CPSC 340:
Machine Learning and Data Mining

Decision Trees
Summer 2021

REMINDER TO HIT RECORD



Admin

Lecture 3: | need extra 5 minutes to catch up
— | will improve my time management

Assignment 1 is due Monday: start early.

— Gradescope setup is still in progress

Waiting list people: Start on Alll

Course webpage: https://www.cs.ubc.ca/~nhgk/courses/cpsc340s21/

Sign up for Piazza: https://piazza.com/ubc.ca/summer2021/cpsc34®911<
Attend tutorials and office hours!


https://www.cs.ubc.ca/%7Enhgk/courses/cpsc340s21/
https://piazza.com/ubc.ca/summer2021/cpsc340911

Waiting List Situation

Mote: this section is full

Seat Summary
Total Seats Remaining: 0
Currently Registered: 143
General Seats Remaining:. 0
Restricted Seats Remaining* 0
- Select one Tutorial from sections T1A, T1B, T1C, T1D

Main section

Seat Summary
Total Seats Remaining: 844
Currently Registered: 55
General Seats Remaining: 944
Restricted Seats Remaining™ 0

Waiting list

a i 5 T
Student Roster: Download Roster as CSV .00 OF 176 {estimated)

| {76lenrolled)

Piazza



In this Lecture

Visualizing Data (10 minutes)
Supervised Learning Intro (10 minutes)
Course Notation (10 minutes)

Decision Trees (30 minutes)



Coming Up Next

VISUALIZING DATA

My
OVERALL
HEALTH

I
TIME I

THE DAY I REALIZED
I COULD COOK BACON
WHENEVER I LIANTED,

https://xkcd.com/418/



https://xkcd.com/418/

Visualization

 YOU can learn a lot from 2D plots of the data:
— Patterns, trends, outliers, unusual patterns.

0 0 30.1

0 1 29.8

0 2 29.9 VS.

0 3 30.1

0 4 29.9 o

-50 -40 -30 -20 -10 0] 1'0 20 300C
Annual Mean Temperature
“Impenetrable sea of numbers” Intuitive visuals

-Ted Kim



Basic Plot

 Visualize one variable as a function of another.

Assaults Reported in the BJS Victimization Survey

20 25 30

Rates per 1,000 persons

—— Simple Assault ! R
I
I

s
— Aggravated Assaults

| I I ! !
1975 1980 1985 1990 1985 2000 2005 2010

 Fun with plots.



https://mathwithbaddrawings.com/2016/08/24/a-graphical-compendium-of-changes-from-my-lifetime/
http://notunlikeresearch.typepad.com/.a/6a0133f1fb8812970b0148c78d3e39970c-pi

Histogram

« Histograms display counts a variable, split into “bins”.

Frequency
38T

30 §
25 1
20 §
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5

0

[u] 500 1000 1500 2000
How many friends do you have on facebook?



Box Plot

Useful for visualizing summary statistics of multiple features in one view

This line This line This line
This whisker shows the shows the shows the This whisker
shows the lower quartile median upper shows the
lowest value l quartile hightest value
1 1 I 1% 1 L # 1 1

The width of the box
shows the
interquartile range

Moascimum daily femperature in Melbourne
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Matrix Plot

« We can view (examples) x (features) data table as a picture:
— “"Matrix pl_Ot". Training examples
— May be able to see trends in features. == =
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Correlation Plot

« A matrix plot of all similarities (or distances) between features:

— Colour used to catch attention.

BTC ETH XRP XEM ETC LTC DASH | XMR
0.61 . 0.60 0.56 0.55 0.66
ETH 0.61 0.28 0.49 0.68 0.43 0.70 0.64
XRP 0.36 0.28 0.48 0.08 0.35 0.40 0.44
XEM 0.51 0.49 0.48 0.40 0.43 0.47 0.52
ETC 0.60 0.68 7 0.56 0.53
LTC 0.56 0.43 0.35 0.43 0.47 0.59 0.67
DASH | 0.55 0.70 0.40 0.47 0.56 0.59 0.74
XMR 0.66 0.64 0.44 0.52 0.53 0.67 0.74
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Scatterplot

« Look at distribution of two features:
— Feature 1 on x-axis.
— Feature 2 on y-axis.

OkCupid ratings back when we let people score "looks"” and
"persona lity" separately

- Shows correlation between
“personality” score and
““looks"” score.

n - L L
persconality .
SCore
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“Why Not to Trust Plots”

« We've seen how summary statistics can be mis-leading.
* Note that plots can also be mis-leading, or can be used to mis-lead.

« Bonus slides: examples from UW's excellent course:
— “Calling Bullshit in the Age of Big Data”.
« A course on how to recognize when people are trying to mis-lead you with data.
— | recommend watching all the videos here:

 https://www.youtube.com/watch?v=A20tUS5vIROk&list=PLPnZfvKID1Sje5jWXxt-
4CSZD70Ul4gSPS

— Recognizing BS not only useful for data analysis, but for daily life.


https://www.youtube.com/watch?v=A2OtU5vlR0k&list=PLPnZfvKID1Sje5jWxt-4CSZD7bUI4gSPS

SUPERVISED LEARNING



Motivating Example: Food Allergies

+ You start getting an upset stomach frequently

Upset Stowmac h

* You suspect an adult-onset food allergy.

