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Admin
• Last day of classes!

– Please fill out course evaluation
• Friday: 

– A6 due 11:55pm
– A7 released (hopefully)

• Final Prep Megathread on Piazza
• Should we do an official review on Monday?

– Do the Piazza poll
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In This Lecture
1. ImageNet Challenge
2. Backpropagation
3. Training Neural Nets
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Last Time: Deep Learning

https://en.wikipedia.org/wiki/Neuron
https://www.youtube.com/watch?v=aircAruvnKk
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https://www.youtube.com/watch?v=aircAruvnKk&t=300s


IMAGENET CHALLENGE
Coming Up Next
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ImageNet Challenge 
• Millions of labeled images, 1000 object classes.

http://www.image-net.org/challenges/LSVRC/2014/
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ImageNet Challenge 
• Object detection task:

– Single label per image.
– Humans: ~5% error.

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements/
http://arxiv.org/pdf/1409.0575v3.pdf
http://arxiv.org/pdf/1409.4842v1.pdf
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ImageNet Challenge 
• Object detection task:

– Single label per image.
– Humans: ~5% error.

• 2015: Won by Microsoft Asia
– 3.6% error.
– 152 layers, introduced “ResNets”.
– Also won “localization” (finding location of objects in images).

• 2016: Chinese University of Hong Kong:
– Ensembles of previous winners and other existing methods.

• 2017: fewer entries, organizers decided this would be last year.

http://www.themtank.org/a-year-in-computer-vision
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Deep Learning Practicalities
• This lecture focus on deep learning practical issues: 

– Backpropagation to compute gradients.
– Stochastic gradient training.
– Regularization to avoid overfitting.

• Next lecture:
– Special ‘W’ restrictions to further avoid overfitting.

13



ADDING BIAS VARIABLES
Coming Up Next
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• Recall fitting line regression with a bias:

– We did this by adding ______________ to X.

Adding Bias Variables

Q: How do we do this 
with neural nets?
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• In neural networks we often want a bias on the output:

• But we also often also include biases on each zic:

Adding Bias Variables

Q: How do we include bias to 
matrix multiplication?
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• In neural networks we often want a bias on the output:

• But we also often also include biases on each zic:

Adding Bias Variables

Q: What does it mean when 𝛽𝛽𝑐𝑐 is 
large in positive/negative directions? 
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Adding Bias Variables

18



MULTI-VARIATE CHAIN RULE AND 
BACKPROPAGATION
Coming Up Next
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Training Neural Networks
• With squared loss and 1 hidden layer, our objective function is:

• Usual training procedure: stochastic gradient.
– Compute gradient of random example ‘i’, update both ‘v’ and ‘W’.
– f is highly non-convex and optimizer can be difficult to tune.

Q: How do we compute the gradients?
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What is Backpropagation?
• Computing the gradient is known as “backpropagation”.

– Video giving motivation here.
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https://www.youtube.com/watch?v=Ilg3gGewQ5U


Andrej Karpathy’s Backpropagation Lecture
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https://www.youtube.com/watch?v=i94OvYb6noo

https://www.youtube.com/watch?v=i94OvYb6noo


Computational Graph
• “Computational graph”: directed graph showing 

operations between variables and constants
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Computational Graph for Least Squares
• Nodes are variables/constants/results of operation
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Computational Graph for Neural Nets
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Jacobians
• Generalizes gradients for multi-output functions
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Multi-Variate Chain Rule

• Gradient is a product of Jacobians!
• Chain rule := recursive computation of Jacobians
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Backpropagation (A7)
• Overview of how we compute neural network gradient:

– Forward propagation:
• Compute zi(1) from xi.
• Compute zi(2) from zi(1).
• …
• Compute �𝑦𝑦i from zi(m), and use this to compute error.

– Backpropagation:
• Compute gradient with respect to regression weights ‘v’.
• Compute gradient with respect to zi(m) weights W(m).
• Compute gradient with respect to zi(m-1) weights W(m-1).
• …
• Compute gradient with respect to zi(1) weights W(1).

• “Backpropagation” is ____________ plus some ____________________.
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Backpropagation
• Do you need to know how to do this?

• Implementing backpropagation is usually part of 
graduate courses involving deep learning
(e.g. CPSC 532/533 variants)
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“Differentiable Programming”
• “Automatic differentiation” (A7) is standard practice for optimization

– Get gradient with backward(), not by hand-crafted definition of ‘g’

• “Differentiable programming”: lets us focus on writing high-level code and 
reason about variable interactions without worrying about gradients

– TensorFlow, Torch, MXNet, Theanos, Zygote, AutoGrad, etc.

• Coding on whiteboard with symbols is easy once things are differentiable
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Backpropagation
• You should know cost of backpropagation:

– Forward pass dominated by matrix multiplications by W(1), W(2), W(3), and ‘v’.
– Backward pass has same cost as forward pass.
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Multi-Output Models
• We’ve focused on single-output models so far:

• Multi-output models are straightforward (for ‘q’-dimensional output):

• For neural networks, we replace the predictor’s weights ‘v’ by a matrix
– Many of our losses have “multi-output” equivalents
– Softmax loss is multi-output logistic, “cross entropy” in neural network papers.
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Deep Learning Vocabulary
• “Deep learning”: Models with many hidden layers.

– Usually neural networks.
• “Neuron”: node in the neural network graph.

– “Visible unit”: feature.
– “Hidden unit”: latent factor zic or h(zic).

• “Activation function”: non-linear transform.
• “Activation”: h(zi).
• “Backpropagation”: compute gradient of neural network.

