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Admin
• Assignment 6 out, due Friday 11:55pm
• Today is final exam coverage cut-off
• Final exam is next Wednesday (June 23)

– Prep materials go up soon

• Course evaluation is open.
– Please give me an honest feedback! How did I do?
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Last Time: Multi-Dimensional Scaling
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Multi-Dimensional Scaling
• Multi-dimensional scaling (MDS):

– Optimize the final locations of the zi values.
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– Optimize the final locations of the zi values.

– Non-parametric dimensionality reduction and visualization:
• No ‘W’: just trying to make zi preserve high-dimensional distances between xi.
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Multi-Dimensional Scaling
• Multi-dimensional scaling (MDS):

– Optimize the final locations of the zi values.

• Cannot use SVD to compute solution:
– Instead, do gradient descent on the zi values.
– You “learn” a scatterplot that tries to visualize high-dimensional data.
– Not convex and sensitive to initialization.

• And solution is not unique due to various factors like translation and rotation.
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In This Lecture
1. Multi-Dimensional Scaling

– Euclidean MDS
– Sammon Mapping
– Geodesic MDS (ISOMAP)

2. Latent Factors for Language
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EUCLIDEAN MDS VARIANTS
Coming Up Next
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Different MDS Cost Functions
• MDS default objective: squared difference of Euclidean norms:

12

Q: Can we generalize this to other 
measures of distance?

Q: How many distance functions 
are involved here?



Different MDS Cost Functions
• MDS default objective function with general distances/similarities:

– Functions are not necessarily the same:
• d1 := high-dimensional distance we want to match.

• d2 := low-dimensional distance we can control.

• d3 := how we compare high-/low-dimensional distances.
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Different MDS Cost Functions
• MDS default objective function with general distances/similarities:

• “Classic” MDS: 
– d1(xi,xj) = xiTxj, d2(zi,zj) = ziTzj, d3(a, b) = (a – b)2
– This is a factorless version of _______.
– Not a great choice because it’s _______________.
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Different MDS Cost Functions
• MDS default objective function with general distances/similarities:

• Another possibility: d1(xi,xj) = ||xi – xj||1 and d2(zi,zj) = ||zi – zj||.
– zi approximates high-dimensional L1-norm distances.

http://www.mdpi.com/1422-0067/15/7/12364/htm
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Sammon’s Mapping
• Challenge for most MDS models: they focus on ____________.

– Leads to “crowding” effect like with PCA.
• Early attempt to address this is Sammon’s mapping:

– Weighted MDS so large/small distances are more comparable.

– Denominator reduces focus on large distances.

http://www.mdpi.com/1422-0067/15/7/12364/htm
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Sammon’s Mapping
• Challenge for most MDS models: they focus on large distances.

– Leads to “crowding” effect like with PCA.
• Early attempt to address this is Sammon’s mapping:

– Weighted MDS so large/small distances are more comparable.

http://www.mdpi.com/1422-0067/15/7/12364/htm
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MANIFOLDS
Coming Up Next
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“Manifold”
• “Manifold” := non-Euclidean subspace of 

feature space where datapoints live

• Assumption: most data live on a manifold, 
not a true Euclidean feature space! 19

Feature space



Learning Manifolds
• Consider data that lives on a low-dimensional “manifold”.
• e.g. ‘Swiss roll’:

http://www.biomedcentral.com/content/pdf/1471-2105-13-S7-S3.pdf
20



Learning Manifolds
• Consider data that lives on a low-dimensional “manifold”.

– With usual distances, PCA/MDS will not discover non-linear manifolds.

http://www.peh-med.com/content/9/1/12/figure/F1
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Learning Manifolds
• Consider data that lives on a low-dimensional “manifold”.

– With usual distances, PCA/MDS will not discover non-linear manifolds.
• We need geodesic distance: the ________________________.

http://www.biomedcentral.com/content/pdf/1471-2105-13-S7-S3.pdf
http://wearables.cc.gatech.edu/paper_of_week/isomap.pdf
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Manifolds in Image Space
• Consider slowly-varying transformation of image:

• Images are on a manifold in the high-dimensional space.
– Euclidean distance doesn’t reflect manifold structure.
– Geodesic distance is distance through space of rotations/resizings.

https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction
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ISOMAP
Coming Up Next
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ISOMAP
• ISOMAP is MDS on manifolds:
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ISOMAP
• ISOMAP can “unwrap” the roll:

– _______________ are approximations to geodesic distances.

