CPSC 340:
Machine Learning and Data Mining

More Deep Learning
summer 2021

Admin

Last day of classes!
— Please fill out course evaluation

Friday:

— AG due 11:55pm

— A7 released (hopefully)

Final Prep Megathread on Piazza

Should we do an official review on Monday?
— Do the Piazza poll

In This Lecture

1. ImageNet Challenge
2. Backpropagation
3. Training Neural Nets

k
) Defr neurql nef\vorksi |
Learn ‘W' and V' Tyl .. = VAW R W)
_— r oj /€S ‘r c > V"Seé 1) \\’.\ ' ' & ‘
learn {enlures 1o %Feqrmm}, W Z '1 ’
—lnear K .
— Non-linear ') makes it a DED

Universal mrdvrox'rmm‘for For lorye K

"'VnPreCOJemch P?r’lcoff\m(e oNn A)H\i(uﬁ ,ﬂlL,{M_S:
’"EGCL la)Ier COW\L”IGS ,'rm+$h 'ﬁ"(]f"\ frw‘ud ,uyef.

4

https://www.youtube.com/watch?v=aircAruvnKk&t=300s

IMAGENET CHALLENGE

ImageNet Challenge

 Millions of labeled images, 1000 object classes.

person

I person

flower pot

b power drill

EC\SY Loc humans bul
hard for (omru’rfri

ImageNet Challenge

.+ Object detection task: Image classification

— Single label per image. " 0.3
— Humans: ~5% error. 2
@
c 0.2]
O
il
(s
O
@ 01
vl
I
O
0

2010

ImageNet Challenge

.+ Object detection task: Image classification
03—

— Single l?beloper Image. - }/wm/ inprovement
— Humans: ~5% error. =
©
c 0.2]
2
il
(0
2
@ 01
(¥a]
o
O
0

2010 2011

ImageNet Challenge

 Object detection task:
— Single label per image.
— Humans: ~5% error.

Classification error

03

027

017

classification

Image
—

2010 2011

W/ im/)/ me{n'lt

SWI"LCL\ "‘D J-C(r /Qufnc’ﬂj
(3 layers

—~

2012

ImageNet Challenge

 Object detection task:
— Single label per image.
— Humans: ~5% error.

Classification error

03

027

017

classification

Image
—

2010 2011

W’ im/)/ me{n'lt

5W|7LCL\ "‘D J-C(r /Qufnc’ﬂj
(3 layers

—~

2012 2013

10

ImageNet Challenge

. Qbject detection task: Image classification
— Single label per image. 0.3 ' -

= 27 sual improyement
— Humans: ~5% error. 2 F /

@ Swifck H J{(r earnn

E 0.2 (g ’q/ers) 7 |

I

O

B 01 Yeqperl] =

E u‘:m

QO . \ 2
2010 2011 2012 2013 Eﬂ‘ld/ e el B

ILSVRC year o
Goof)l.e Net: :

6. 7% error
A2 |a7er5

ImageNet Challenge

Classification

0.3 roog
026

Object detection task:
— Single label per image.
— Humans: ~5% error.

0.2

0.1

Classification error

0036 pgo3

2015: Won by Microsoft Asia e o o s o 2o e

ILSVRC year

— 3.6% error.
— 152 layers, introduced “ResNets”.

Localization error

&
tn

L
Pa (o) I

=]
-

=]

Localization

0.43

0.3

0.25
% 0.077

2011 2012 2013 2014 2015 2016
ILSVRC year

— Also won “localization” (finding location of objects in images).

2016: Chinese University of Hong Kong:

— Ensembles of previous winners and other existing methods.
2017: fewer entries, organizers decided this would be last year.

Deep Learning Practicalities

« This lecture focus on deep learning practical issues:
— Backpropagation to compute gradients.
— Stochastic gradient training.
— Regularization to avoid overfitting.

 Next lecture:
— Special ‘W’ restrictions to further avoid overfitting.

