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In This Lecture
1. Encoder-Predictor Learning

– aka deep learning
2. Artificial Neural Networks
3. “Biological” Motivations for Deep Learning
4. History of Deep Learning
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Part 5: Deep Learning
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deep learning



Supervised Learning Roadmap
• Part 1: “Direct” Supervised Learning.

– We learned parameters ‘w’ based on the original features xi and target yi.
• Part 3: Change of Basis.

– We learned parameters ‘v’ based on a change of basis zi and target yi.
• Part 4: Latent-Factor Models.

– We learned parameters ‘W’ for basis zi based on only on features xi.
– You can then learn ‘v’ based on change of basis zi and target yi.

• Part 5: Neural Networks.
– Jointly learn ‘W’ and ‘v’ based on xi and yi.
– Learn features zi that is good for supervised learning.

4



ENCODER-PREDICTOR LEARNING
Coming Up Next
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“Graph” View of Matrix Multiplication
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A Graphical Summary of CPSC 340 Parts 1-5
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Recall: Encoder Learning
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Example i in 
learned feature space

Learned encoder



“Encoder-Predictor Learning”
• Encoder-Predictor learning problem:

– Input: Labeled examples
– Output: Encoder E and predictor w

• Using learned encoder and predictor:
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Encoder Predictor

Encoder Predictor



“Artificial Neural Networks”

• “Artificial neural network” := encoder-predictor 
model using matrix multiplication for encoder
– Must use non-linear activations (soon)
– Usually use linear model as predictor

• “Deep neural network” := artificial neural network 
that uses more than one matrix multiplication
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Visualizing Encoder-Predictor
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Original feature space

Decision boundary of 
a linear classifier

Learned feature space

Q: How can we make 
our model better than this?



Visualizing Encoder-Predictor

• Intuition: supervised latent factor model
– Loss function based on labels 
– Encourage encoder to produce more linearly separable results
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MORE FORMAL DETAILS ON 
NEURAL NETWORKS
Coming Up Next
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Notation for Neural Networks (MEMORIZE)
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Linear-Linear Neural Net
• Obvious choice: linear latent-factor encoder with linear regression predictor

• We want to train ‘W’ and ‘v’ jointly, so we could minimize:
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Q: What can go wrong 
with this?



Linear-Linear Neural Net
• Obvious choice: linear latent-factor encoder with linear regression predictor

• We want to train ‘W’ and ‘v’ jointly, so we could minimize:

• This is just a linear model:
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Introducing Non-Linearity
• To increase flexibility, something needs to be non-linear.
• Typical choice: transform zi by non-linear function ‘h’.

– Here the function ‘h’ transforms ‘k’ inputs to ‘k’ outputs.
• Common choice for ‘h’: applying sigmoid function element-wise:

• So this takes the zic in (-∞,∞) and maps it to _______.
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Why Sigmoid?
• Consider setting ‘h’ to define binary features zi using:

– Each h(zi) can be viewed as binary feature.
• “You either have this ‘part’ or you don’t have it.”

– We can make 2k objects by all the
possible “part combinations”.
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Why Sigmoid?
• Consider setting ‘h’ to define binary features zi using:

– Each h(zi) can be viewed as binary feature.
• “You either have this ‘part’ or you don’t have it.”

• But this is hard to optimize (non-differentiable, discontinuous).
• Sigmoid is a smooth approximation to these binary features.

– Non-parametric version is a universal approximator:
• If ‘k’ grows appropriately with ‘n’, can model any continuous function.
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Supervised Learning Roadmap
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(SUPPOSEDLY) BIOLOGICAL MOTIVATION 
FOR ARTIFICIAL NEURAL NETWORKS
Coming Up Next
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Why “Neural Network”?
• Cartoon of “typical” neuron:

• Neuron has many “dendrites”, which take an input signal.
• Neuron has a single “axon”, which sends an output signal.
• With the right input to dendrites:

– “Action potential” along axon (like a binary signal):

https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Action_potential
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Why “Neural Network”?

https://en.wikipedia.org/wiki/Neuron
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Why “Neural Network”?

https://en.wikipedia.org/wiki/Neuron
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Why “Neural Network”?
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“Artificial” Neural Nets vs. “Real” Networks Nets
• Artificial neural network:

– xi is measurement of the world.
– zi is internal representation of world.
– yi is output of neuron for classification/regression.

• Real neural networks are more complicated:
– Timing of action potentials seems to be important.

• “Rate coding”: frequency of action potentials simulates continuous output.
– Sparsity of action potentials.
– How much computation is done inside neuron?
– Brain is highly organized (e.g., substructures and cortical columns).
– Connection structure changes.
– Different types of neurotransmitters.
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WHAT IS DEEP LEARNING?
Coming Up Next
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Deep Learning
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Encoder-Predictor View of Deep Learning

• Compose multiple non-linear encoders
• Overall idea is still the same:

– Train encoder and predictor at the same time
• (we have a “bigger” encoder now)
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“Hierarchies of Parts” Motivation for Deep Learning

• Each “neuron” might recognize a “part” of digit.
– “Deeper” neurons might recognize

combinations of parts.
– Represent complex objects as 

hierarchical combinations of 
re-useable parts (a simple “grammar”).