• Sensitive to having ______________:
– Points off of manifold and gaps in manifold cause problems.

http://www.peh-med.com/content/9/1/12/figure/F1
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Constructing Neighbour Graphs
• Sometimes you can define the graph/distance without features:

– Facebook friend graph.
– Connect YouTube videos if one video tends to follow another.

• But we can also convert from features xi to a “neighbour” graph (A6):
– Approach 1 (“epsilon graph”): connect xi to all xj within some threshold ε.

• Like we did with density-based clustering.

– Approach 2a (“KNN graph”): connect xi to xj if:
• xj is a KNN of xi OR xi is a KNN of xj.

– Approach 2b (“mutual KNN graph”): connect xi to xj if:
• xj is a KNN of xi AND xi is a KNN of xj.

http://ai.stanford.edu/~ang/papers/nips01-spectral.pdf
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Converting from Features to Graph

http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/Luxburg07_tutorial_4488%5
B0%5D df
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ISOMAP
• ISOMAP is latent-factor model for visualizing data on manifolds:

1. Find the neighbours of each point.
• Usually “k-nearest neighbours graph”, or “epsilon graph”.

2. Compute edge weights:
• Usually distance between neighbours.

3. Compute weighted shortest path between all points.
• Dijkstra or other shortest path algorithm.

4. Run MDS using these distances.

http://wearables.cc.gatech.edu/paper_of_week/isomap.pdf
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ISOMAP on Hand Images

• Related method is “local linear embedding”.
http://wearables.cc.gatech.edu/paper_of_week/isomap.pdf
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Sammon’s Map vs. ISOMAP vs. PCA

http://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf 31



Sammon’s Map vs. ISOMAP vs. t-SNE
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Sammon’s Map vs. ISOMAP vs. t-SNE
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T-SNE
Coming Up Next
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t-Distributed Stochastic Neighbour Embedding
• One key idea in t-SNE: 

– Focus on distance to “neighbours”
(allow large variance in other distances)
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t-Distributed Stochastic Neighbour Embedding
• t-SNE is a special case of MDS (specific d1, d2, and d3 choices):

– d1: for each xi, compute ‘neighbour-ness’ of each xj
– Computation is similar to k-means++, but most weight to close points (Gaussian).

• Doesn’t require explicit graph.

– d2: for each zi, compute ‘neighbour-ness’ of each zj.
• Similar to above, but use student’s t (grows really slowly with distance).
• Avoids ‘crowding’, because you have a huge range that large distances can fill.

– d3: Compare xi and zi using an entropy-like measure:
• How much ‘randomness’ is in probabilities of xi if you know the zi (and vice versa)?

• Interactive demo: https://distill.pub/2016/misread-tsne
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https://distill.pub/2016/misread-tsne


t-SNE on Wikipedia Articles

http://jasneetsabharwal.com/assets/files/wiki_tsne_report.pdf
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t-SNE on Product Features

http://blog.kaggle.com/2015/06/09/otto-product-classification-winners-interview-2nd-place-alexander-guschin/
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t-SNE on Leukemia Heterogeneity

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076922/
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End of Part 4: Latent Factor Models
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End of Part 4: Key Concepts
• We discussed linear latent-factor models:

• Represent ‘X’ as linear combination of latent factors ‘wc’.
– Latent features ‘zi’ give a lower-dimensional version of each ‘xi’.
– When k=1, finds direction that minimizes squared orthogonal distance.

• Applications: 
– Outlier detection, dimensionality reduction, data compression, features for linear 

models, visualization, factor discovery, filling in missing entries.
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End of Part 4: Key Concepts
• We discussed linear latent-factor models:

• Principal component analysis (PCA):
– Often uses orthogonal factors and fits them sequentially (via SVD).

• Non-negative matrix factorization:
– Uses non-negative factors giving sparsity.
– Can be minimized with projected gradient.