– Sometimes “backpropagation” means “training with SGD”.
• “Weight decay”: L2-regularization.
• “Cross entropy”: softmax loss.
• “Learning rate”: SGD step-size.
• “Learning rate decay”: using decreasing step-sizes.
• “Vanishing gradient”: underflow/overflow during gradient calculation.
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OPTIMIZATION OF NEURAL NETS
Coming Up Next
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ImageNet Challenge and Optimization
• ImageNet organizer visited UBC summer 2015.
• “Besides huge dataset/model/cluster, what is the most important?”

1. Data augmentation (translation, rotation, scaling, lighting, etc.).
2. Optimization.

• Why would optimization be so important?
– Neural network objectives are highly non-convex (and worse with depth). 
– Optimization has huge influence on quality of model.
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Stochastic Gradient Training
• Challenging to make SG work:

– Often doesn’t work as a “black box” learning algorithm.
– But people have developed a lot of tricks/modifications to make it work.

• f is highly non-convex, so are local mimina the problem?
– Some empirical/theoretical evidence that local minima are not the problem.
– If the network is “deep” and “wide” enough, we think all local minima are good.
– But it can be hard to get SG to close to a local minimum in reasonable time.
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Parameter Initialization
• Parameter initialization is crucial:

– Can’t initialize weights in same layer to same value, or they will stay same.
– Can’t initialize weights too large, it will take too long to learn.

• A traditional random initialization:
– Initialize bias variables to 0.
– Sample from standard normal, divided by 105 (0.00001*randn).

• w = .00001*randn(k,1)
– Performing multiple initializations does not seem to be important.
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encoders.py



Standardization is Important
• Also common to transform data in various ways:

– standardize X, “whiten”, standardize y.

• More recent initializations try to standardize initial zi:
– Use different initialization in each layer.
– Try to make variance of zi the same across layers.

• Popular approach is to sample from standard normal, divide by sqrt(2*n_inputs).
– Use samples from uniform distribution on [-b,b], where
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Setting the Step Size
• Stochastic gradient is very sensitive to the step size in deep models.
• Common approach: manual “babysitting” of the step-size.

– Run SG for a while with a fixed step-size.
– Occasionally measure error and plot progress:

– If error is not decreasing, decrease step-size.
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Setting the Step-Size
• Stochastic gradient is very sensitive to the step size in deep models.
• Bias step-size multiplier: use bigger step-size for the bias variables.
• Momentum (stochastic version of “heavy-ball” algorithm):

– Add term that moves in previous direction:

– Usually βt = 0.9.
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Gradient Descent vs. Heavy-Ball Method
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Gradient Descent vs. Heavy-Ball Method
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Gradient Descent vs. Heavy-Ball Method
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Gradient Descent vs. Heavy-Ball Method
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Gradient Descent vs. Heavy-Ball Method
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Gradient Descent vs. Heavy-Ball Method
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Gradient Descent vs. Heavy-Ball Method
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Gradient Descent vs. Heavy-Ball Method
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Bottou Trick
• Bottou Trick: automated step size search 

1. Grab a small set of training examples (maybe 5% of total).
2. Do a binary search for a step size that works well on them.
3. Use this step size for a long time (or slowly decrease it from there).
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SGD Variants and Batching
• Several recent SGD variants using a step size for each variable:

– AdaGrad, RMSprop, Adam (often work better “out of the box”).
– Seem to be losing popularity to vanilla SGD (often with momentum).

• SGD often yields lower test (requires more tuning of step-size though)

• Batch size (number of random examples) also influences results.
– Bigger batch sizes often give faster convergence but maybe to worse solutions?

• Another recent trick is batch normalization:
– Try to “standardize” the hidden units within the random samples as we go.
– Held as example of deep learning “alchemy” (blog post here about deep learning claims).

• Sounds science-ey and often works but little theoretical justification/understanding.
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https://www.youtube.com/watch?v=Qi1Yry33TQE
http://www.argmin.net/2018/01/25/optics


OTHER ACTIVATION FUNCTIONS
Coming Up Next
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Vanishing Gradient Problem
• Consider the sigmoid function:

• Away from the origin, the gradient is nearly zero.
• The problem gets worse when you take the sigmoid of a sigmoid:

• In deep networks, many gradients can be nearly zero everywhere.
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Rectified Linear Units (ReLU)
• Replace sigmoid with perceptron loss (ReLU):

• Just sets negative values zic to zero.
– Fixes vanishing gradient problem.
– Gives sparser activations.
– Not really simulating binary signal, but could be simulating “rate coding”.
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“Swish” Activiation
• Recent work searched for “best” activation:

• Found that zic/(1+exp(-zic)) worked best (“swish” function).
– A bit weird because it allows negative values and is non-monotonic.
– But basically the same as ReLU when not close to 0.
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Summary
• Unprecedented performance on difficult pattern recognition tasks.
• Backpropagation computes neural network gradient via chain rule.
• Parameter initialization is crucial to neural net performance.
• Optimization and step size are crucial to neural net performance.

– “Babysitting”, momentum.
• ReLU avoid “vanishing gradients”.

• Next time: The most important idea in computer vision?
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Please do course evaluation!
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• Autoencoders are an unsupervised deep learning model:
– Use the inputs as the output of the neural network.

– Middle layer could be latent features in non-linear latent-factor model.
• Can do outlier detection, data compression, visualization, etc.

– A non-linear generalization of PCA.
• Equivalent to PCA if you don’t have non-linearities.

Autoencoders

http://inspirehep.net/record/1252540/plots
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Autoencoders

https://www.cs.toronto.edu/~hinton/science.pdf
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• Denoising autoencoders add noise to the input:

– Learns a model that can remove the noise.

Denoising Autoencoder

http://inspirehep.net/record/1252540/plots
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