Q: How do | know which food made me sick?

Doson




Motivating Example: Food Allergies

« To solve the mystery, you start a food journal:

Egg | Milk | Fish | Wheat | Shellfish |Peanuts |... | Sick?
0] 0.7 0] 0.3 0] 0] 1

0.3 0.7 0 0.0 0 0.01 1
0 0 0 0.8 0 0 0
0.3 0.7 1.2 0) 0.10 0.01 1
0.3 0 1.2 0.3 0.10 0.01 1
“Impenetrable sea of numbers”
-Ted Kim

« But it’s hard to find the pattern!
— You can’t isolate and only eat one food at a time.
— You may be allergic to more than one food.
— The quantity matters: a small amount may be ok.
— You may be allergic to specific interactions.



Supervised Learning

We can formulate this as a supervised learning problem:

Egg Mk | Fish | Wheat | Shellfish |Peanuts ...
0] 0.7 0] 0.3 0] 0]

) 1

0.3 07 © 0.6 0 0.01 ) 1
o o 0 0.8 0 0 ) O
0.3 0.7 1.2 0 0.10 0.01 ) 1
3 0 12 0.3 0.10 0.01 ) 1

Goal of supervised Learning:
— Use data to find a model that outputs the right label based on the features.
— Model predicts whether foods will make you sick (even with new combinations).

17



Supervised Learning as Writing A Program

The Supervised Learning Problem
Input: lots of labeled examples Eemkwvts \g\bels
Qutput: a lea,r‘ned program that returns appropriate values

The Learned Program

Input: numerical features of an example

Output: a predlcted Label corresponding to the features ‘S|<,\I~‘ ‘ot sk’
/

Eag [Mik_Fiah_uineat [shallizn pcanuic N
Los o] [

features label

The learned program
(aka “model” or “mapping”)
e e |




Supervised Learning as Writing A Program

« Supervised learning is useful when you have lots of labeled data BUT:
1. Problem is too complicated to write a program ourselves.
2. Human expert can’t explain why you assign certain labels.
OR
2. We don’t have a human expert for the problem.

\ >,
5 X
LU | . et
i e ; |
: gL <l )
T, TiTeesss \ . P |
Nog &, 5 ¥
4 - N ‘ . o Sy =~
o - | ) £ \
[fi= \ 7 | p
y F i s
“h‘ 1 »
o A

Try writing a self-driving car program by hand!!! ““Hey doctor, my FOXP3 gene looks like
(hint: it's impossible) ATCGAGACGCGAGCCGCGACCACCGCGAGCGA.
Does this mean | have a compromised immune system?”
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Supervised Learning

e This is the most successful machine learning technique:

— Spam filtering, optical character recognition, Microsoft
Kinect, speech recognition, classifying tumours, etc.

e We'll first focus on classification

— learning with categorical labels
— E.g. {'sick’, ‘not sick’}, {SF, New York}

« Here, the model is a called a “classifier”.



Nalve Supervised Learning: “Return-the-Mode”
Egg | Milk |Fish | Wheat |Shellfish |Peanuts ..
0 0.7 0 0.3 0 0

)

03 07 © 0.6 0 0.01 ) !
0 0 0 0.8 0 0 ) 0
0.3 0.7 1.2 0 0.10 0.01 ) 1
0.3 0 1.2 0.3 0.10 0.01 ) !

« A very naive supervised learning method:
— Always predict the most common label, the mode (“sick” above).

« This ignores the features!
— cannot be more accurate than proportion of mode (80% in this case)

« We want to use the features, and there are MANY ways to do this.
— We'll consider a classic way known as decision tree lLearning.



COURSE NOTATION



Supervised Learning Notation
(MEMORIZE THIS)

R e e
[ 0 0.7 0 03 [ o 0 ]

X: X“:@; @; Z Z:: f 0.::1 J‘%" : n: z ;XJW\ ]e,xa\m‘»\u

N eune
nyd 0.3 0.7 1.2 0 0.10 0.01 X |
0.3 © 1.2 0.3 0.10 0.01 <\
! L u
.

Y, y
A Lentnes } ™ X:) X'&
 Feature matrix ‘X’ has I‘O\:IJS as examples, columns as features.
— X;; is feature ‘]’ for example ‘I’ (quantity of food ‘j’ on day ‘I’).
— X; Is the list of all features for example ‘I’ (all the quantities on day ‘i’).
— xJis column ‘j" of the matrix (the value of feature ‘j' across all examples).
 Label vector ‘y’ contains the labels of the examples.

— Y, is the label of example ‘i’ (1 for “sick”, @ for “not sick”).
23



0 0 0 0.8 0 0 n ey \Q\Qs n: 0 n exa\m‘:\ez
1

nxd 03 07| 12| o 0.01 1 [
. . 0.01 S
L

) LCentnees

Feature matrix ‘X’ has rows as examples, columns as features.

