CPSC 340: Machine Learning and Data Mining

Convolutional Neural Networks
Summer 2021

In This Lecture

- 1. Regularizing neural networks
- 2. Convolutional Neural Networks
- 3. Course Summary

Coming Up Next

MORE NEURAL NET ARCHITECTURES

"Residual" Networks (ResNets)

Impactful recent idea is residual networks (ResNets):

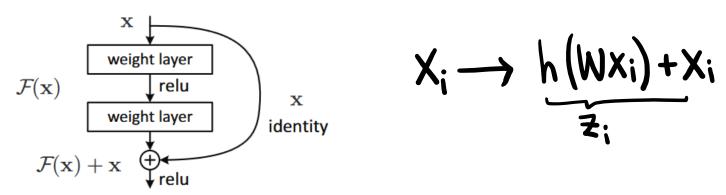


Figure 2. Residual learning: a building block.

- You can take previous (non-transformed) layer as input to current layer.
 - · Also called "skip connections" or "highway networks".
- Non-linear part of the network only needs to model residuals.
 - Non-linear parts are just "pushing up or down" a linear model in various places.
- This was a key idea behind first methods that used 100+ layers.
 - Evidence that biological networks have skip connections like this.
- Thanks to differentiable programming, this is surprisingly easy to do

DenseNet

- More recent variation is "DenseNets":
 - Each layer can see all the values from many previous layers.
 - Gets rid of vanishing gradients.
 - May get same performance with fewer parameters/layers.
- Thanks to differentiable programming, this is surprisingly easy to do

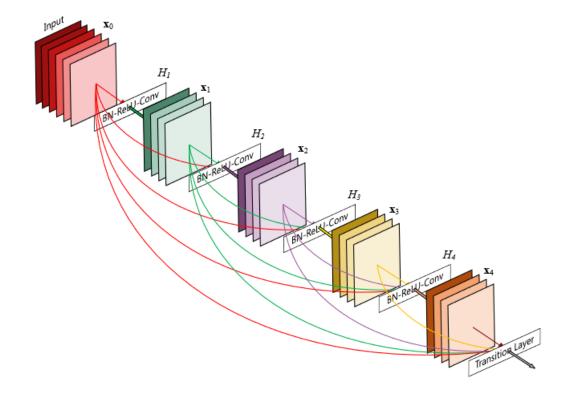


Figure 1: A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.

Deep Learning and the Fundamental Trade-Off

- Neural networks are subject to the fundamental trade-off:
 - With increasing depth, training error of global optima decreases.
 - With increasing depth, training error may poorly approximate test error.
- We want deep networks to model highly non-linear data.
 - But increasing the depth can lead to overfitting.
- How could GoogLeNet use 22 layers?
 - Many forms of regularization and keeping model complexity under control.
 - Unlike linear models, typically use multiple types of regularization.

Coming Up Next

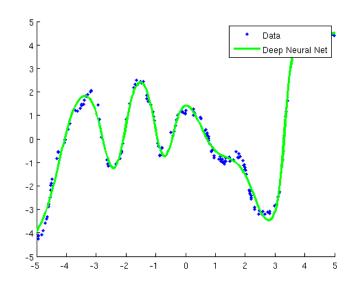
REGULARIZING NEURAL NETS

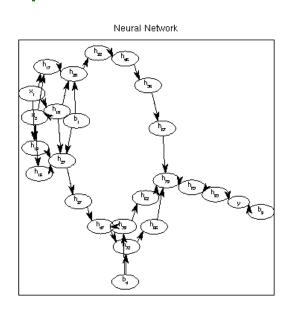
Standard Regularization

Traditionally, we've added our usual L2-regularizers:

$$f(v_{1}W^{(3)},W^{(2)},W^{(1)}) = \frac{1}{2} \sum_{i=1}^{2} \left(v_{1}^{7}h(W^{(3)}h(W^{(2)}h(W^{(1)}x_{i}))) - y_{i}^{3} \right)^{2} + \frac{1}{2} \frac$$

- L2-regularization often called "weight decay" in this context.
 - Could also use L1-regularization: gives sparse network.