ADDING BIAS VARIABLES

Adding Bias Variables

« Recall fitting line regression with a bias:

d
ji=2 v th
<=

— We did this by adding

Q: How do we do this
with neural nets?

15

Adding Bias Variables

* |In neural networks we often want a bias on the output:

N\

y':s

dw 7".5 -=£vh(7 + p
£ JXU >/‘ 5 (3 Wc)(,')

[

- But we also often also include biases on each z:

Q: How do we include bias to
matrix multiplication?

16

Adding Bias Variables

* |In neural networks we often want a bias on the output:

N\

y':s

dw 7".5 -=£vh(7 + p
£ JXU >/‘ 5 (3 Wc)(,')

[

- But we also often also include biases on each z:

n Ic
)T Zu h(wxth) + P

Q: What does it mean when g, is
large in positive/negative directions?

17

MULTI-VARIATE CHAIN RULE AND
BACKPROPAGATION

Training Neural Networks

 With squared loss and 1 hidden layer, our objective function is:

FlyWw)= 1 5 (' he))’

« Usual training procedure: stochastic gradient.

— Compute gradient of random example ‘i’, update both ‘v’ and ‘W’.
— f is highly non-convex and optimizer can be difficult to tune.

Q: How do we compute the gradients?

20

Wwhat is Backpropagation?

- Computing the gradient is known as “backpropagation”.
— Video giving motivation here.

Training in
progress. . .

3Blue1Brown &
3.74M subscribers

What's actually happening to a neural network as it learns?
Mext chapter: https://youtu.be/tleHLnjs5U8
Help fund future projects: https://www.patreon.com/3bluelbrown

SHOW MORE

’ [2] *D 12:04 /13:53 - Stochastic gradient descent >

3Blue1Brown series S3+E3
What is backpropagation really doing? | Chapter 3, Deep learning

2,457,500 views - Nov 3, 2017 45K gl 375 SHARE SAVE

https://www.youtube.com/watch?v=Ilg3gGewQ5U

Andrej Karpathy’s Backpropagation Lecture

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4

C€S231n Winter 2016: Lecture 4: Backpropagation, Neural Networks 1

https://www.youtube.com/watch?v=i940vYb6noo

22

https://www.youtube.com/watch?v=i94OvYb6noo

Computational Graph

» “Computational graph”: directed graph showing
operations between variables and constants

f@earb £o)= ob foi= wix,

Computational Graph for Least Squares

 Nodes are variables/constants/results of operation

L= w-yl Sl =159\

XN

. /'G)" g\\)@—) r-e.-a \\r\\ @+
“‘ p 1¥|

1

Ixy

Computational Graph for Neural Nets

Jacoblans

» Generalizes gradients for multi-output functions
A AN nd n 3\\(‘:3)

BRoR SRR

v.f_(w) — g\rw\ien‘t. 99 \g}\

I e -
= gi‘:- 30\60\'.»'\0\«\ 9\”‘3 %\ "
W A C__ —
O
- — ?‘."1

Multi-Variate Chain Rule
A =4u-yl 4415 j\\

Xfccé % f\@’\ ?W“

nxd

v G .—a Irl —>®—>|f

}'3\ A -:é ‘ ax\ 2 / |
a'F (P

of _ 9y or Al of
'i'" T W 9 9l
2\

dxn nxn nxt x|

oW
]

« Gradient is a product of Jacobians!
* Chain rule := recursive computation of Jacobians

217

Backpropagation (A7)

« Overview of how we compute neural network gradient:

— Forward propagation:
« Compute z* from x..
« Compute z,? from z{v.

« Compute §; from z(m, and use this to compute error.

— Backpropagation:
« Compute gradient with respect to regression weights ‘v’.
« Compute gradient with respect to z{™ weights WM,
« Compute gradient with respect to z(m1) weights w(m-1),

« Compute gradient with respect to z) weights W),
- “Backpropagation” is plus some

Backpropagation
Do you need to know how to do this?