— X;; is feature ‘]’ for example ‘I’ (quantity of food ‘j’ on day ‘I’).

— X; Is the list of all features for example ‘I’ (all the quantities on day ‘i’).

— xJis column ‘j" of the matrix (the value of feature ‘j' across all examples).
 Label vector ‘y’ contains the labels of the examples.

— Y, is the label of example ‘i’ (1 for “sick”, @ for “not sick”).

1

24



Supervised Learning Notation
(MEMORIZE THIS)

R R e e
[ 0 0.7 0 0.3 0 0 ]

] 1

0.3 0.7 0 0.6 0 0.01 1 _\\k

X: e o o 0.8 0 0 \os = 5 n QXG\W\Y\O
n e

nyd 0.3 0.7 1.2 0 0.10 0.01 X | 1

0.3 © 1.2 0.3 0.10 0.01 S 1

! L
.

-
X Tentanes Adonsed fa Modain Kector

« Training phase:

— Use ‘X’ and ‘y’ to find a ‘model’ (a mapping of feature — label)
* Prediction phase: y

— Given an example ﬁ. use ‘model’ to predict a label :_31 (“sick” or “not sick”).
- Training error: V==Y,

— Fraction of times our prediction y, does not equal the true y; label. 25



Coming Up Next

DECISION TREES

ULTI|MATE o
w4 DECISlON MAKER &

BREWED
COFFEE
or
RHERRC}\NO 1

mocu ﬂm;_; ﬁ_ TER
P LATTE

'] MOCHA

GREENTEA )
LATTE

WELCOME
[ TO STARBUCKS :& oA

Hand-crafted decision tree at Starbucks
(Agronomy Road)

260



what Is a Decision Tree?

* Nested if-else statements

it milk > 0.5:
return ‘sick’
else:

it egg > 1:

return ‘sick’
else:
return sick’

Q: How is this a “tree”?

217



what Is a Decision Tree?

« Nested if-else statements
it milk > 0.5: .
return ‘sick’ [M‘\k> O‘S?.)
else: :
iT eqg > 1: N/ 3
return ‘sick’ )
else: E%> \2,} Sick

return ‘not sick V&S

Q: According to this decision tree, Nt Sick_ S‘\Ck
what should we return for this example?

g9 Mik |Fish | wheat | shellfish |Peanuts
0.8 0.2 0] 0.3 0] 0] ....." ?

28



Learning A Decision Stump: “Search and Score”

« We'll start with "decision stumps”:
— Simple decision tree with 1 splitting rule based on thresholding 1 feature.

@\( > O‘S ? Q: What is the thresholding feature here? W\I\\k
g
“I/ \%fé Q: What is the splitting rule here? W\‘l\\:>0.5

Not Sick Side

Q: How do we find the best “rule” (feature, threshold, and leaf labels)?

29



Learning A Decision Stump: “Search and Score”

1. Define a ‘score’ for the rule.
2. Search for the rule with the best score.

T T G T
\\0 VYeS Ves
mi‘c/ \S\d& Sick }ts\& ot sick ‘\S\d& ot sick S\ck

—

—
Score=50 Score=10 Score=45 @
est rulel)

Q: How do we “score” a decision stump?




Learning A Decision Stump: Accuracy Score

Most intuitive score: classification accuracy.

— “If we use this rule, how many examples do we label correctly?”
il | Fish |Egg

0.7 0 1

(op »1.0% 50”@ 61 8 | ¢ |
0 0 o 0

0

1

2

“V \%

0.7 1.2 .‘0-
Not sick sidk ¢ 1.2 2 ¢
o —— 0] 0] .2.

Computing classification accuracy for this stump:
— Find most common labels after applying splitting rule:
- When (egg > 1), we were “sick” 2.times out of "4

 When (egg = 1), we were “not sick"é’ times out of 1

— Compute accuracy:
« The accuracy (“score”) of the rule (egg > 1) is Stimes out of 6

This “score” evaluates quality of a rule.
— We “learn” a decision stump by finding the rule with the best score

31



Decision Stump Learning Pseudo-Code

L\pvrb :

X <

(\&J

n

ju—

\‘

7 (ot
= Owtont :
V\E\ﬁ\ 0 N no U
) | J N A
Mo N ) yes

Q: Which of these components are learned?




Decision Stump Learning Pseudo-Code
- a )

)

]-J\P\l\'b: ><: n :ﬁ O\A’tg\l\‘t ) .

SQO\YTJV\-—O\V\A Sczma

Q e’““mm‘l’e— AL\_ Com\o\nm-t\ons oL

@ »- N Xpt\, xdnes \\ 33%;5\\ mie, Qws

|
@ SOOre W 0\\\ ", Mo formal pseudo-code

" ) mode A
g oo - [ - Y)H S G [
0
N\ *
@ ?}c\( tre one with \oest Sove! —s {J t* \jw,\ﬁ &



Cost of Decision Stumps

How much does this cost?

Assume we have:

— ‘n’ examples (days that we measured).

— ‘d’ features (foods that we measured).

— 'k’ thresholds (>0, >1, >2, ...) for each feature.