Standard Regularization

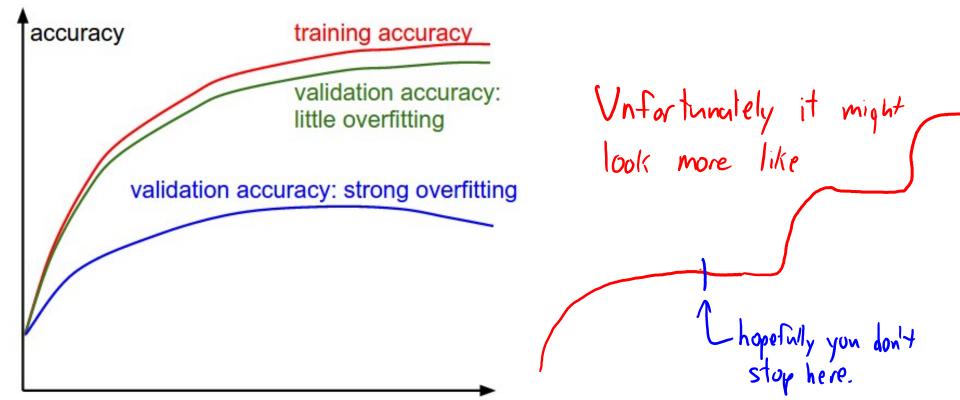
Traditionally, we've added our usual L2-regularizers:

$$f(v_1W^{(3)},W^{(2)},W^{(1)}) = \frac{1}{2} \sum_{i=1}^{n} (v_1h(W^{(3)}h(W^{(2)}h(W^{(1)}x_i))) - y_i)^2 + \frac{1}{2} ||w||^2 + \frac{1}{2} ||w^{(3)}||_F^2 + \frac{1}{2} ||w^{(2)}||_F^2 + \frac$$

- L2-regularization often called "weight decay" in this context.
 - Could also use L1-regularization: gives sparse network.
- Hyper-parameter optimization gets expensive:
 - Try to optimize validation error in terms of λ_1 , λ_2 , λ_3 , λ_4 .
 - In addition to step-size, number of layers, size of layers, initialization.
- Recent result:
 - Adding a regularizer in this way creates bad local optima.

Early Stopping

- Another common type of regularization is "early stopping":
 - Monitor the validation error as we run stochastic gradient.
 - Stop the algorithm if validation error starts increasing.

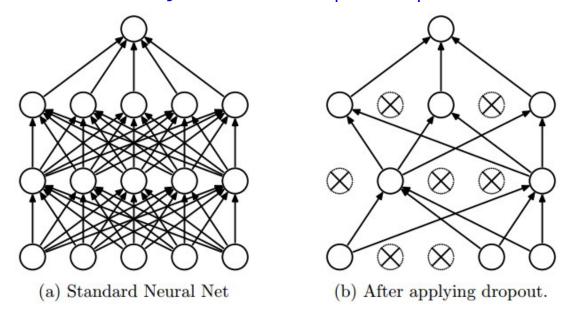


http://cs231n.github.io/neural-networks-3/

no estado contrata

Dropout

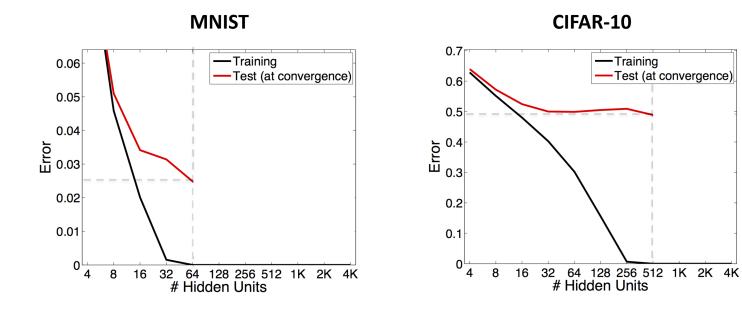
- Dropout is a more recent form of explicit regularization:
 - On each iteration, randomly set some x_i and z_i to zero (often use 50%).



- Adds invariance to missing inputs or latent factors
 - Encourages distributed representation rather than relying on specific z_i.
- Can be interpreted as an ensemble over networks with different parts missing.
- After a lot of success, dropout may already be going out of fashion.

"Hidden" Regularization in Neural Networks

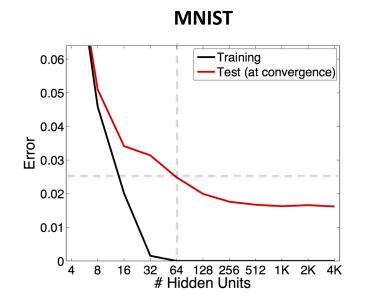
Fitting single-layer neural network with SGD and no regularization:

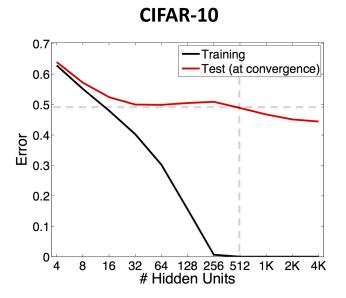


- Training goes to 0 with enough units: we're finding a global min.
- What should happen to training and test error for larger #hidden?

