CPSC 340:
Machine Learning and Data Mining

Multi-Dimensional Scaling
summer 2021



Admin

Assignment 6 out, due Friday 11:55pm
Today is final exam coverage cut-off

Final exam is next Wednesday (June 23)
— Prep materials go up soon

Course evaluation is open.
— Please give me an honest feedback! How did | do?



Last Time: Multi-Dimensional Scaling
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Multi-Dimensional Scaling

e Multi-dimensional scaling (MDS):

— Optimize the final locations of the z, values.

£(2)=25 (g2~ lly, - xl1)*
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Multi-Dimensional Scaling

« Multi-dimensional scaling (MDS):
— Optimize the final locations of the z; values.

{(z)= Zi (N2 - ~2ll = lly; = x)N)

i=' =il
— Non-parametric dimensionality reduction and visualization:
« No ‘W’ just trying to make z, preserve high-dimensional distances between x..
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Multi-Dimensional Scaling

« Multi-dimensional scaling (MDS):
— Optimize the final locations of the z; values.

£C(2)= 25 a2 ~ lly, = 1)

i=' =il
— Non-parametric dimensionality reduction and visualization:
« No ‘W’ just trying to make z, preserve high-dimensional distances between x..
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Multi-Dimensional Scaling

« Multi-dimensional scaling (MDS):
— Optimize the final locations of the z; values.

{(z)= Zi (N2 - ~2ll = lly; = x)N)

i=' =il
— Non-parametric dimensionality reduction and visualization:
« No ‘W’ just trying to make z, preserve high-dimensional distances between x..
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Multi-Dimensional Scaling

« Multi-dimensional scaling (MDS):
— Optimize the final locations of the z; values.

{(z)= Zi (N2 - ~2ll = lly; = x)N)

i=' =il
— Non-parametric dimensionality reduction and visualization:
« No ‘W’ just trying to make z, preserve high-dimensional distances between x..
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Multi-Dimensional Scaling

« Multi-dimensional scaling (MDS):
— Optimize the final locations of the z; values.

£(2)=25 (g2~ lly, - xl1)*

= ‘J-+

« Cannot use SVD to compute solution:
— Instead, do gradient descent on the z; values.
— You “learn” a scatterplot that tries to visualize high-dimensional data.

— Not convex and sensitive to initialization.
« And solution is not unique due to various factors like translation and rotation.



In This Lecture

1. Multi-Dimensional Scaling
— Euclidean MDS
— Sammon Mapping
— Geodesic MDS (ISOMAP)

2. Latent Factors for Language (bonw)



EUCLIDEAN MDS VARIANTS



Different MDS Cost Functions

 MDS default objective: squared difference of Euclidean norms:

A

'F(Z)-’J:Zr: §+’ ( ,/’j:;i)“ - ”\/)q\r:i()'l],)l

Aa. ‘)‘\

Q: How many distance functions
are involved here?

Q: Can we generalize this to other
measures of distance?
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Different MDS Cost Functions

- MDS default objective function with general distances/similarities:

£(2)= if_ d3(dala,25) = di(xyx)))

IJ*I |
— Functions are not necessarily the same:
* d; := high-dimensional distance we want to match.

0\1‘\?3’(\&4 — K

« d, := low-dimensional distance we can control.

RxR — KR

* d; := how we compare high-/low-dimensional distances.
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Different MDS Cost Functions

MDS default objective function with general distances/similarities:

f(2)~= fﬂé\ d3(dala,25) = di(xyx)))

'I:I jzl* |

“Classic” MDS:

- di(Xx;, X)) = x;TX;, dy(z,z) = 2,7z, d3(a, b) = (a - b)?
— This is a factorless version of _%)QA___.

— Not a great choice because it’s -\'(WMOM\
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Different MDS Cost Functions

- MDS default objective function with general distances/similarities:

A cl-): [2-nom.
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» Another possibility: d;(x;,x;) = [|X; = X[, and dy(z;,z)) = ||z, - z|]|.
— z; approximates high-dimensional L;-norm distances.
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Sammon’s Mapping

— Leads to “crowding” effect like w1th PCA.