Computing the score of one rule costs O(N:
— We need to go through all ‘n” examples to find modes for y,., and y,.. N D(V\)

— We need to go through all ‘n’ examples again to compute the accuracy. U O—("\)
— See notes on webpage for review of “O(n)” notation.

JEN~ 5 e\
We compute score for up to k*d rules (‘k’ thresholds for each of ‘d’ features):
— So we need to do an O(n) operation k*d times, giving total cost of O(n dX.

34



Cost of Decision Stumps

(‘I_<_:= number of thresholds)

Is a cost of O(ndk) good?
Size of the input data is OWd): X ond) ydo)

: : Nyt \ :
— If 'k’ is small then the cost is rougéhly the same cost as loading the data.
« We should be happy about this, you can learn on any dataset you can load!

— If 'k’ is large then this could be too slow for large datasets.

Example: if all our features are binary then k=1, just test (feature > Q):
— Cost of fitting decision stump is O(nd), so we can fit huge datasets.
Example: if all our features are numerical with unique values the
— Cost of fitting decision stump is oMmd).

- Bad if ‘n’ is large!

— Bonus slides: fitting decision stump in O(nd log n)‘ /\A' , Nl radel

« Basic idea: sort features and track labels.
Allows us to fit decision stumps to huge datasets.

35



DECISION STUMP TO DECISION TREE



How Do | Make a Tree from Stumps?

decision_stump():

iT milk > 0.5
return ‘sick’
else:

(o Y5 return 'not sick'

37



How Do | Make a Tree from Stumps?

decision_tree():
iT milk > 0.5:
it egg > 0.1:
return ‘'sick’
else:
return 'not sick’

CLaC.

it egg > 1.0:
return ‘'sick’
else:

return 'not sick’

tlf\ese, e
AQCIS ow f‘%\AW\Q 3.,

o & ‘ot i \S{A&‘

38



Decision Tree Learning

Decision stumps have only 1 rule based on only 1 feature.
— Very limited class of models: usually not very accurate for most tasks.

Decision trees allow sequences of splits based on multiple features.
— Very general class of models: can get very high accuracy.
— However, it’'s computationally infeasible to find the best decision tree.

NP—haud

Most common decision tree learning algorithm in practice:
— Greedy recursive splitting.

(GRS

39



Greedy Recursive Splitting
X)ﬁes leam /Xjes,jes tﬁ‘ﬁ"‘,jes learn [Q
R

e g Q

Learn /
/ learn

a LL' Learn q/ / Xr\o S \3“0 ¥ /Q/ o

Original data First splitting rule Second splitting rules Third splitting rules

_|

Q: What is the base case for this recursion?




{18

Stopping Criteria

X 4

[ sice!
\sick!
Vsick!

d | sick'
4 "1
Ry e M—hﬂ
AXP]H_,R<M 3,..—);{...
\.f"‘ ]ﬁ - R <X-m Yor —)R
Xae dae -—’R--

Only ‘sick’ in y.
Q: Does it make sense to make a stump here?

NO

Q: Does it make sense to keep splitting?
(suppose n is very big)

When To Stop Greedy Recursive Splitting:

1. Only a single class remains in the labels ‘
2. Maximum recursion depth reached

W\Sev— defned

41



Al Skeleton Code

fit(self, X, y):
N, D = X.shape

fit(self, X, y):

count = np.bincount(y)

N, D = X.shape
y_mode = np.argmax(count)

e splitModel = self.stump_class()

.splitvariable = splitModel.fit(X, y)
.splitValue =

if .max_depth <= 1 spl itModel .splitVariable
if np.unique(y).size <= 1:
return

minError = np.sum(y != y_mode)

.splLitModel = spl itModel
X = np. round(X) .subModell =
for d in range(D): -SubModel 0 =

for n in range(N): return

value = X[n, d]

y_sat = utils.mode(y[X[:,d] = value]) J = Spl i tmf_iE‘l .spl 1 tva{. iable
y_not = utils.mode(y[X[:,d] != value]) value = splitModel .splitValue

y_pred = y_sat * np.ones(N)
SEREHIIEERdIE S splitindexl = X[:,j] > value
splitindex@ = X[:,j] <= value

errors = np.sum(y_pred !=y)

if errors < minError: .splitModel = splitModel
T o o .subModel 1l =IDecisiorl1Treef .max_dgpth-l, stump_class= .stump_class)
-splitvariable = d .subModell.fit(X[splitindexl], y[splitindexl])
LIRS & TElT= .subModel® = DecisionTree( .max_depth-1, stump class= .stump_class)

.splitSat = y_sat
.splitNot = y_not .subModel@.fit(X[splitindex@], y[splitindex@])

decision_stump.py decision_tree.py




s\ Mwbsm\3 a\n\w\\g °Y“W\'

Coming Up Next

DISCUSSION ON DECISION TREES



which score function should we use?

* What’s wrong with using accuracy score with GRS? Qwee}\j
— Improving accuracy at Level 1 doesn’t mean you get best accuracy overall

« Sometimes we can’t improve accuracy with a stump at all.
— But this doesn’t mean we should stop!