"Hidden" Regularization in Neural Networks

Fitting single-layer neural network with SGD and no regularization:





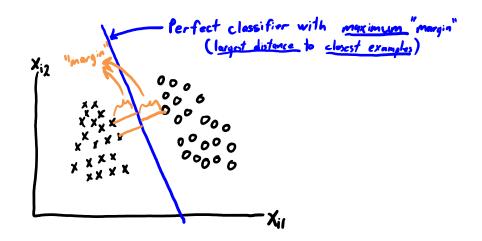
- Test error continues to go down!?! Where is fundamental trade-off??
- There exist global mins with large #hidden units have test error = 1.
 - But among the global minima, SGD is somehow converging to "good" ones.

Implicit Regularization of SGD

- There is growing evidence that using SGD regularizes parameters.
 - We call this the "implicit regularization" of the optimization algorithm.
- Beyond empirical evidence, we know this happens in simpler cases.
- Example of implicit regularization:
 - Consider a least squares problem where there exists a 'w' where Xw=y.
 - Residuals are all zero, we fit the data exactly.
 - You run [stochastic] gradient descent starting from w=0.
 - Converges to solution Xw=y that has the minimum L2-norm.
 - So using SGD is equivalent to L2-regularization here, but regularization is "implicit".

Implicit Regularization of SGD

- Example of implicit regularization:
 - Consider a logistic regression problem where data is linearly separable.
 - We can fit the data exactly.
 - You run gradient descent from any starting point.
 - Converges to max-margin solution of the problem.
 - So using gradient descent is equivalent to encouraging large margin.



Coming Up Next

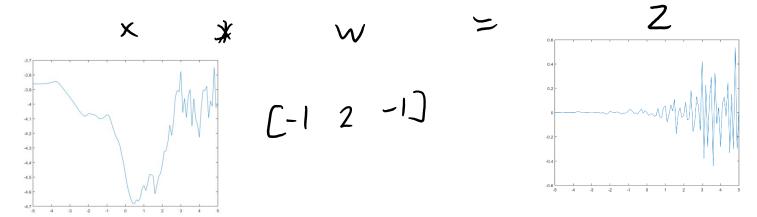
CONVOLUTIONAL NEURAL NETS

Deep Learning "Tricks of the Trade"

- We've discussed heuristics to make deep learning work:
 - Parameter initialization and data transformations.
 - Setting the step size(s) in stochastic gradient and using momentum.
 - ResNets and alternative non-linear functions like ReLU.
 - Different forms of regularization:
 - L2-regularization, early stopping, dropout, implicit regularization from SGD.
- These are often still not enough to get deep models working.
- Deep computer vision models are all convolutional neural networks:
 - The W^(m) are very sparse and have repeated parameters ("tied weights").
 - Drastically reduces number of parameters (speeds training, reduces overfitting).

1D Convolution as Matrix Multiplication

- 1D convolution:
 - Takes signal 'x' and filter 'w' to produces vector 'z':



– Can be written as a matrix multiplication:

1D Convolution as Matrix Multiplication

Each element of a convolution is an inner product:

$$Z_{i} = \sum_{j=-m}^{m} w_{j} x_{i+j}$$

$$= w^{T} x_{(i-m',i+m)}$$

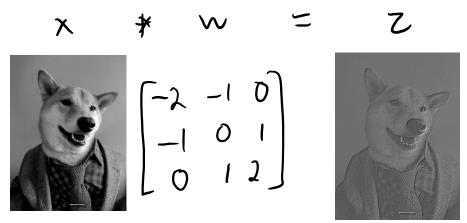
$$= \widetilde{w}^{T} x \quad \text{where } \widetilde{w} = [0 \ 0 \ 0]$$

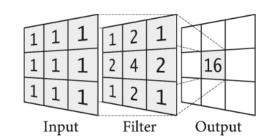
So convolution is a matrix multiplication (I'm ignoring boundaries):

- The shorter 'w' is, the more sparse the matrix is.
- Thanks to differentiable programming, this is surprisingly easy to do

2D Convolution as Matrix Multiplication

- 2D convolution:
 - Signal 'x', filter 'w', and output 'z' are now all images/matrices:



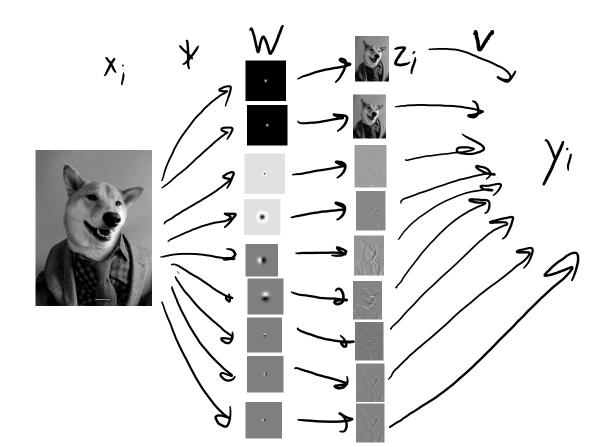


Vectorized 'z' can be written as a matrix multiplication with vectorized 'x':