- Early attempt to address this is Sammon’s mapping:
— Weighted MDS so large/small distances are more comparable.

£(2)= fg(m%QJuy)

X')Xj

— Denominator reduces focus on large distances.
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PC 2(8.8% var.)

Sammon’s Mapping

- Challenge for most MDS models: they focus on large distances.
— Leads to “crowding” effect like with PCA.

- Early attempt to address this is Sammon’s mapping:
— Weighted MDS so large/small distances are more comparable.
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MANIFOLDS



“Manifold”

« “Manifold” := non-Euclidean subspace of
feature space where datapoints lLive

>

Feature space

« Assumption: most data live on a manifold,
not a true Euclidean feature space!
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Learning Manifolds

e Consider data that Lives on a low-dimensional “manifold”.
e €.g. ‘Swiss roll”:
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Learning Manifolds

« Consider data that lives on a low-dimensional “manifold”.
— With usual distances, PCA/MDS will not discover non-Linear manifolds.
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Learning Manifolds

« Consider data that lives on a low-dimensional “manifold”.
— With usual distances, PCA/MDS will not discover non-Linear manifolds.

 We need geodesic distance: the

22



Manifolds in Image Space

- Consider slowly-varying transformation of image:
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- Images are on a manifold in the high-dimensional space.
— Euclidean distance doesn’t reflect manifold structure.

— Geodesic distance is distance through space of rotations/resizings.
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Coming Up Next

ISOMAP



ISOMAP

e ISOMAP is MDS on manifolds:
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ISOMAP

 ISOMAP can “unwrap” the roll:

¢
vé\é’g\ms

— -

- Sensitive to having 'V\\e, ik w

— Points off of manifold and gaps in manifold cause problems.
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Constructing Neighbour Graphs

Sometimes you can define the graph/distance without features:
— Facebook friend graph.
— Connect YouTube videos if one video tends to follow another.

But we can also convert from features x; to a “neighbour” graph (A6):

— Approach 1 (“epsilon graph”): connect x; to all x; within some threshold e.
« Like we did with density-based clustering.

— Approach 2a (“KNN graph”): connect x; to x; if:
* X;is a KNN of x; OR x; is a KNN of x;.

— Approach 2b (“mutual KNN graph”): connect x; to x; if:
* X;is a KNN of x; AND x; is a KNN of x;.
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Converting from Features to Graph
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ISOMAP

- ISOMAP is latent-factor model for visualizing data on manifolds:

1. Find the neighbours of each point.
- Usually “k-nearest neighbours graph”, or “epsilon graph”.

2. Compute edge weights:
« Usually distance between neighbours.

3. Compute weighted shortest path between all points

« Dijkstra or other shortest path algorithm.

4. Run MDS using these distances. s




ISOMAP on Hand Images

-

Fingers extension

Wrist rotation

- Related method is “local linear embedding”.
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Sammon’s Map vs. ISOMAP vs. PCA

31



Sammon’s Map vs. ISOMAP vs. t-SNE
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Sammon’s Map vs. ISOMAP vs. t-SNE
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Sammon’s Map vs. ISOMAP vs. t-SNE

+

ne?

) alaofiﬂﬁ'lf olo

Know The [abek.

per viseij

N~

Rememéa( Ths & unsu

34



Sammon’s Map vs. ISOMAP vs. t-SNE
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Sammon’s Map vs. ISOMAP vs. t-SNE
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Coming Up Next

T-SNE

37



t-Distributed Stochastic Neighbour Embedding

« One key idea in t-SNE:

— Focus on distance to “neighbours”
(allow large variance in other distances)
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t-Distributed Stochastic Neighbour Embedding

« t-SNE is a special case of MDS (specific d;, d5, and d5 choices):
— dj: for each x;, compute ‘neighbour-ness’ of each x;

— Computation is similar to k-means++, but most weight to close points (Gaussian).
- Doesn’t require explicit graph.

— d,: for each z;, compute ‘neighbour-ness’ of each z,.
« Similar to above, but use student’s t (grows really slowly with distance).