Example Where Accuracy Fails

Consider a dataset with 2 features and 2 classes (‘x’ and ‘0’).

— Because there are 2 features, we can draw ‘X’ as a scatterplot.
« Colours and shapes denote the class labels ‘y’.

~ ~-} a ﬂ 0
FU\ :“1 3 OOO @00@
_ 35 }.L{ ) lo' F&JWQ" O §XX y O 0
X_, O 21 7/—' \X) X U‘O XxK 6
72 o | 1,0 9,9 |
4 4 ., = l —
: ; l / {‘EG we X\

Q: How do we visualize a decision stump here?

45



Example Where Accuracy Fails

A decisioQ stump would divide space by a horizontal or vertical line.
- E.g. % >t

« On this dataset, a horizontal/vertical line cannot do better than return-the-mode.

-~ . - 1> a T
122 " 0 {%&2&

——

X-_: 35 IL{ = :O: F&J"‘Q"'l :.__?{T’
02| [T n| K B Jodis

22 o g N —

| 40 4 ?

40



which score function should we use?

Most common score in practice is “information gain”.
— Information gain := [entro before split] - [entro after split]
9 PY QLS P Py, afser sp

H
Q: When is information gain large?

)nfOfYV\tho/\ ?Mﬂ - %> % i’)ﬁ" 0/7 (/Yyas) "'" No &’)ﬁ’afy(ﬁﬂ>>

emtmfl of labels Numbo of ex ﬁnfm of Jabels
befure S/.alnl fﬁ)‘”}‘ r VJe»P@ /Z uﬁ/me Fu;
Information gain for baseline rule (“do nothing”) is Q). /

Infogain is largest if Labels are__?gﬁﬁgﬂ J_s?\K___ng__‘aw__lz_i\‘l_f‘_‘l‘_,_

Less greedy than classification accuracy GRS
— Even if accuracy isn’t better with current stump, accuracy may increase with more depth.

417



Example Where Accuracy Fails

L/N ”1.5 sf}ﬁ Md)ﬁ:} )aéfl ‘&«:j V‘qﬂJom

_} @ OO % @ 0 (('/\/ery'“\m? on fh& rl?hf /S q 0)
0_° X Z o
L0 g XXXXY ©
X
O oA e T didf |
0 0 = ”‘"PVUV@ dcCurgc
0%0 g9 0 A
| } I/ O QZ {) l3 KN

48



Example Where Accuracy Fails

L/N_ﬂm s'o}ﬁ Ma}fa’} )aéds ‘ea; r‘qmlg_m,
J

) (Cverything on The Wi 7 /)
3 @00%@0 yThing on The right i 4 %))
et ia O[5 2
- X
6’\71%(7,04’10 ® §x><y @
% _,ﬂﬁ@ X xX O@ 0 I]L c('nino?[ }-MPY()\,@ aoc,mmc/
0°0pg 0
1 1 9 97 3 .
' I

PJ\HL ﬁ:rec Mde Sf)’ib W\qx}m’am

o Jead o ferteet_vcura,



Discussion of Decision Tree Learning

- Advantages:
— Easy to implement.
— Interpretable.
— Learning is fast. Prediction is very fast.
- Disadvantages:
— Hard to find optimal set of rules.
— Greedy splitting often not accurate, requires very deep trees




Discussion of Decision Tree Learning

Issues:

— Can you revisit a feature?
* Yes, knowing other information could make feature relevant again.
— More complicated rules?
* Yes, but searching for the best rule gets much more expensive.
— What is best scoring function?
* Infogain is the most popular and often works well, but is not always the best.
— What if you get new data?

« Consider splitting if there is enough data at the leaves,
but occasionally might want to re-learn the whole tree or sub-trees.

— What depth?

« Some implementations stop at a maximum depth, some stop if too few
examples in leaf, some stop if infogain is too small.



-

summary Ve

L
Explorlng daFa: | mwes_of ores < D
— Data. VISuallzat.lon ’R\—- L on lon o
Supervised learning: number € _pres v
— Using data to write a program based on input/output examples. (l-c 1
Decision trees: predicting a label using a sequence of simple rules.
Decision stumps: simple decision tree that is very fast to fit. dheck:
Greedy recursive splitting: uses a sequence of stumps to fit a tree. nmba-ila e
— Very fast and interpretable, but not always the most accurate. Aumbe,_sl 2208

Information gain: splitting score based on decreasing entropy.

Next time: the most important ideas in machine learning.

52



Ql:

Q2:

Q3:

Q4:

Q5:

QO6:

Review Questions

Is “return-the-mode” always a bad idea? Why?
What is the output of a supervised learning algorithm?
What are the 4 parameters of a decision stump?

In course notation, what are n, d, i, and j?
Why is finding an optimal decision tree difficult?

How many thresholds do we need to look at for a decision stump?

You can do Al Q5-Q6 now!
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Decision Stump Learning Pseudo-Code
_In‘;u\f' fC’anWC MO\'HW X mV\cf 'm\be) Ve(,7L0£ y

|
COM‘\,\hg error it WS ing 'lnqje'.'u“ rule s nambe of Tumey

| N\, 7|. n[oes '\91( e MI 071- Ohmy
'?O{‘ GC(C[’\ ‘FGQ#U\)’C /J (column of X) ? MOST com '\Va'\lf.