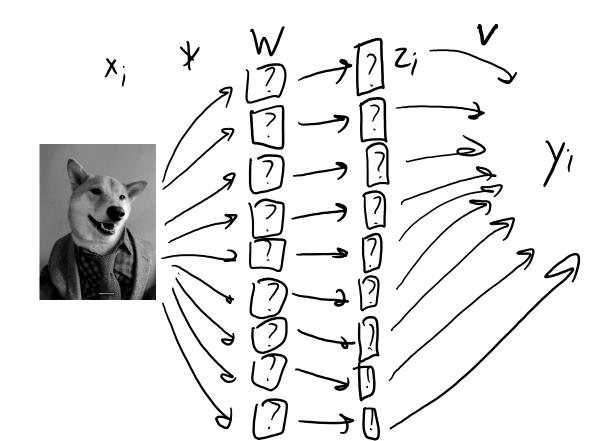
- Consider training neural networks on 256 by 256 images.
 - This is 256 by 256 by $3 \approx 200,000$ inputs.
- If first layer has k=10,000, then it has about 2 billion parameters.
 - We want to avoid this huge number (due to storage and overfitting).
- Key idea: make Wx_i act like several convolutions (to make it sparse):
 - 1. Each row of W only applies to part of x_i .
 - 2. Use the same parameters between rows.
- Forces most weights to be zero, reduces number of parameters.

$$w_1 = [0 \ 0 \ 0 \ -w \ -0 \ 0 \ 0]$$
 $w_2 = [0 \ -w \ -w \ -w \ -w \ 0]$

- Classic vision methods uses fixed convolutions as features:
 - Usually have different types/variances/orientations.
 - Can do subsampling or take maxes across locations/orientations/scales.

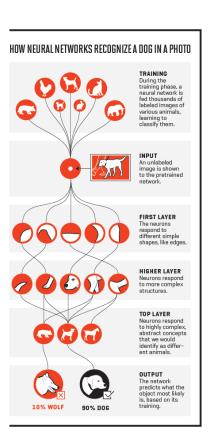


- Convolutional neural networks learn the convolutions:
 - Learning 'W' and 'v' automatically chooses types/variances/orientations.
 - Don't pick from fixed convolutions, but learn the elements of the filters.



- Convolutional neural networks learn the convolutions:
 - Learning 'W' and 'v' automatically chooses types/variances/orientations.
 - Can do multiple layers of convolution to get deep hierarchical features.





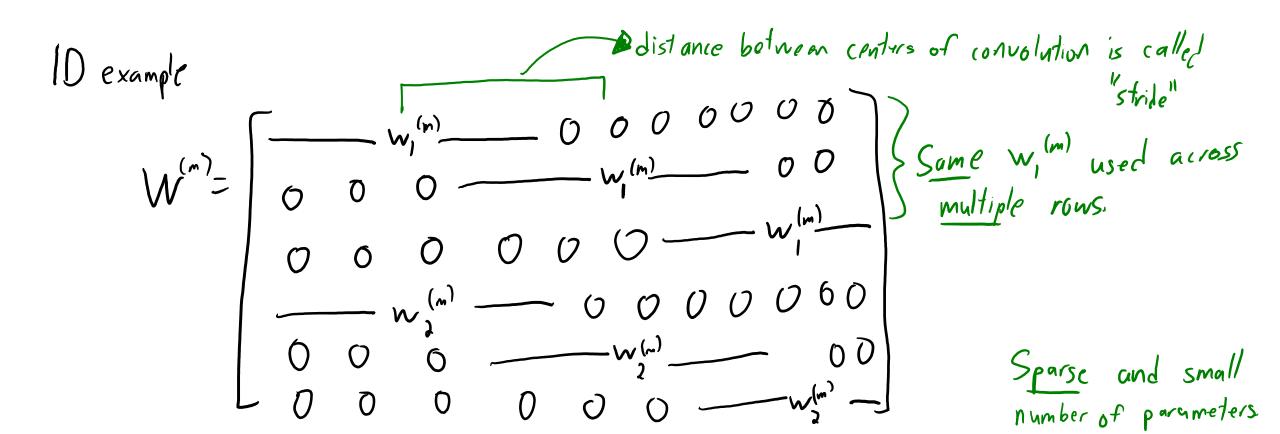
Convolutional Neural Networks

- Convolutional Neural Networks classically have 3 layer "types":
 - Fully connected layer: usual neural network layer with unrestricted W.