Yes you should understand
backprop

-3‘ Andre| Karpathy Dec19, 2016 - T min read

- Implementing backpropagation is usually part of
graduate courses involving deep learning
(e.g. CPSC 532/533 variants)

32

“Differentiable Programming”

“Automatic differentiation” (A7) is standard practice for optimization
— Get gradient with backward(), not by hand-crafted definition of ‘g’

“Differentiable programming”: lets us focus on writing high-level code and
reason about variable interactions without worrying about gradients
— TensorFlow, Torch, MXNet, Theanos, Zygote, AutoGrad, etc.

Coding on whiteboard with symbols is easy once things are differentiable
A
N IS \ Z'\ A
i — Z— % &« £ K= Z=Y

deep neural net autoencoder GANSs

Backpropagation

You should know cost of backpropagation:
— Forward pass dominated by matrix multiplications by W®, W@, WG and ‘v’.
— Backward pass has same cost as forward pass.

34

Multi-Output Models

- We've focused on single-output models so far:

gy=Xw Fw=1 Xwo—yll*

nxl naxd dxl

« Multi-output models are straightforward (for ‘q’-dimensional output):

Y X\NT W)= 5 [XW=Y)
nx nxd 2 F
5
- For neural networks, we replace the predictor’s weights ‘v’ by a matrix

— Many of our losses have “multi-output” equivalents
— Softmax loss is multi-output Logistic, “cross entropy” in neural network papers.

Deep Learning Vocabulary

“Deep learning”: Models with many hidden layers.
— Usually neural networks.

“Neuron”: node in the neural network graph.
— “Visible unit”: feature.
— “Hidden unit”: latent factor z, or h(z,).

“Activation function”: non-linear transform.

“Activation”: h(z).

“Backpropagation”: compute gradient of neural network.

— Sometimes “backpropagation” means “training with SGD”.

“Weight decay”: L2-regularization.

“Cross entropy”: softmax loss.

“Learning rate”: SGD step-size.

“Learning rate decay”: using decreasing step-sizes.

“Vanishing gradient”: underflow/overflow during gradient calculation.

OPTIMIZATION OF NEURAL NETS

ImageNet Challenge and Optimization

ImageNet organizer visited UBC summer 2015.

“Besides huge dataset/model/cluster, what is the most important?”
1. Data augmentation (translation, rotation, scaling, Lighting, etc.).

2. Optimization.

why would optimization be so important?

— Neural network objectives are highly non-convex (and worse with depth).
— Optimization has huge influence on quality of model.

Stochastic Gradient Training

- Challenging to make SG work:
— Often doesn’t work as a “black box” learning algorithm.
— But people have developed a lot of tricks/modifications to make it work.

- f is highly non-convex, so are local mimina the problem?
— Some empirical/theoretical evidence that local minima are not the problem.
— If the network is “deep” and “wide” enough, we think all local minima are good.
— But it can be hard to get SG to close to a local minimum in reasonable time.

Parameter space

Parameter Initialization

Parameter initialization is crucial:
— Can’t initialize weights in same layer to same value, or they will stay same.
— Can't initialize weights too large, it will take too long to learn.

A traditional random initialization:
— Initialize bias variables to 0.

— Sample from standard normal, divided by 10° (0.00001*randn).
e w = .00001*randn(k,l)
— Performing multiple initializations does not seem to be important.

self.W = scale * np.random.randn(output_dim, input_dim)

self.b = np.zeros(output_dim)

encoders.py

40

Standardization is Important

Also common to transform data in various ways:
— standardize X, “whiten”, standardize Y.

More recent initializations try to standardize initial z;:
— Use different initialization in each layer.

— Try to make variance of z; the same across layers.
« Popular approach is to sample from standard normal, divide by sqrt(2*n_inputs).

— Use samples from uniform distribution on [-b,b], where 1)' {6'

——mm——

41

Setting the Step Size

Stochastic gradient is very sensitive to the step size in deep models.