« Avoids ‘crowding’, because you have a huge range that large distances can fill.

— d3: Compare x; and z; using an entropy-like measure:
« How much ‘randomness’ is in probabilities of x; if you know the z; (and vice versa)?

 Interactive demo: https://distill.pub/2016/misread-tsne



https://distill.pub/2016/misread-tsne

t-SNE on Wikipedia Articles

40



t-SNE on Product Features

41



t-SNE on Leukemia Heterogeneity

Not manually gated @ CD4Tcells @ CDBTcells
® CD20+B cells CD20-Bcells & CD11b- Monocytes
@® CD11b+ Monocytes @  NK cells

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076922/



End of Part 4: Latent Factor Models



End of Part 4: Key Concepts

« We discussed linear latent- factor models:

f(w2)= 2 s (wyz> = x;)?

l)~

“ZHWZ, = x[%
A”ZW X”F

« Represent ‘X’ as linear combination of latent factors ‘w_".

— Latent features ‘z/ give a lower-dimensional version of each ‘x;'.

— When k=1, finds direction that minimizes squared orthogonal distance.
 Applications:

— Qutlier detection, dimensionality reduction, data compression, features for linear
models, visualization, factor discovery, filling in missing entries.



End of Part 4: Key Concepts

We discussed linear latent-factor models:

P(W,2)= 2 2 (e = )

i y=!

Principal component analysis (PCA):

— Often uses orthogonal factors and fits them sequentially (via SVD).
Non-negative matrix factorization:

— Uses non-negative factors giving sparsity.

— Can be minimized with projected gradient.

Many variations are possible:

— Different regularizers (sparse coding) or loss functions (robust/binary PCA).
— Missing values (recommender systems) or change of basis (kernel PCA).



End of Part 4: Key Concepts

« We discussed multi-dimensional scaling (MDS):
— Non-parametric method for high-dimensional data visualization.

— Tries to match distance/similarity in high-/low-dimensions.
« “Gradient descent on scatterplot points”.

« Main challenge in MDS methods is “crowding” effect:
— Methods focus on large distances and Lose local structure.
« Common solutions:
— Sammon mapping: use weighted cost function.
— ISOMAP: approximate geodesic distance using via shortest paths in graph.
— T-SNE: give up on large distances and focus on neighbour distances.



summary

Different MDS distances/losses/weights usually gives better results.
Manifold learning focuses on low-dimensional curved structures.

ISOMAP is most common approach:
— Approximates geodesic distance by shortest path in weighted graph.
t-SNE is promising new data MDS method.

Next time: deep learning.
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Review Questions

Q1l: Is MDS sensitive to initialization? Why?

Q2: What is the problem with using linear dimensionality reduction for data on
manifold?

Q3: How does ISOMAP compute pair-wise distances among examples?

Q4: What is the key idea behind t-SNE in terms of preserving distances in 2D7
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Does t-SNE always outperform PCA?Y

Consider 3D data living on a 2D hyper-plane:

PCA can perfectly capture the low-dimensional

structure.
T-SNE can capture the local str ctlyre,/batx,caﬁ
! x XX SBYA

“twist” the plane.
— |t doesn’t try to get long distances(c rrecﬂ(.fxx *
2 Q9




Graph Drawing

« A closely-related topic to MDS is graph drawing:
— Given a graph, how should we display it?
— Lots of interesting methods: https://en.wikipedia.org/wiki/Graph_drawing

Sl


https://en.wikipedia.org/wiki/Graph_drawing

Bonus Slide: Multivariate Chain Rule

« Recall the univariate chain rule:ﬁ/[ f(q(w))] — Fl(g(w))ﬁl(w)

« The multivariate chain rule: ( (w)) — ‘F]( (w»v (W
L= (V)

« Example: A | | x| dx/
Vclz (w'x - ‘/\)1]

=V([ ¢ (q( w))]
walh dlw) = w'x —)i —

and -?({'.): %ril u____’%{'\(r‘_): -

Vg(w): X



Bonus Slide: Multivariate Chain Rule for MDS

e General MDS formulation:

OW}M ZZ J(J(x ><> 4 (2.
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« Using multivariate chain rule we have:
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Latent-Factor Representation of Words

- For natural language, we often represent words by an index.
— E.g., “cat” is word 124056 among a “bag of words”.