$$W^{(n)} = \begin{bmatrix} & & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & &$$

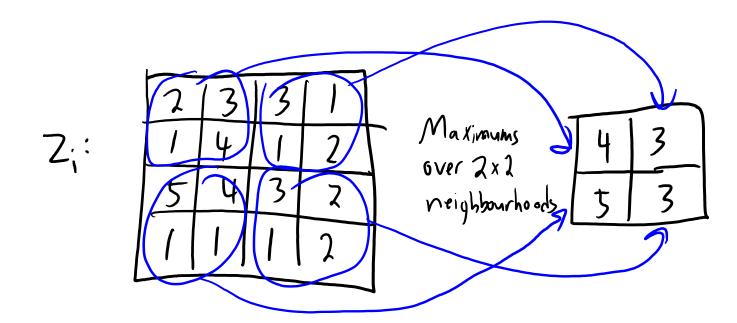
Convolutional Neural Networks

- Convolutional Neural Networks classically have 3 layer "types":
 - Fully connected layer: usual neural network layer with unrestricted W.
 - Convolutional layer: restrict W to act like several convolutions.

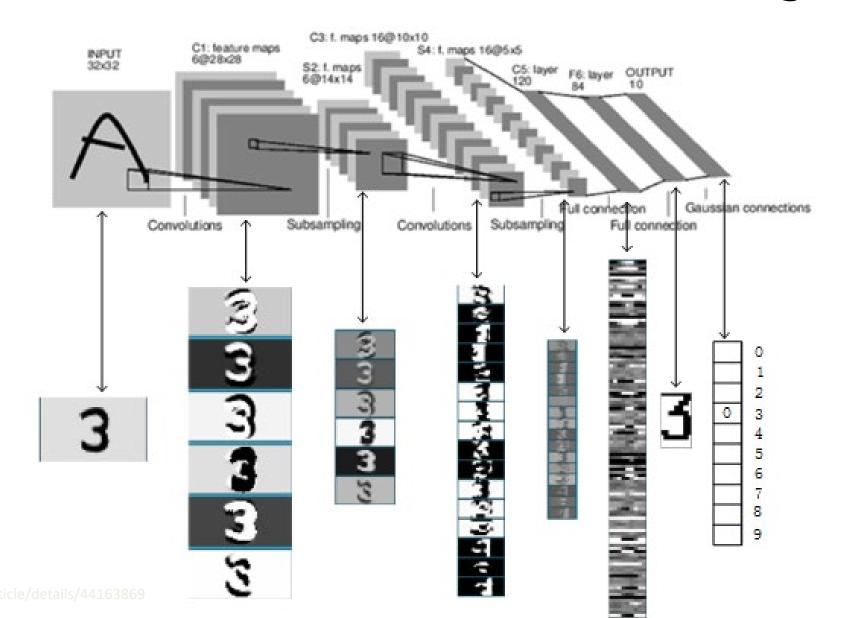


Convolutional Neural Networks

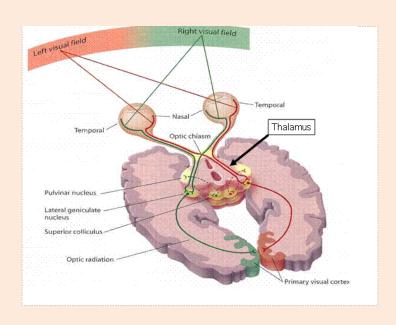
- Convolutional Neural Networks classically have 3 layer "types":
 - Fully connected layer: usual neural network layer with unrestricted W.
 - Convolutional layer: restrict W to act like several convolutions.
 - Pooling layer: combine results of convolutions.
 - Can add some invariance or just make the number of parameters smaller.
 - Usual choice is 'max pooling':