‘er eaclq hn/fs‘\ou /t‘

Set />/, yfj\ fo most _common [abd of olgects i Sa4o'5{7in9 rule (x,-). 1)
sed '7,,\0‘ 12 most commn ,aéj/ of objects nol sm‘{;ﬁ/m? rule.
SCJ‘ \\//\\ JIO e Our f)(edldims for e uc h ob)f(‘f /}\ I’Jan’cl onNn "l'l'\( VVI/(‘
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Entropy Function
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Histogram

« “Four Basic Data Science Lessons lllustrated by COVID-19 Data”
— First two lessons come from just plotting:

Daily New Cases

{ases per Day

Feb 12 as of 0:00 GMT+0
15k Daily Cases: 14,108
L ] $
Big Drops / ;
EVBI' Z 10k
Y =
5
Sunday/Monday! :
o=
I
o 5k
Q
| I :
>
Q
Z
A9 1:(‘ A_;\ ) 0‘0 0
< S s L Y Vv © Q el A N “ ) e A\ 3 o Q 1) > Vv © Q e} A
_@:c» O ‘!\:» v_Q v‘;Q % Vv (\”’: ‘OQ \QQ N N ~ v Vv Q Q ~ N ~ T ‘v ) Q N)

PP @@ @@ EEE e

Daily Cases

— These oddities had to do with how data was recorded.
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https://medium.com/@ageitgey/four-basic-data-science-lessons-illustrated-by-covid-19-data-7d94134a5b0e

Histogram

« Histogram with grouping:

1100

L Cancer, 64.
900 Accidents, 72.3
200 Nephropathies, 88.6

§ Cerebrovascular we
> 7004 disease, 106.9 Suicide, 12.2
§ _ Pneumonia or influenza, 16.2
@ 600- Heartﬂdlsease, Nephropathies, 16.3
s 137.4 ._|_ Diabetes, 22.3
g == _ir Alsheimecs dissass, 27D
o 500+ [ — Accidents, 38.2
o i Cerebrovascular disease, 41.8
S 400~ Noninfectious airways
_ diseases, 44.6
300- Tuberculosis, Cancer,
194.4 185.9

Heart disease,
e 192.9

1900 2010
http://www.vox.com/2016/5/10/11608064/americans-



Box Plots

« Box plot with grouping:
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Map Coloring

« Color/intensity can represent feature of region.

Popularity of naming baby “Evelyn”
over time:

babynamewizard.com {(via waitbuterhy.com)

But not very good if some regions are

Canadian Income Mobility
very.small.



https://beta.theglobeandmail.com/news/national/a-tale-of-two-canadas-where-you-grow-up-affects-your-adult-income/article35444594/

Map Coloring

Variation just uses fixed-size blocks and tries to
a r r a n g e g e O E What % of the population claims American ancestry in each state?

AK ME
4.5% 7.5%
wi VT NH
3.5% 7.5% 5.2%
WA 1D MT ND MHN IL Ml NY MA
4.4% | 7.8% |7.5% 3.1% 3.4% 4.6% @ 6.2% 5.5%  3.8%

oR NV Wy 5D
53% 4.7% 49% 3.6%

OH PA MJ T Rl
7.8% 4.6% 4.6% 4.2% 3.8%

DE

3.1%  6.3% 5.6%

4.6%

HI
1.5%




Contour Plot

« Colour visualizes ‘2z’ as we vary ‘x’ and ‘y’.




Treemaps

 Area represents attribute value:

United States
398194

Japan
148719

Germany
81849

France
46262

China
120775

United Kingdom




Cartogram

Fancier version of treemaps:

' I .l:: -ﬁ‘{
.Eiiihm ~ -
FACIFIC BRAZI':.

OCEAM
W ATLAMTIC
i L E A

ANTARCTICA
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Stream Graph

—

This is every name in the Top
1,000 for each decade since 1880,
all stacked on top of each other.

Baby Mame »

In 1950, 95% of all babies were
given a Top 1,000 name.

In 2012, only 73% of baby names
fell into the Top 1,000.

18905 I 0T 1210% 19210 P30 194 s 15 e 1960= 19705 PEDs 1990



Stream Graph

Baby Name > ca @ Both @ Boys ® Girls N 000(500 (100 | 25 | 1 |
P e 000500 (100 | 25 | 1

per million births

Cisrment ranik

MNames starting with "CA' per million babies

1880s 1890s 1900s 1910s 1920s 1930s 1940s 1950s 1960s< 1970s 1980s 1990s 2000s 2014

http://www.babynar’nﬁewizja_rd.corAn/dBJ_s—
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Stream Graph
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Videos and Interactive Visualizations

 For data recorded over time, videos can be
useful:

— Map colouring over time.