Common approach: manual “babysitting” of the step-size.
— Run SG for a while with a fixed step-size.
— Occasionally measure error and plot progress:

— ACfeM}c o(t

» \——‘7 detrenst ot
.

fi’i’a/‘

—

Time

— If error is not decreasing, decrease step-size.

42

Setting the Step-Size

- Stochastic gradient is very sensitive to the step size in deep models.
- Bias step-size multiplier: use bigger step-size for the bias variables.

« Momentum (stochastic version of “heavy-ball” algorithm):
— Add term that moves in previous direction:

\/\/64' = We - o(tVE (Wt) -+ ﬂt(wé’wt-l)
(o keep qam i fh

— Usually gt = 0.9. old direclion

Gradient Descent vs. Heavy-Ball Method

Gr*mc[ifﬂ‘f Method Heol'.,ry-baﬂ Method

O

w? ",

44

Gradient Descent vs. Heavy-Ball Method

Gr*caciifﬂ‘f Method Heol'.,ry-baﬂ Method
w’ w®
. W
5

45

Gradient Descent vs. Heavy-Ball Method

Gr*caciifﬂ‘f Method Heol'.,ry-baﬂ Method

46

Gradient Descent vs. Heavy-Ball Method

Gr*mc[ifﬂ‘f Method Heol'.,ry-baﬂ Method

417

Gradient Descent vs. Heavy-Ball Method

Gr*mc[ifﬂ‘f Method Heol'.,ry-baﬂ Method

48

Gradient Descent vs. Heavy-Ball Method

Gr*mc[ifﬂ‘f Method Heol'.,ry-baﬂ Method

49

Gradient Descent vs. Heavy-Ball Method

Gr*mc[ifﬂ‘f Method Heq'./y*'bau Method

50

Gradient Descent vs. Heavy-Ball Method

Gr*cnclifﬂ‘f Method Heq'./y*'bau Method

wr_;mﬁ o e o/
ﬁoumm

Sl

Bottou Trick

 Bottou Trick: automated step size search

1. Grab a small set of training examples (maybe 5% of total).
2. Do a binary search for a step size that works well on them.
3. Use this step size for a long time (or slowly decrease it from there).

SGD Variants and Batching

- Several recent SGD variants using a step size for each variable:
— AdaGrad, RMSprop, Adam (often work better “out of the box").

— Seem to be losing popularity to vanilla SGD (often with momentum).
- SGD often yields lower test (requires more tuning of step-size though)

« Batch size (hnumber of random examples) also influences results.
— Bigger batch sizes often give faster convergence but maybe to worse solutions?

 Another recent trick is batch normalization:
— Try to “standardize” the hidden units within the random samples as we go.

— Held as example of deep learning “alchemy” (blog post here about deep learning claims).
« Sounds science-ey and often works but little theoretical justification/understanding.

https://www.youtube.com/watch?v=Qi1Yry33TQE
http://www.argmin.net/2018/01/25/optics

OTHER ACTIVATION FUNCTIONS

Vanishing Gradient Problem

Consider the sigmoid function:

O
Away from the origin, the gradient is nearly zero.

The problem gets worse when you take the sigmoid of a sigmoid:

O

In deep networks, many gradients can be nearly zero everywhere.

55

Rectified Linear Units (RelLU)

- Replace sigmoid with perceptron Loss (ReLU):
max?O)z,-ci

I

/ ‘]" erp(zi)

« Just sets negative values z,_ to zero.
— Fixes vanishing gradient problem.
— Gives sparser activations.

— Not really simulating binary signal, but could be simulating “rate coding”.
56

“Swish” Activiation

« Recent work searched for “best” activation:

Vs

« Found that z,_/(1+exp(-z,)) worked best (“swish” function).

]"Wf(e

-5

— A Dbit weird because it allows negative values and is non-monotonic.

— But basically the same as ReLU when not close to 0.

