
CPSC 340:
Machine Learning and Data Mining

More Deep Learning
Summer 2021

1



Admin
• Last day of classes!

– Please fill out course evaluation
• Friday: 

– A6 due 11:55pm
– A7 released (hopefully)

• Final Prep Megathread on Piazza
• Should we do an official review on Monday?

– Do the Piazza poll

2



In This Lecture
1. ImageNet Challenge
2. Backpropagation
3. Training Neural Nets

3



Last Time: Deep Learning

https://en.wikipedia.org/wiki/Neuron
https://www.youtube.com/watch?v=aircAruvnKk

4

https://www.youtube.com/watch?v=aircAruvnKk&t=300s


IMAGENET CHALLENGE
Coming Up Next

5



ImageNet Challenge 
• Millions of labeled images, 1000 object classes.

http://www.image-net.org/challenges/LSVRC/2014/
6



ImageNet Challenge 
• Object detection task:

– Single label per image.
– Humans: ~5% error.

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements/
http://arxiv.org/pdf/1409.0575v3.pdf
http://arxiv.org/pdf/1409.4842v1.pdf

7



ImageNet Challenge 
• Object detection task:

– Single label per image.
– Humans: ~5% error.

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements/
http://arxiv.org/pdf/1409.0575v3.pdf
http://arxiv.org/pdf/1409.4842v1.pdf

8



ImageNet Challenge 
• Object detection task:

– Single label per image.
– Humans: ~5% error.

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements/
http://arxiv.org/pdf/1409.0575v3.pdf
http://arxiv.org/pdf/1409.4842v1.pdf

9



ImageNet Challenge 
• Object detection task:

– Single label per image.
– Humans: ~5% error.

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements/
http://arxiv.org/pdf/1409.0575v3.pdf
http://arxiv.org/pdf/1409.4842v1.pdf

10



ImageNet Challenge 
• Object detection task:

– Single label per image.
– Humans: ~5% error.

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements/
http://arxiv.org/pdf/1409.0575v3.pdf
http://arxiv.org/pdf/1409.4842v1.pdf

11



ImageNet Challenge 
• Object detection task:

– Single label per image.
– Humans: ~5% error.

• 2015: Won by Microsoft Asia
– 3.6% error.
– 152 layers, introduced “ResNets”.
– Also won “localization” (finding location of objects in images).

• 2016: Chinese University of Hong Kong:
– Ensembles of previous winners and other existing methods.

• 2017: fewer entries, organizers decided this would be last year.

http://www.themtank.org/a-year-in-computer-vision
12



Deep Learning Practicalities
• This lecture focus on deep learning practical issues: 

– Backpropagation to compute gradients.
– Stochastic gradient training.
– Regularization to avoid overfitting.

• Next lecture:
– Special ‘W’ restrictions to further avoid overfitting.

13



ADDING BIAS VARIABLES
Coming Up Next

14



• Recall fitting line regression with a bias:

– We did this by adding ______________ to X.

Adding Bias Variables

Q: How do we do this 
with neural nets?

15



• In neural networks we often want a bias on the output:

• But we also often also include biases on each zic:

Adding Bias Variables

Q: How do we include bias to 
matrix multiplication?

16



• In neural networks we often want a bias on the output:

• But we also often also include biases on each zic:

Adding Bias Variables

Q: What does it mean when 𝛽𝛽𝑐𝑐 is 
large in positive/negative directions? 

17



Adding Bias Variables

18



MULTI-VARIATE CHAIN RULE AND 
BACKPROPAGATION
Coming Up Next

19



Training Neural Networks
• With squared loss and 1 hidden layer, our objective function is:

• Usual training procedure: stochastic gradient.
– Compute gradient of random example ‘i’, update both ‘v’ and ‘W’.
– f is highly non-convex and optimizer can be difficult to tune.

Q: How do we compute the gradients?

20



What is Backpropagation?
• Computing the gradient is known as “backpropagation”.

– Video giving motivation here.

21

https://www.youtube.com/watch?v=Ilg3gGewQ5U


Andrej Karpathy’s Backpropagation Lecture

22

https://www.youtube.com/watch?v=i94OvYb6noo

https://www.youtube.com/watch?v=i94OvYb6noo


Computational Graph
• “Computational graph”: directed graph showing 

operations between variables and constants

23



Computational Graph for Least Squares
• Nodes are variables/constants/results of operation

24



Computational Graph for Neural Nets

25



Jacobians
• Generalizes gradients for multi-output functions

26



Multi-Variate Chain Rule

• Gradient is a product of Jacobians!
• Chain rule := recursive computation of Jacobians

27



Backpropagation (A7)
• Overview of how we compute neural network gradient:

– Forward propagation:
• Compute zi(1) from xi.
• Compute zi(2) from zi(1).
• …
• Compute �𝑦𝑦i from zi(m), and use this to compute error.