« There are also lots of neat interactive
visualization methods:
— Sale date for most expensive paintings.
— Global map of wind, weather, and oceans.
— Many examples here.



https://www.youtube.com/watch?v=fiPq7C06zjQ
https://en.wikipedia.org/wiki/List_of_most_expensive_paintings
https://earth.nullschool.net/#current/wind/surface/level/orthographic=-75.69,17.01,377/loc=-65.110,26.539
https://vega.github.io/

Scatterplot Arrays

For multiple variables, can use scatterplot array.

20 25 30 35 40

Fisher's Iris Data [hide]
woam °| wiam | eagm °| wam °| eces o| | SepslLenath ;ﬁ T
o @f® gac.eﬁaam

2.0 20 3.5 1.0 I. versicolor °  ega
6.0 22 4.0 1.0 I. versicolor
6.2 2.2 4.5 15 I. versicolor Sepal Width
6.0 22 5.0 1.5 I. virginica
4.5 23 1.3 0.3 I. setosa
5.0 2.3 3.3 1.0 I. versicolor
5.5 23 4.0 1.3 I. versicolor
6.3 23 4.4 13 I versicolor
49 24 33 1.0 I. versicolor
5.5 24 3.7 1.0 I. versicolor
2.5 24 3.8 1.1 I. versicolor
R A a8 an 4 I vsareinminr

Colors can indicate a third categorical variable.



Scatterplot Arrays

 For multiple variables, can use scatterplot array.

20 25 30 35 40
1 1

Fisher's Iris Data [hide] - 203 . :
o = go
Sepal . 5|f.lpal . Petal . F'tetal - G - Sepal.Length g°%§§j°g ) )
length width length width oBE 0 %0 7| |
@ a8 bl 7 f
5.0 20 3.5 1.0 I. versicolor ° e " F
6.0 22 40 10 1. versicolor %i&'
6.2 2.2 45 15 1. versicolor Sepal Width | | % e
= ¥ AR
6.0 22 3.0 1.5 I. virginica ; g bm B
45 2.3 1.3 0.3 I sefosa §
5.0 2.3 3.3 1.0 I. versicolor
55 23 4.0 13 1. versicolor L Lt
6.3 23 4.4 13 I versicolor
49 24 3.3 1.0 I. versicolar
55 2.4 3.7 1.0 I. versicolor
2.5 24 3.8 1.1 I. versicolor
R A a9 R n 14 I 1rareinednr

« Colors can indicate a third categorical variable.



Scatterplot Arrays

 For multiple variables, can use scatterplot array.

20 25 30 35 40 os 1.0 15 20 25
Fisher's Iris Data [hide] - 203 . : i 8080“3 I &
=2 Se . Ba.l
o o cHE oo BB
Sepal . S?pal . Petal . Ptetal - G - Sepal.Length g°%§§:°§ ) ) ) c&& a%eg:c._
length width length width B8 o 270 | go ez B T L
@ ool " gy = %% F ¥4 -
50 20 35 1.0 I. versicolor °  gm” F o m =
6.0 22 40 10 1. versicolor 2 £y
Ooﬁj 000 g:ﬁ L= =} -
6.2 2.2 45 15 1. versicolor SepalWidth | |48 S || feap
= = 2P a = = = o
6.0 22 5.0 15 1. virginica D ﬁ =T ggﬁ?fm;'f" -
45 23 1.3 0.3 I sefosa § § E—
5.0 2.3 3.3 1.0 1. versicolor ggsggg;gﬁ%g_ -
55 23 4.0 13 1. versicolor Petal.Length G -
6.3 2.3 44 13 1. versicolor o -
49 2.4 3.3 1.0 I. versicolor
2.5 24 3.7 1.0 I. versicolor .
Petal Width
2.5 2.4 3.6 1.1 I. versicolor
R A a9 R n 14 I 1rareinednr

« Colors can indicate a third categorical variable.



“Why Not to Trust Plots”

« We've seen how summary statistics can be mis-leading.
 Note that plots can also be mis-leading, or can be used to mis-lead.

 Next slide: first example from UW'’s excellent course:

— “Calling Bullshit in the Age of Big Data".

« A course on how to recognize when people are trying to mis-lead you with
data.

— | recommend watching all the videos here:
 https://www.youtube.com/watch?v=A20tUSVvIROk &list=PLPnZfvKID1Sje5jW xt-

4CSZD70UI4gSPS

— Recognizing BS not only useful for data analysis, but for daily life.


https://www.youtube.com/watch?v=A2OtU5vlR0k&list=PLPnZfvKID1Sje5jWxt-4CSZD7bUI4gSPS

Mis-Leading Axes

« This plot seems to show amazing recent growth:

Explosive growth at callingbullshit.org

280000

260000 2 5 7 OOO

’ /
240000

To1'0| oooooo
U n|q ue 200000
visitors 180000

160000 /
140000

120000

100000 T T T T T T e e e T T T T
hhhhhhhhhhhhhhhhhhhhhh

FFFFFFFFFFFFFFFFFF

- But notice y-axis starts at 100,000 (so ~40% of growth was earlier).
- And it plots “total” users (which necessarily goes up).



