CPSC 340: Machine Learning and Data Mining

More Deep Learning Summer 2021

Admin

- Last day of classes!
 - Please fill out course evaluation
- Friday:
 - A6 due 11:55pm
 - A7 released (hopefully)
- Final Prep Megathread on Piazza
- Should we do an official review on Monday?
 - Do the Piazza poll

In This Lecture

- 1. ImageNet Challenge
- 2. Backpropagation
- 3. Training Neural Nets

Neural network:

Last Time: Deep Learning

Deep neural networks: $y_i = \sqrt{h(W^{(2)}h(W^{(1)}x_i)}$

- Unprecedented performance on difficult problems.
- Each layer combines "parts" from previous layer.

Coming Up Next

IMAGENET CHALLENGE

• Millions of labeled images, 1000 object classes.

Easy for humans but hard for computers.

- Object detection task:
 - Single label per image.
 - − Humans: ~5% error.

(b) Eskimo dog

- Object detection task:
 - Single label per image.
 - − Humans: ~5% error.

(b) Eskimo dog

- Object detection task:
 - Single label per image.
 - − Humans: ~5% error.

(b) Eskimo dog

- Object detection task:
 - Single label per image.
 - − Humans: ~5% error.

(b) Eskimo dog

Image classification

- Object detection task:
 - Single label per image.
 - − Humans: ~5% error.

- Object detection task:
 - Single label per image.
 - − Humans: ~5% error.
- 2015: Won by Microsoft Asia
 - 3.6% error.
 - 152 layers, introduced "ResNets".
 - Also won "localization" (finding location of objects in images).
- 2016: Chinese University of Hong Kong:
 - Ensembles of previous winners and other existing methods.
- 2017: fewer entries, organizers decided this would be last year.

Deep Learning Practicalities

- This lecture focus on deep learning practical issues:
 - Backpropagation to compute gradients.
 - Stochastic gradient training.
 - Regularization to avoid overfitting.
- Next lecture:
 - Special 'W' restrictions to further avoid overfitting.

Coming Up Next

ADDING BIAS VARIABLES

Recall fitting line regression with a bias:

$$\hat{y}_{i} = \sum_{j=1}^{d} w_{j} x_{ij} + \beta$$

- We did this by adding _____ to X.

Q: How do we do this with neural nets?

In neural networks we often want a bias on the output:

$$\hat{y}_i = \underbrace{\frac{1}{2}}_{i=1} w_i x_{ij} + \beta$$

$$\hat{y}_i = \underbrace{\frac{1}{2}}_{c=1} v_c h(w_c x_i) + \beta$$

But we also often also include biases on each z_{ic}:

Q: How do we include bias to matrix multiplication?

In neural networks we often want a bias on the output:

$$\hat{y}_i = \underbrace{\frac{1}{2}}_{i=1} w_i x_{ij} + \beta$$

$$\hat{y}_i = \underbrace{\frac{1}{2}}_{c=1} v_c h(w_c x_i) + \beta$$

But we also often also include biases on each z_{ic}:

$$\hat{y}_i = \sum_{c=1}^{k} v_c h(w_c x_i + \beta_c) + \beta$$

Q: What does it mean when β_c is large in positive/negative directions?

Coming Up Next

MULTI-VARIATE CHAIN RULE AND BACKPROPAGATION

Training Neural Networks

With squared loss and 1 hidden layer, our objective function is:

$$f(y_1W) = \frac{1}{2} \sum_{i=1}^{n} (v_1h(W_{x_i}) - y_i)^2$$

- Usual training procedure: stochastic gradient.
 - Compute gradient of random example 'i', update both 'v' and 'W'.
 - f is highly non-convex and optimizer can be difficult to tune.

Q: How do we compute the gradients?

What is Backpropagation?

- Computing the gradient is known as "backpropagation".
 - Video giving motivation here.

Andrej Karpathy's Backpropagation Lecture

https://www.youtube.com/watch?v=i94OvYb6noo

Computational Graph

"Computational graph": directed graph showing operations between variables and constants

$$f(w) = \sum_{j=1}^{2} w_{j} \qquad f(w) = ||w||_{2}$$

$$f(w) = \sum_{j=1}^{2} w_{j} \qquad f(w) = ||w||_{2}$$

$$f(w) = \sum_{j=1}^{2} w_{j} \qquad f(w) = ||w||_{2}$$

$$f(w) = x + b \qquad f(w) = ||w||_{2}$$

Computational Graph for Least Squares

Nodes are variables/constants/results of operation

$$f(w) = \frac{1}{2} \| \chi_w - y \|^2 = \frac{1}{2} \| y \|^2 = \frac{1}{2} \| \hat{y} - y \|^2$$