57

gigmoid Tanh Gtep Fuhction

SO i

,I 0' AN

Y1 = Fowih) 87 4,

ReLU Softsign ELU

p=y

al(e-1) ,*<0

= X ‘3 . A N3
97 Axix)) °
wish
> ginc Leaky ReLU

Y= Mo (04%,x)

Softplus

/‘
_&4

o
—

te = ,eh. (4*"6"‘)

[Log of Sigmoid

7Y =X (+owmlr (sOFEPIUS ())

summary

Unprecedented performance on difficult pattern recognition tasks.
Backpropagation computes neural network gradient via chain rule.
Parameter initialization is crucial to neural net performance.

Optimization and step size are crucial to neural net performance.
— “Babysitting”, momentum.
ReLU avoid “vanishing gradients”.

Next time: The most important idea in computer vision?

Please do course evaluation!

Autoencoders

« Autoencoders are an unsupervised deep Learning model:
— Use the inputs as the output of the neural network.

encoder decoder

wl w2 w2’ w1’

— Middle layer could be latent features in non-lLinear latent-factor model.
« Can do outlier detection, data compression, visualization, etc.

— A non-linear generalization of PCA.
« Equivalent to PCA if you don’t have non-linearities.

https://www.cs.toronto.edu/~hinton/science.pdf

Autoencoders

AU\"DQV\ Coder

European Community

Interbank markets monetary/economic

- g *
]
n'g Y Disasters and
= » "+ accidents
“s 3N

a®

Leading economic® .~ 5.7 k e - Legal/judicial
indicators v .?' *gé - %‘\ »

.

- Government
 § :“"F‘

Accounts/ . -h‘-"‘-"‘} borrowings
eamings 1*

]
-

62

Denoising Autoencoder

- Denoising autoencoders add noise to the input:

+5I | . |
O\ 2 /A0
NSNS ON G
= A AR A0 =
@ .4)\
}{34{ z \ / ! x3'
H

— Learns a model that can remove the noise.

	CPSC 340:�Machine Learning and Data Mining
	Admin
	In This Lecture
	Last Time: Deep Learning
	ImageNet Challenge
	ImageNet Challenge
	ImageNet Challenge
	ImageNet Challenge
	ImageNet Challenge
	ImageNet Challenge
	ImageNet Challenge
	ImageNet Challenge
	Deep Learning Practicalities
	Adding Bias Variables
	Adding Bias Variables
	Adding Bias Variables
	Adding Bias Variables
	Adding Bias Variables
	Multi-variate Chain Rule and Backpropagation
	Training Neural Networks
	What is Backpropagation?
	Andrej Karpathy’s Backpropagation Lecture
	Computational Graph
	Computational Graph for Least Squares
	Computational Graph for Neural Nets
	Jacobians
	Multi-Variate Chain Rule
	Backpropagation (A7)
	Backpropagation
	“Differentiable Programming”
	Backpropagation
	Multi-Output Models
	Deep Learning Vocabulary
	Optimization of neural nets
	ImageNet Challenge and Optimization
	Stochastic Gradient Training
	Parameter Initialization
	Standardization is Important
	Setting the Step Size
	Setting the Step-Size
	Gradient Descent vs. Heavy-Ball Method
	Gradient Descent vs. Heavy-Ball Method
	Gradient Descent vs. Heavy-Ball Method
	Gradient Descent vs. Heavy-Ball Method
	Gradient Descent vs. Heavy-Ball Method
	Gradient Descent vs. Heavy-Ball Method
	Gradient Descent vs. Heavy-Ball Method
	Gradient Descent vs. Heavy-Ball Method
	Bottou Trick
	SGD Variants and Batching
	Other Activation Functions
	Vanishing Gradient Problem
	Rectified Linear Units (ReLU)
	“Swish” Activiation
	Slide Number 58
	Summary
	Please do course evaluation!
	Autoencoders
	Autoencoders
	Denoising Autoencoder