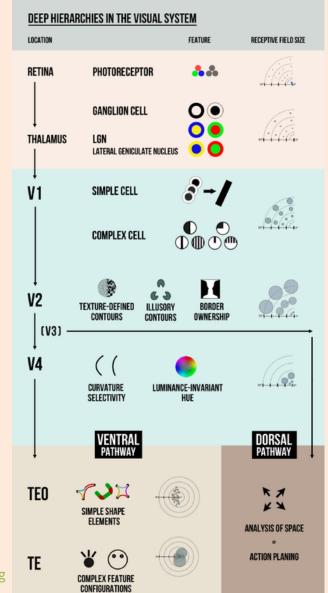


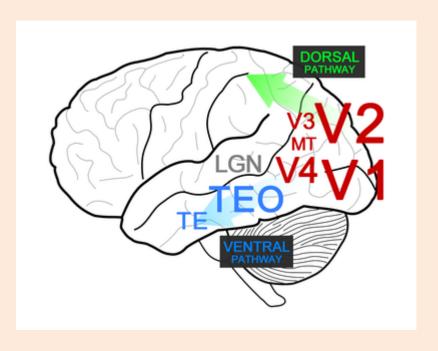
LeNet for Optical Character Recognition



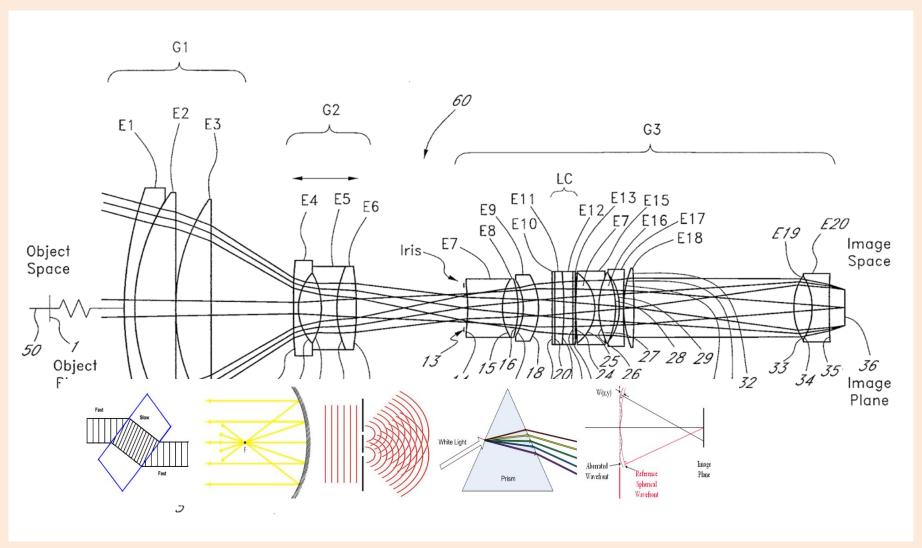
Deep Hierarchies in the Visual System







Deep Hierarchies in Optics



Coming Up Next

WORDS OF CAUTION

- For speech recognition and object detection:
 - No other methods have ever given the current level of performance.
 - Deep models continue to improve performance on these and related tasks.
 - We don't know how to scale up other universal approximators.
 - There is likely some overfitting to popular datasets like ImageNet.
 - Recent work showed accuracy drop of 4-10% by using a different test set on CIFAR 10.
- CNNs are now making their way into products.
 - Face recognition.
 - Amazon Go: https://www.youtube.com/watch?v=NrmMk1Myrxc
 - Trolling by French company Monoprix here.
 - Self-driving cars.

We're still missing a lot of theory and understanding deep learning.

```
From: Boris
To: Ali

On Friday, someone on another team changed the default rounding mode of some Tensorflow internals (from truncation to "round to even").*

*Our training broke. Our error rate went from <25% error to ~99.97% error (on a standard 0-1 binary loss).
```

"Good CS expert says: Most firms that thinks they want advanced AI/ML really just need linear regression on cleaned-up data."

- Despite high-level of abstraction, deep CNNs are easily fooled:
 - Hot research topic at the moment.

DenseNet 161 (2017) SqueezeNet (2016) ResNet 152 (2015) VGG 19 (2014) AlexNet (2012) Envelope 31% Binder 43% Envelope 40% Binder 51% T-shirt 16%

Balance Beam 52%
Balance Beam 18%
Pacifier 33%
Dust Cover 44%
Dust Cover 22%

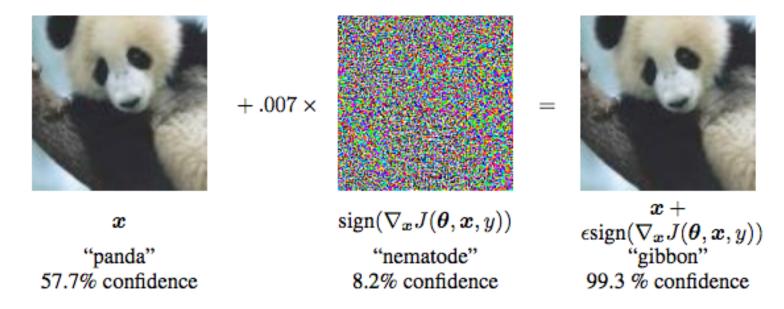
Chainlink Fence 31%
Poncho 32%
Chain Mail 29%
Window Screen 5%
Cardigan 12%