– Backpropagation:
• Compute gradient with respect to regression weights ‘v’.
• Compute gradient with respect to zi(m) weights W(m).
• Compute gradient with respect to zi(m-1) weights W(m-1).
• …
• Compute gradient with respect to zi(1) weights W(1).

• “Backpropagation” is ____________ plus some ____________________.
28



Backpropagation
• Do you need to know how to do this?

• Implementing backpropagation is usually part of 
graduate courses involving deep learning
(e.g. CPSC 532/533 variants)

32



“Differentiable Programming”
• “Automatic differentiation” (A7) is standard practice for optimization

– Get gradient with backward(), not by hand-crafted definition of ‘g’

• “Differentiable programming”: lets us focus on writing high-level code and 
reason about variable interactions without worrying about gradients

– TensorFlow, Torch, MXNet, Theanos, Zygote, AutoGrad, etc.

• Coding on whiteboard with symbols is easy once things are differentiable

33

deep neural net autoencoder GANs



Backpropagation
• You should know cost of backpropagation:

– Forward pass dominated by matrix multiplications by W(1), W(2), W(3), and ‘v’.
– Backward pass has same cost as forward pass.

34



Multi-Output Models
• We’ve focused on single-output models so far:

• Multi-output models are straightforward (for ‘q’-dimensional output):

• For neural networks, we replace the predictor’s weights ‘v’ by a matrix
– Many of our losses have “multi-output” equivalents
– Softmax loss is multi-output logistic, “cross entropy” in neural network papers.

35



Deep Learning Vocabulary
• “Deep learning”: Models with many hidden layers.

– Usually neural networks.
• “Neuron”: node in the neural network graph.

– “Visible unit”: feature.
– “Hidden unit”: latent factor zic or h(zic).

• “Activation function”: non-linear transform.
• “Activation”: h(zi).
• “Backpropagation”: compute gradient of neural network.

– Sometimes “backpropagation” means “training with SGD”.
• “Weight decay”: L2-regularization.
• “Cross entropy”: softmax loss.
• “Learning rate”: SGD step-size.
• “Learning rate decay”: using decreasing step-sizes.
• “Vanishing gradient”: underflow/overflow during gradient calculation.

36



OPTIMIZATION OF NEURAL NETS
Coming Up Next

37



ImageNet Challenge and Optimization
• ImageNet organizer visited UBC summer 2015.
• “Besides huge dataset/model/cluster, what is the most important?”

1. Data augmentation (translation, rotation, scaling, lighting, etc.).
2. Optimization.

• Why would optimization be so important?
– Neural network objectives are highly non-convex (and worse with depth). 
– Optimization has huge influence on quality of model.

38



Stochastic Gradient Training
• Challenging to make SG work:

– Often doesn’t work as a “black box” learning algorithm.
– But people have developed a lot of tricks/modifications to make it work.

• f is highly non-convex, so are local mimina the problem?
– Some empirical/theoretical evidence that local minima are not the problem.
– If the network is “deep” and “wide” enough, we think all local minima are good.
– But it can be hard to get SG to close to a local minimum in reasonable time.

39
Parameter space



Parameter Initialization
• Parameter initialization is crucial:

– Can’t initialize weights in same layer to same value, or they will stay same.
– Can’t initialize weights too large, it will take too long to learn.

• A traditional random initialization:
– Initialize bias variables to 0.
– Sample from standard normal, divided by 105 (0.00001*randn).

• w = .00001*randn(k,1)
– Performing multiple initializations does not seem to be important.

40

encoders.py



Standardization is Important
• Also common to transform data in various ways:

– standardize X, “whiten”, standardize y.

• More recent initializations try to standardize initial zi:
– Use different initialization in each layer.
– Try to make variance of zi the same across layers.

• Popular approach is to sample from standard normal, divide by sqrt(2*n_inputs).
– Use samples from uniform distribution on [-b,b], where

41



Setting the Step Size
• Stochastic gradient is very sensitive to the step size in deep models.
• Common approach: manual “babysitting” of the step-size.

– Run SG for a while with a fixed step-size.
– Occasionally measure error and plot progress:

– If error is not decreasing, decrease step-size.

42



Setting the Step-Size
• Stochastic gradient is very sensitive to the step size in deep models.
• Bias step-size multiplier: use bigger step-size for the bias variables.
• Momentum (stochastic version of “heavy-ball” algorithm):

– Add term that moves in previous direction:

– Usually βt = 0.9.

43



Gradient Descent vs. Heavy-Ball Method

44



Gradient Descent vs. Heavy-Ball Method

45



Gradient Descent vs. Heavy-Ball Method

46



Gradient Descent vs. Heavy-Ball Method

47



Gradient Descent vs. Heavy-Ball Method

48



Gradient Descent vs. Heavy-Ball Method

49



Gradient Descent vs. Heavy-Ball Method

50



Gradient Descent vs. Heavy-Ball Method

51



Bottou Trick
• Bottou Trick: automated step size search 

1. Grab a small set of training examples (maybe 5% of total).
2. Do a binary search for a step size that works well on them.
3. Use this step size for a long time (or slowly decrease it from there).