Computational Graph for Neural Nets

$$f(v,W) = \frac{1}{2} ||\hat{y} - y||^2$$
 where $\hat{y} = v^T h(XW^T)$

Jacobians

Generalizes gradients for multi-output functions

Multi-Variate Chain Rule $f(w) = \frac{1}{2} \| \chi_w - y \|^2 = \frac{1}{2} \| y \|^2 = \frac{1}{2} \| \hat{y} - y \|^2$

- Gradient is a product of Jacobians!
- Chain rule := recursive computation of Jacobians

Backpropagation (A7)

- Overview of how we compute neural network gradient:
 - Forward propagation:
 - Compute $z_i^{(1)}$ from x_i .
 - Compute $z_i^{(2)}$ from $z_i^{(1)}$.
 - ...
 - Compute \hat{y}_i from $z_i^{(m)}$, and use this to compute error.

- Backpropagation:
 - Compute gradient with respect to regression weights 'v'.
 - Compute gradient with respect to $z_i^{(m)}$ weights $W^{(m)}$.
 - Compute gradient with respect to $z_i^{(m-1)}$ weights $W^{(m-1)}$.
 - ...
 - Compute gradient with respect to $z_i^{(1)}$ weights $W^{(1)}$.
- "Backpropagation" is ______ plus some _____

Backpropagation

Do you need to know how to do this?

Yes you should understand backprop

 Implementing backpropagation is usually part of graduate courses involving deep learning (e.g. CPSC 532/533 variants)

"Differentiable Programming"

- "Automatic differentiation" (A7) is standard practice for optimization
 - Get gradient with backward(), not by hand-crafted definition of 'g'
- "Differentiable programming": lets us focus on writing high-level code and reason about variable interactions without worrying about gradients
 - TensorFlow, Torch, MXNet, Theanos, Zygote, AutoGrad, etc.
- · Coding on whiteboard with symbols is easy once things are differentiable

$$X_{i} \longrightarrow Z_{i} \longrightarrow \hat{Y}_{i}$$
deep neural net
$$X_{i} \longrightarrow Z_{i} \longrightarrow \hat{Y}_{i} \longrightarrow Z_{i} \longrightarrow \hat{Y}_{i}$$
autoencoder
$$E \longrightarrow X_{i} \longrightarrow Z_{i} \longrightarrow \hat{Y}_{i}$$

$$E \longrightarrow X_{i} \longrightarrow Z_{i} \longrightarrow \hat{Y}_{i}$$

$$GANs$$

Backpropagation

- You should know cost of backpropagation:
 - Forward pass dominated by matrix multiplications by $W^{(1)}$, $W^{(2)}$, $W^{(3)}$, and 'v'.
 - Backward pass has same cost as forward pass.

Multi-Output Models

We've focused on single-output models so far:

$$\hat{y} = \chi_{w} \qquad f(w) = \frac{1}{2} \|\chi_{w} - y\|^{2}$$

Multi-output models are straightforward (for 'q'-dimensional output):

$$\hat{Y} = XW^T + (W) = \frac{1}{2} \|XW^T - Y\|_F^2$$

- For neural networks, we replace the predictor's weights 'v' by a matrix
 - Many of our losses have "multi-output" equivalents
 - Softmax loss is multi-output logistic, "cross entropy" in neural network papers.

Deep Learning Vocabulary

- "Deep learning": Models with many hidden layers.
 - Usually neural networks.
- "Neuron": node in the neural network graph.
 - "Visible unit": feature.
 - "Hidden unit": latent factor z_{ic} or $h(z_{ic})$.
- "Activation function": non-linear transform.
- "Activation": h(z_i).
- "Backpropagation": compute gradient of neural network.
 - Sometimes "backpropagation" means "training with SGD".
- "Weight decay": L2-regularization.
- "Cross entropy": softmax loss.
- "Learning rate": SGD step-size.
- "Learning rate decay": using decreasing step-sizes.
- "Vanishing gradient": underflow/overflow during gradient calculation.

Coming Up Next

OPTIMIZATION OF NEURAL NETS

ImageNet Challenge and Optimization

- ImageNet organizer visited UBC summer 2015.
- "Besides huge dataset/model/cluster, what is the most important?"
 - 1. Data augmentation (translation, rotation, scaling, lighting, etc.).
 - 2. Optimization.
- Why would optimization be so important?
 - Neural network objectives are highly non-convex (and worse with depth).
 - Optimization has huge influence on quality of model.

Stochastic Gradient Training

- Challenging to make SG work:
 - Often doesn't work as a "black box" learning algorithm.
 - But people have developed a lot of tricks/modifications to make it work.
- f is highly non-convex, so are local mimina the problem?
 - Some empirical/theoretical evidence that local minima are not the problem.
 - If the network is "deep" and "wide" enough, we think all local minima are good.
 - But it can be hard to get SG to close to a local minimum in reasonable time.