« But this may be inefficient:
— Should “cat” and “kitten” share parameters in some way?



Latent-Factor Representation of Words

« Latent-factor representation of individual words:
— Closeness in latent space should indicate similarity.
— Distances could represent meaning?

« Recent alternative to PCA/NMF is word2vec...



Using Context

 Consider these phrases:
— “the cat purred”
— “the kitten purred”

— “Pblack cat ran”
— “black kitten ran”

 Words that occur in the same context likely have similar meanings.

« Word2vec uses this insight to design an MDS distance function.



word2Vec

Two common word2vec approaches:
1. Try to predict word from surrounding words (continuous bag of words).
2. Try to predict surrounding words from word (skip-gram).

INPUT PROJECTION OUTPUT INPUT PROJECTION  QUTPUT
w(t-2) 4 v {t-2)
/
\ /
I
w(t-1) f,f wit-1)
SUM /
-’Jrf
- - |w(b) wit)
% \
A *,
v N,
| d N
w(t+1) \ wit+1)
/ N\
/ \
w(t+2) r \‘ wit+2)
CBOW Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

Train latent-factors to solve one of these supervised learning tasks.
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word2Vec

In both cases, each word ‘i’ is represented by a vector z.
In continuous bag of words (CBOW), we optimize the following likelihood:

P(Xi | XS\»rIOMJ,) = W f?(’(il )()> (/V\lelomc/mce a;fwm’ﬂ/bn>

\)é Surfowtl
(Z .72.
A
)€ Surpom X P Cc ZJ
<!

Apply gradient descent to logarithm:
— Encourages z;z; to be big for words in same context (making z; close to z).
— Encourages z;'z; to be small for words not appearing in same context (makes z; and z; far).

For CBOW, denominator sums over all words.

For skip-gram it will be over all possible surrounding words.
— Common trick to speed things up: sample terms in denominator (“negative sampling”).



wWord2Vec Example

« MDS visualization of a set of related words:
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=0.4 =0.3 =0.2 =0.1 0 01 02 0.3 0.4 0.5 0.6 -0.5 -0.4 -0.3 -0.2 =0.1 0 0.1 0.2 0.3 0.4 0.5

- Distances between vectors might represent semantics.



word2Vec

Subtracting word vectors to find related vectors.

Table 8: Examples of the word pair relationships, using the best word vectors from Table[4) (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship

Example 1

Example 2

Example 3

France - Paris
big - bigger
Miami - Florida
Einstein - scientist
Sarkozy - France
copper - Cu
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer

Japan - sushi

Italy: Rome
small: larger
Baltimore: Maryland
Messi: midfielder
Berlusconi: Italy
zinc: Zn
Sarkozy: Nicolas
Google: Android
Google: Yahoo
Germany: bratwurst

Japan: Tokyo
cold: colder
Dallas: Texas
Mozart: violinist
Merkel: Germany
gold: Au
Putin: Medvedev
IBM: Linux
IBM: McNealy
France: tapas

Florida: Tallahassee
quick: guicker
Kona: Hawaii
Picasso: painter
Koizumi: Japan

uranium: plutonium
Obama: Barack
Apple: iPhone

Apple: Jobs
USA: pizza

Table[8]shows words that follow various relationships. We follow the approach described above: the

relationship is defined by subtractin

word vectors, and the result is added to another word. Thus

for example, Paris - France + Italy = Rome ) As it can be seen, accuracy is quite good, although

« Word vectors for 157 languages here.

60


https://fasttext.cc/docs/en/crawl-vectors.html

Multiple Word Prototypes

« What about homonyms and polysemy?
— The word vectors would need to account for all meanings.

« More recent approaches:
— Try to cluster the different contexts where words appear.
— Use different vectors for different contexts.

X <. %
JW o - v v o~ ‘,Z




Multiple Word Prototypes
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