52



SGD Variants and Batching
• Several recent SGD variants using a step size for each variable:

– AdaGrad, RMSprop, Adam (often work better “out of the box”).
– Seem to be losing popularity to vanilla SGD (often with momentum).

• SGD often yields lower test (requires more tuning of step-size though)

• Batch size (number of random examples) also influences results.
– Bigger batch sizes often give faster convergence but maybe to worse solutions?

• Another recent trick is batch normalization:
– Try to “standardize” the hidden units within the random samples as we go.
– Held as example of deep learning “alchemy” (blog post here about deep learning claims).

• Sounds science-ey and often works but little theoretical justification/understanding.

53

https://www.youtube.com/watch?v=Qi1Yry33TQE
http://www.argmin.net/2018/01/25/optics


OTHER ACTIVATION FUNCTIONS
Coming Up Next

54



Vanishing Gradient Problem
• Consider the sigmoid function:

• Away from the origin, the gradient is nearly zero.
• The problem gets worse when you take the sigmoid of a sigmoid:

• In deep networks, many gradients can be nearly zero everywhere.
55



Rectified Linear Units (ReLU)
• Replace sigmoid with perceptron loss (ReLU):

• Just sets negative values zic to zero.
– Fixes vanishing gradient problem.
– Gives sparser activations.
– Not really simulating binary signal, but could be simulating “rate coding”.

56



“Swish” Activiation
• Recent work searched for “best” activation:

• Found that zic/(1+exp(-zic)) worked best (“swish” function).
– A bit weird because it allows negative values and is non-monotonic.
– But basically the same as ReLU when not close to 0.

57



58



Summary
• Unprecedented performance on difficult pattern recognition tasks.
• Backpropagation computes neural network gradient via chain rule.
• Parameter initialization is crucial to neural net performance.
• Optimization and step size are crucial to neural net performance.

– “Babysitting”, momentum.
• ReLU avoid “vanishing gradients”.

• Next time: The most important idea in computer vision?

59



Please do course evaluation!

60



• Autoencoders are an unsupervised deep learning model:
– Use the inputs as the output of the neural network.

– Middle layer could be latent features in non-linear latent-factor model.
• Can do outlier detection, data compression, visualization, etc.

– A non-linear generalization of PCA.
• Equivalent to PCA if you don’t have non-linearities.

Autoencoders

http://inspirehep.net/record/1252540/plots
61



Autoencoders

https://www.cs.toronto.edu/~hinton/science.pdf
62



• Denoising autoencoders add noise to the input:

– Learns a model that can remove the noise.

Denoising Autoencoder

http://inspirehep.net/record/1252540/plots
63


	CPSC 340:�Machine Learning and Data Mining
	Admin
	In This Lecture
	Last Time: Deep Learning
	ImageNet Challenge
	ImageNet Challenge 
	ImageNet Challenge 
	ImageNet Challenge 
	ImageNet Challenge 
	ImageNet Challenge 
	ImageNet Challenge 
	ImageNet Challenge 
	Deep Learning Practicalities
	Adding Bias Variables
	Adding Bias Variables
	Adding Bias Variables
	Adding Bias Variables
	Adding Bias Variables
	Multi-variate Chain Rule and Backpropagation
	Training Neural Networks
	What is Backpropagation?
	Andrej Karpathy’s Backpropagation Lecture
	Computational Graph
	Computational Graph for Least Squares
	Computational Graph for Neural Nets
	Jacobians
	Multi-Variate Chain Rule
	Backpropagation (A7)
	Backpropagation
	“Differentiable Programming”
	Backpropagation
	Multi-Output Models
	Deep Learning Vocabulary
	Optimization of neural nets
	ImageNet Challenge and Optimization
	Stochastic Gradient Training
	Parameter Initialization
	Standardization is Important
	Setting the Step Size
	Setting the Step-Size
	Gradient Descent vs. Heavy-Ball Method
	Gradient Descent vs. Heavy-Ball Method
	Gradient Descent vs. Heavy-Ball Method
	Gradient Descent vs. Heavy-Ball Method
	Gradient Descent vs. Heavy-Ball Method
	Gradient Descent vs. Heavy-Ball Method
	Gradient Descent vs. Heavy-Ball Method
	Gradient Descent vs. Heavy-Ball Method
	Bottou Trick
	SGD Variants and Batching
	Other Activation Functions
	Vanishing Gradient Problem
	Rectified Linear Units (ReLU)
	“Swish” Activiation
	Slide Number 58
	Summary
	Please do course evaluation!
	Autoencoders
	Autoencoders
	Denoising Autoencoder