Parameter Initialization

- Parameter initialization is crucial:
 - Can't initialize weights in same layer to same value, or they will stay same.
 - Can't initialize weights too large, it will take too long to learn.
- A traditional random initialization:
 - Initialize bias variables to 0.
 - Sample from standard normal, divided by 10⁵ (0.00001*randn).
 - w = .00001*randn(k,1)
 - Performing multiple initializations does not seem to be important.

```
self.W = scale * np.random.randn(output_dim, input_dim)
self.b = np.zeros(output_dim)
encoders.py
```

Standardization is Important

- Also common to transform data in various ways:
 - standardize X, "whiten", standardize y.
- More recent initializations try to standardize initial z_i:
 - Use different initialization in each layer.
 - Try to make variance of z_i the same across layers.
 - Popular approach is to sample from standard normal, divide by sqrt(2*n_inputs).
 - Use samples from uniform distribution on [-b,b], where $b = \sqrt{\frac{1}{k^{(m)} + k^{(m-1)}}}$

Setting the Step Size

- Stochastic gradient is very sensitive to the step size in deep models.
- Common approach: manual "babysitting" of the step-size.
 - Run SG for a while with a fixed step-size.
 - Occasionally measure error and plot progress:

If error is not decreasing, decrease step-size.

Setting the Step-Size

- Stochastic gradient is very sensitive to the step size in deep models.
- Bias step-size multiplier: use bigger step-size for the bias variables.
- Momentum (stochastic version of "heavy-ball" algorithm):
 - Add term that moves in previous direction:

$$w^{t+1} = w^t - \alpha^t \nabla f_i(w^t) + \beta^t(w^t - w^{t-1})$$
- Usually $\beta^t = 0.9$.

old direction

Bottou Trick

- Bottou Trick: automated step size search
 - 1. Grab a small set of training examples (maybe 5% of total).
 - 2. Do a binary search for a step size that works well on them.
 - 3. Use this step size for a long time (or slowly decrease it from there).

SGD Variants and Batching

- Several recent SGD variants using a step size for each variable:
 - AdaGrad, RMSprop, Adam (often work better "out of the box").
 - Seem to be losing popularity to vanilla SGD (often with momentum).
 - SGD often yields lower test (requires more tuning of step-size though)
- Batch size (number of random examples) also influences results.
 - Bigger batch sizes often give faster convergence but maybe to worse solutions?
- Another recent trick is batch normalization:
 - Try to "standardize" the hidden units within the random samples as we go.
 - Held as example of deep learning "alchemy" (blog post here about deep learning claims).
 - Sounds science-ey and often works but little theoretical justification/understanding.

Coming Up Next

OTHER ACTIVATION FUNCTIONS

Vanishing Gradient Problem

Consider the sigmoid function:

- Away from the origin, the gradient is nearly zero.
- The problem gets worse when you take the sigmoid of a sigmoid:

• In deep networks, many gradients can be nearly zero everywhere.

Rectified Linear Units (ReLU)

Replace sigmoid with perceptron loss (ReLU):

- Just sets negative values z_{ic} to zero.
 - Fixes vanishing gradient problem.
 - Gives sparser activations.
 - Not really simulating binary signal, but could be simulating "rate coding".

"Swish" Activiation

Recent work searched for "best" activation:

- Found that $z_{ic}/(1+exp(-z_{ic}))$ worked best ("swish" function).
 - A bit weird because it allows negative values and is non-monotonic.
 - But basically the same as ReLU when not close to 0.

$$y = \frac{1}{1 + e^{-x}}$$
ReLU
$$y = \frac{x}{x, x \geqslant 0}$$
Swish
$$y = \frac{x}{1 + e^{-x}}$$

$$y = \frac{\sin(x)}{x}$$

ELU

Log of Sigmoid

$$y = ln\left(\frac{1}{1+e^{-x}}\right)$$

Leaky ReLU

Mish

$$y = x(tanh(softplus(x)))$$

Summary

- Unprecedented performance on difficult pattern recognition tasks.
- Backpropagation computes neural network gradient via chain rule.
- Parameter initialization is crucial to neural net performance.
- Optimization and step size are crucial to neural net performance.
 - "Babysitting", momentum.
- ReLU avoid "vanishing gradients".
- Next time: The most important idea in computer vision?

Please do course evaluation!

Autoencoders

- Autoencoders are an unsupervised deep learning model:
 - Use the inputs as the output of the neural network.

- Middle layer could be latent features in non-linear latent-factor model.
 - Can do outlier detection, data compression, visualization, etc.
- A non-linear generalization of PCA.
 - Equivalent to PCA if you don't have non-linearities.

Autoencoders

Autoencoder

Denoising Autoencoder

Denoising autoencoders add noise to the input:

- Learns a model that can remove the noise.