Chest 37%
Jean 30%
Dust Cover 52%
Chest 11%
Theater Curtain 3%

Tench 36% Suit 21% Sweatshirt 25% Sweatshirt 46% Coho 37%

Figure 1: The arbitrary predictions of several popular networks [2, 3, 4, 5, 6] that are trained on ImageNet [1] on unseen data. The red predictions are entirely wrong, the green predictions are justifiable, the orange predictions are less justifiable. The middle image is noise sampled from $\mathcal{N}(\mu=0.5,\sigma=0.25)$ without any modifications. This unpredictable behaviour is not limited to demonstrated architectures. We show that merely thresholding the output probability is not a reliable method to detect these problematic instances.

- Despite high-level of abstraction, deep CNNs are easily fooled:
 - Hot research topic at the moment.
- Recent work: imperceptible noise that changes the predicted label.
 - "Adversarial" examples (can change to any other label).



Can someone repaint a stop sign and fool self-driving cars?

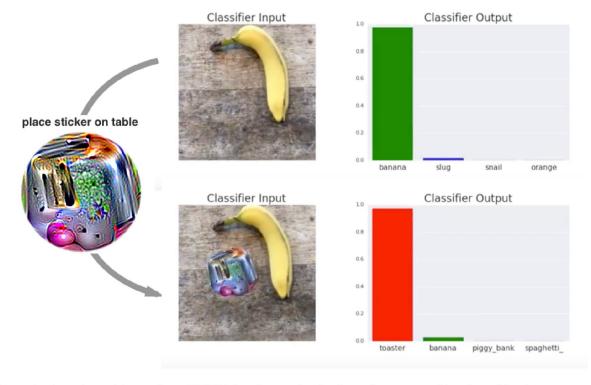
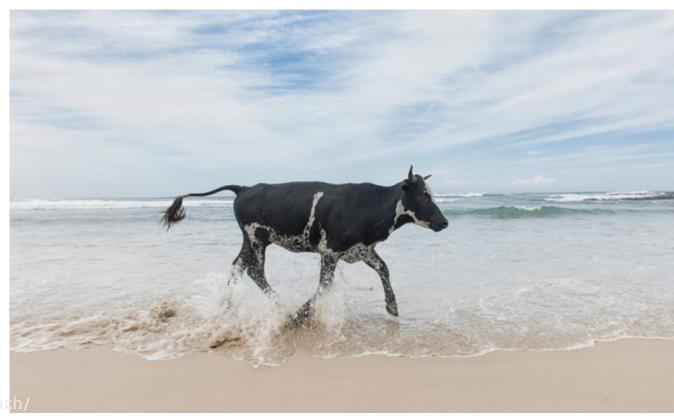


Figure 1: A real-world attack on VGG16, using a physical patch generated by the white-box ensemble method described in Section 3. When a photo of a tabletop with a banana and a notebook (top photograph) is passed through VGG16, the network reports class 'banana' with 97% confidence (top plot). If we physically place a sticker targeted to the class "toaster" on the table (bottom photograph), the photograph is classified as a toaster with 99% confidence (bottom plot). See the following video for a full demonstration: https://youtu.be/ilsp4X57TL4

Mission Accomplished?

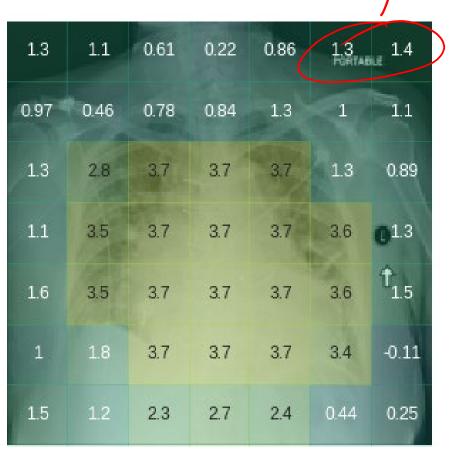
- Are the networks understanding the fundamental concepts?
 - Is being "surrounded by green" part of the definition of cow?
 - Do we need to have examples of cows in different environments?
 - Kids don't need this.



https://www.onegreenplanet.org/news/cows-enjoy-the-beach/

Mission Accomplished?

- CNNs may not be learning what you think they are.
 - CNN for diagnosing enlarged heart:
 - Higher values mean more likely to be enlarged:
 - CNN says "portable" protocol is predictive:
 - But they are probably getting a "portable" scan because they're too sick to go the hospital.
 - CNN was biased by the scanning protocol.
 - Learns the scans that more-sick patients get.
 - This is not what we want in a medical test.



P(Cardiomegaly)=0.752

7777

(Racially-)Biased Algorithms?

