” of article.
– E.g., seeing “the” a lot tells you nothing.

• There are *many* variations on this statistic.
– E.g., avoiding dividing by zero and all types of “frequencies”.

• Summarizing ‘n’ documents into a matrix X:
– Each row corresponds to a document.
– Each column gives the TF-IDF value of a particular word in the document.
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Latent Semantic Indexing
• TF-IDF features are very redundant.

– Consider TF-IDFs of “LeBron”, “Durant”, “Harden”, and “Kobe”. 
– High values of these typically just indicate topic of “basketball”.

• We can probably compress this information quite a bit.

• Latent Semantic Indexing/Analysis:
– Run latent-factor model (like PCA or NMF) on TF-IDF matrix X.
– Treat the principal components as the “topics”.
– Latent Dirichlet allocation is a variant that avoids weird df(t,D) heuristic.
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SVDfeature with SGD: the gory details

46



Tensor Factorization
• Tensors are higher-order generalizations of matrices:

• Generalization of matrix factorization is tensor factorization:

• Useful if there are other relevant variables:
• Instead of ratings based on {user,movie}, ratings based {user,movie,group}.
• Useful if you have groups of users, or if ratings change over time. 47



Field-Aware Matrix Factorization
• Field-aware factorization machines (FFMs):

– Matrix factorization with multiple zi or wc for each example or part.
– You choose which zi or wc to use based on the value of feature.

• Example from “click through rate” prediction:
– E.g., predict whether “male” clicks on “nike” advertising on “espn” page.
– A previous matrix factorization method for the 3 factors used:

– FFMs could use:
• wespnA is the factor we use when multiplying by a an advertiser’s latent factor.
• wespnG is the factor we use when multiplying by a group’s latent factor.

• This approach has won some Kaggle competitions (link),
and has shown to work well in production systems too (link).
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https://www.csie.ntu.edu.tw/%7Ecjlin/papers/ffm.pdf
https://arxiv.org/pdf/1701.04099.pdf


Warm-Starting
• We’ve used data {X,y} to fit a model.
• We now have new training data and want to fit new and old data.

• Do we need to re-fit from scratch?

• This is the warm starting problem.
– It’s easier to warm start some models than others.
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Easy Case: K-Nearest Neighbours and Counting
• K-nearest neighbours:

– KNN just stores the training data, so just store the new data.

• Counting-based models:
– Models that base predictions on frequencies of events.
– E.g., naïve Bayes.

– Just update the counts:

– Decision trees with fixed rules: just update counts at the leaves.
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Medium Case: L2-Regularized Least Squares
• L2-regularized least squares is obtained from linear algebra:

– Cost is O(nd2 + d3) for ‘n’ training examples and ‘d’ features.
• Given one new point, we need to compute:

– XTy with one row added, which costs O(d).
– Old XTX plus xixiT, which costs O(d2). 
– Solution of linear system, which costs O(d3).
– So cost of adding ‘t’ new data point is O(td3).

• With “matrix factorization updates”, can reduce this to O(td2).
– Cheaper than computing from scratch, particularly for large d.
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Medium Case: Logistic Regression
• We fit logistic regression by gradient descent on a convex function.

• With new data, convex function f(w) changes to new function g(w).

• If we don’t have much more data, ‘f’ and ‘g’ will be “close”.
– Start gradient descent on ‘g’ with minimizer of ‘f’.
– You can show that it requires fewer iterations.
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Hard Cases: Non-Convex/Greedy Models
• For decision trees:

– “Warm start”: continue splitting nodes that haven’t already been split.
– “Cold start”: re-fit everything.

• Unlike previous cases, this won’t in general give same result as re-fitting:
– New data points might lead to different splits higher up in the tree.

• Intermediate: usually do warm start but occasionally do a cold start.

• Similar heuristics/conclusions for other non-convex/greedy models:
– K-means clustering.
– Matrix factorization (though you can continue PCA algorithms).
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