• Watch the full video here:
– https://www.youtube.com/watch?v=aircAruvnKk

• Theory:
– 1 big-enough hidden layer already gives universal approximation.
– But some functions require exponentially-fewer parameters to approximate with

more layers (can fight curse of dimensionality).
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Deep Learning
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Deep Learning
• For 4 layers, we could write the prediction as:

• For ‘m’ layers, we could use:

https://mathwithbaddrawings.com/2016/04/27/symbols-that-math-urgently-needs-to-adopt
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HISTORY OF DEEP LEARNING
Coming Up Next
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ML and Deep Learning History
• 1950 and 1960s: Initial excitement.

– Perceptron: linear classifier and stochastic gradient (roughly).
– “the embryo of an electronic computer that [the Navy] expects will be 

able to walk, talk, see, write, reproduce itself and be conscious of its 
existence.” New York Times (1958).

• https://www.youtube.com/watch?v=IEFRtz68m-8
– Object recognition 

assigned to students as a
summer project

• Then drop in popularity:
– Quickly realized limitations of linear models.

https://mitpress.mit.edu/books/perceptrons/
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ML and Deep Learning History
• 1970 and 1980s: Connectionism (brain-inspired ML)

– Want “connected networks of simple units”.
• Use parallel computation and distributed representations.

– Adding hidden layers zi increases expressive power.
• With 1 layer and enough sigmoid units, a universal approximator.

– Success in optical character recognition. 

https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing
http://www.datarobot.com/blog/a-primer-on-deep-learning/
http://blog.csdn.net/strint/article/details/44163869
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ML and Deep Learning History
• 1990s and early-2000s: drop in popularity.

– It proved really difficult to get multi-layer models working robustly.

– We obtained similar performance with simpler models:
• Rise in popularity of logistic regression and SVMs with regularization and kernels.

– Lots of internet successes (spam filtering, web search, recommendation).

– ML moved closer to other fields like numerical optimization and statistics.
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ML and Deep Learning History
• Late 2000s: push to revive connectionism as “deep learning”.

– Canadian Institute For Advanced Research (CIFAR) NCAP program:
• “Neural Computation and Adaptive Perception”.
• Led by Geoff Hinton, Yann LeCun, and Yoshua Bengio (“Canadian mafia”).

– Unsupervised successes: “deep belief networks” and “autoencoders”.
• Could be used to initialize deep neural networks.
• https://www.youtube.com/watch?v=KuPai0ogiHk

https://www.cs.toronto.edu/~hinton/science.pdf
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2010s: DEEP LEARNING!!!
• Bigger datasets, bigger models, parallel computing 

(GPUs/clusters). 
– And some tweaks to the models from the 1980s.

• Huge improvements in automatic speech recognition (2009).
– All phones now have deep learning.

• Huge improvements in computer vision (2012).
– Changed computer vision field almost instantly.
– This is now finding its way into products.

http://www.image-net.org/challenges/LSVRC/2014/ 40



2010s: DEEP LEARNING!!!
• Media hype:

– “How many computers to identify a cat? 16,000”
New York Times (2012).

– “Why Facebook is teaching its machines to think like humans”
Wired (2013).

– “What is ‘deep learning’ and why should businesses care?”
Forbes (2013).

– “Computer eyesight gets a lot more accurate”
New York Times (2014).

• 2015: huge improvement in language understanding.
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Cut-off for Final Exam

(Final exam will have materials from 
everything before this slide)
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Summary
• Neural networks learn features zi for supervised learning.
• Sigmoid function avoids degeneracy by introducing non-linearity.

– Universal approximator with large-enough ‘k’.
• Biological motivation for (deep) neural networks.
• Deep learning considers neural networks with many hidden layers.

– Can more-efficiently represent some functions.
• Unprecedented performance on difficult pattern recognition tasks.

• Next time:
– Training deep networks.

43



Please Do Course Evaluation!
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Review Questions
• Q1: What is the problem with using a linear encoder and a 

linear predictor for a neural network?

• Q2: What is the motivation for using multiple layers of 
encoders?

• Q3: Does it make sense to use neural networks for classifying  
linearly separable data?
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Why zi = Wxi?
• In PCA we had that the optimal Z = XWT(WWT)-1.
• If W had normalized+orthogonal rows, Z = XWT (since WWT = 

I).
– So zi = Wxi in this normalized+orthogonal case.

• Why we would use zi = Wxi in neural networks?
– We didn’t enforce normalization or orthogonality.

• Well, the value WT(WWT)-1 is just “some matrix”.
– You can think of neural networks as just directly learning this matrix.
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Cool Picture Motivation for Deep Learning
• Faces might be composed of different “parts”:

http://www.datarobot.com/blog/a-primer-on-deep-learning/
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Cool Picture Motivation for Deep Learning
• First layer of zi trained on 10 by 10 image patches:

• Attempt to visualize second layer:
– Corners,  angles, surface boundaries?

• Models require many tricks to work.
– We’ll discuss these next time.

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
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Cool Picture Motivation for Deep Learning
• First layer of zi trained on 10 by 10 image patches:

• Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
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Cool Picture Motivation for Deep Learning
• First layer of zi trained on 10 by 10 image patches:

• Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
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Cool Picture Motivation for Deep Learning
• First layer of zi trained on 10 by 10 image patches:

• Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
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Cool Picture Motivation for Deep Learning
• First layer of zi trained on 10 by 10 image patches:

• Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
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Cool Picture Motivation for Deep Learning
• First layer of zi trained on 10 by 10 image patches:

• Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
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