- Major issue: are we learning representations with harmful biases?
 - Biases could come from data (if data only has certain groups in certain situations).
 - Biases could come from labels (always using label of "ball" for certain sports).
 - Biases could come from learning method (model predicts "basketball" for black people more often than they appear in training data for basketball images).

Fig. 8: Pairs of pictures (columns) sampled over the Internet along with their prediction by a ResNet-101.

- This is a major problem/issue when deploying these systems.
 - E.g., "repeat-offender prediction" that reinforces racial biases in arrest patterns.

Energy Costs

- Current methods require:
 - A lot of data.
 - A lot of time to train.
 - Many training runs to do hyper-parameter optimization.
- Recent paper regarding recent deep language models:
 - Entire training procedure emits 5 times more CO₂
 than lifetime emission of a car, including making the car.

Machine Learning: "Soft Query"

Suppose I have a dictionary (mapping of key → value)

Key	1	3	5	7	9
Value	5	15	25	35	45

Q: What do I get if I ask for dict[2]?

```
>>> d = dict()
>>> d[1] = 5
>>> d[3] = 15
>>> d[5] = 25
>>> d[7] = 35
>>> d[9] = 45
>>> d[1]
5
>>> d[2]
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
KeyError: 2
```

Machine Learning: "Soft Query"

• Suppose I have a 1-d linear regression model

X _i	1	3	5	7	9
y _i	5	15	25	35	45

Q: What do I get if I ask for model.predict([2])?

Instead of KeyError, we will get a number!

$$y_i = wx_i$$
. $w = 5$
 $\hat{y}_i = 5.2 = 10$

Learned model: a more robust version of a dictionary.

Machine Learning: "Soft Query"

• Suppose I have a 1-d linear regression model

\mathbf{x}_{i}	1	3	5	7	9
y i	5	15	25	35	45

Q: What do I get if I ask for model.predict([11])?

$$\hat{y}_i = 5 \cdot 11 = 55$$

\mathbf{x}_{i}	1	3	5	7	9	11	13	
y _i	5	15	25	35	45	-20	-30	43

Bottom line 1: ML is not a solved problem

Bottom line 2: Data is the real bottleneck of ML

Coming Up Next

CONCLUSION: WHAT IS MACHINE LEARNING?

What is Machine Learning?

- Machine learning: a special type of optimization
 - Extract statistical regularities from data
 - Translate regularities into numerical structures
- We studied mechanisms enabling prediction, compression, encoding (and all at the same time)

CPSC 340: Overview

- 1. Intro to supervised learning (using counting and distances).
 - Training vs. testing, parametric vs. non-parametric, ensemble methods.
 - Fundamental trade-off, no free lunch, universal consistency.
- 2. Intro to unsupervised learning (using counting and distances).
 - Clustering, outlier detection, finding similar items.
- 3. Linear models and gradient descent (for supervised learning)
 - Loss functions, change of basis, regularization, feature selection.
 - Gradient descent and stochastic gradient.
- 4. Latent-factor models (for unsupervised learning)
 - Typically using linear models and gradient descent.
- 5. Neural networks (for supervised and multi-layer latent-factor models).

Topics from Previous Years

- Slides for other topics that were covered in previous years:
 - Ranking: finding "highest ranked" training examples (Google PageRank).
 - <u>Semi-supervised</u>: using unlabeled data to help supervised learning.
 - Sequence mining: approximate matching of patterns in large sequences.
 - Boosting: another ensemble of decision trees that works very well.
- In previous years we did a course review on the last day:
 - Overview of topics covered in 340, and topics coming in 540.
 - Slides here: this could help with studying for the final.

Where to Go From Here

- CPSC 406:
 - Numerical optimization algorithms (like gradient descent).
- CPSC 422:
 - Includes topics like time series and reinforcement learning.
- CPSC 532R/533R:
 - Deep learning for vision, sound, and language.
- CPSC 533V:
 - Reinforcement learning for simulation and control
- EECE 592:
 - Deep learning and reinforcement learning.
- STAT 406:
 - Similar/complementary topics.
- STAT 460/461:
 - Advanced statistical issues (what happens when 'n' goes to ∞?)

Final Slide

- "Calling Bullshit in the Age of Big Data":
 - https://www.youtube.com/playlist?list=PLPnZfvKID1Sje5jWxt-4CSZD7bUI4gSPS
 - Every "data scientist" should watch all these lectures.
 - You should be able to recognize non-sense, and not accidently produce non-sense!
- Thank you for your patience.
 - I'm a first-time instructor!
 - We had 2 fewer lectures than usual term
- Good luck with finals and the next steps!

Please do course evaluation!