• Many variations are possible:
– Different regularizers (sparse coding) or loss functions (robust/binary PCA).
– Missing values (recommender systems) or change of basis (kernel PCA).
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End of Part 4: Key Concepts
• We discussed multi-dimensional scaling (MDS):

– Non-parametric method for high-dimensional data visualization.
– Tries to match distance/similarity in high-/low-dimensions.

• “Gradient descent on scatterplot points”.
• Main challenge in MDS methods is “crowding” effect:

– Methods focus on large distances and lose local structure.
• Common solutions:

– Sammon mapping: use weighted cost function.
– ISOMAP: approximate geodesic distance using via shortest paths in graph.
– T-SNE: give up on large distances and focus on neighbour distances.
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Summary
• Different MDS distances/losses/weights usually gives better results.
• Manifold learning focuses on low-dimensional curved structures.
• ISOMAP is most common approach:

– Approximates geodesic distance by shortest path in weighted graph.
• t-SNE is promising new data MDS method.

• Next time: deep learning.
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Please Do Course Evaluation!
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Review Questions
• Q1: Is MDS sensitive to initialization? Why?

• Q2: What is the problem with using linear dimensionality reduction for data on 
manifold?

• Q3: How does ISOMAP compute pair-wise distances among examples?

• Q4: What is the key idea behind t-SNE in terms of preserving distances in 2D?
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Does t-SNE always outperform PCA?
• Consider 3D data living on a 2D hyper-plane:

• PCA can  perfectly capture the low-dimensional 
structure.

• T-SNE can capture the local structure, but can 
“twist” the plane.
– It doesn’t try to get long distances correct.
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Graph Drawing
• A closely-related topic to MDS is graph drawing:

– Given a graph, how should we display it?
– Lots of interesting methods: https://en.wikipedia.org/wiki/Graph_drawing
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https://en.wikipedia.org/wiki/Graph_drawing


Bonus Slide: Multivariate Chain Rule

• Recall the univariate chain rule:

• The multivariate chain rule:

• Example:
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Bonus Slide: Multivariate Chain Rule for MDS
• General MDS formulation:

• Using multivariate chain rule we have:

• Example:
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Latent-Factor Representation of Words
• For natural language, we often represent words by an index.

– E.g., “cat” is word 124056 among a “bag of words”.

• But this may be inefficient:
– Should “cat” and “kitten” share parameters in some way?
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Latent-Factor Representation of Words
• Latent-factor representation of individual words:

– Closeness in latent space should indicate similarity.
– Distances could represent meaning?

• Recent alternative to PCA/NMF is word2vec…
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Using Context
• Consider these phrases:

– “the cat purred”
– “the kitten purred”

– “black cat ran”
– “black kitten ran”

• Words that occur in the same context likely have similar meanings.

• Word2vec uses this insight to design an MDS distance function.
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Word2Vec
• Two common word2vec approaches:

1. Try to predict word from surrounding words (continuous bag of words).
2. Try to predict surrounding words from word (skip-gram).

• Train latent-factors to solve one of these supervised learning tasks.
https://arxiv.org/pdf/1301.3781.pdf
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Word2Vec
• In both cases, each word ‘i’ is represented by a vector zi.
• In continuous bag of words (CBOW), we optimize the following likelihood:

• Apply gradient descent to logarithm:
– Encourages ziTzj to be big for words in same context (making zi close to zj).
– Encourages ziTzj to be small for words not appearing in same context (makes zi and zj far).

• For CBOW, denominator sums over all words.
• For skip-gram it will be over all possible surrounding words.

– Common trick to speed things up: sample terms in denominator (“negative sampling”).
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Word2Vec Example
• MDS visualization of a set of related words:

• Distances between vectors might represent semantics.

http://sebastianruder.com/secret-word2vec
59



Word2Vec
• Subtracting word vectors to find related vectors.

• Word vectors for 157 languages here.
https://arxiv.org/pdf/1301.3781.pdf
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https://fasttext.cc/docs/en/crawl-vectors.html


Multiple Word Prototypes
• What about homonyms and polysemy?

– The word vectors would need to account for all meanings.

• More recent approaches:
– Try to cluster the different contexts where words appear.
– Use different vectors for different contexts.
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Multiple Word Prototypes

http://www.socher.org/index.php/Main/ImprovingWordRepresentationsViaGlobalContextAndMultipleWordPrototypes 62
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