Mis-Leading Axes
Plot of actual daily users (starting from 0) looks totally different:

Explosive growth at callingbullshit.org ¢

40000

35000

30000 -+

Cumulative iPhone sales

Unique  ax \
daily e \
visitors \

15000 -

10000 -

5000

mmmmmmmmm
- = - 7N 8§ & &8 8§ ® T &I T T T - £ £ = = & «

of dlhe i Ogtte

People can mis-lead to push agendas/stories:

13



Mis-Leading AXes

« Watch out for the starting point of the axes too:

57" -
Ryasanwr o aves I oswnm =~ Ld =tk 4
Average Female Height
5'6" et per country
5'5" —fm
5'4" mfem
53" =t
5'2"
5'1" e
5'0" wfm
| 1 |
| | T
Latvia Australia Scotland Peru South India

Africa



Mis-Leading Axes

We see “lack of appropriate axes” ALL THE TIME in the news:

— “British research revealed that patients taking ibuprofen to treat
arthritis face a 24% increased risk of suffering a heart attack”

 What is probability of heart attack if | you don’t take it? Is that big or small?

« Actual numbers: less than 1 in 1000 “extra” heart attacks vs. baseline
frequency.
— There is a risk, but “24%" is an exaggeration.
« “Health-scare stories often arise because their authors simply don’t
understand numbers.”
— Or it could be that they do understand, but media wants to “sensationalize” mundane news.

— Bonus slides: more “Calling Bullshit” course examples on “political”
Issues:

* Global warming, vaccines, gun violence, taxes.


https://www.badscience.net/2005/06/risky-business/

More Mis-Leading Axes from “Calling Bullshit”

“THE ONLY GLOBAL WARMING CHART it e
YOU NEED FROM NOW ON"
Average Annual Global Temperature in Fahrenheit

1880-2015 59

58

57

56

x?o 1 1900 1910 1920 190 1940 1950 1960 %70 1980 1990 1000 w10 55 1900 1925 1950 1975 2000
Powerline blog Philip Bump for the Washingfon Post

16



More Mis-Leading Axes from “Calling Bullshit”

0.600
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Figure 1-Averaged AD/ASD prevalence and MMR coverage in UK, Norway and
Sweden. Both MMR and AD/ASD data are normalized to the maximum coverage/prev-

alence during the time period of this analysis.

Diesher et al. 2015 Issues in Law and Medicine
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Matt Carey via sciencebasedmedicine.org
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More Mis-Leading Axes from “Calling Bullshit”

The Middle Class Tax Target

The amount of total taxable income (left scale) for
all filers by adjusted gross income level for 2008

Source: IRS

“The rich, in short, aren't nearly
rich enough to finance Mr.
Obama's entitlement state
ambitions—even before his health-
care plan kicks in.

So who else is there to tax? Well, in
2008, there was about $5.65 trillion
in total taxable income from all
individual taxpayers, and most of
that came from middle income
earners. The nearby chart shows
the distribution, and the big hump
in the center is where Democrats
are inevitably headed for the same
reason that Willie Sutton robbed
banks.”

-The Wall Street Journal
April 17, 2011

» Look at the histogram bin widths.

18



More Mis-Leading Axes from

AXxis is upside down.

Looks like law makes murder go down,
but number of murders go up!

“Calling Bullshit”

Gun deaths in Florida

Number of murders committed using firearms
0

200

2005
Florida enacted

260 its ‘Stand Your

Ground’ law

600

@
873

1,000 19905 [ 2000s [2010s

Source: Florida Department of Law Enforcement

C.Chan 16/02/2014 £, % REUTERS

Via http://blog.heapanalytics.com/how-to-lie-with-data-visualiZation/



More Mis-Leading Axes from “Calling Bullshit”

_ _ _ ol 2 Foton
« Calling BS gives this as another example: Iternational student appiications at American

schools are down nearly 40 percent, survey
shows nbcnews.to/2nTOAIG

- Actual numbers don’t say much of anything:

Key findings of the survey include: 571 379

ReREES @

-- 39% of responding institutions reported a decline in international applications,|35%
reported an increase,|and 26% reported no change in applicant numbers.

« 39% vs. 35% (without sizes) doesn’t mean “down nearly 40 percent”.
— Data can be used in mis-leading ways to “push agendas”.

— Even by reputed sources.
— Even if you agree with the message.




More Mis-Leading Axes from Vancouver Housing

« A local example:

— Are almost all
Vancouver homes
becoming empty?

— Or did they use
different y-axis
scales for each
line?

Total Private Dwellings and Unoccupied or Occupied by Temporary Resident

== Total Private Dwellings == Unoccupied or Occupied by Temporary Resident

400,000 40,000
300,000 /// 30,000
200,000 20,000
100,000 10,000
0 0
2005 2010 2015 2020
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Hamming Distance vs. Jaccard Coefficient

« These vectors agree in 2 positions.

— Normalizing Hamming distance by
vector length,
similarity is 2/9.

* If we're really interested in
predicting 1s,
we could find set of 1s in both and
compute Jaccard:
- A ->{1,2,3,6}, B -> {4,5,9}

— No intersection so Jaccard similarity is
actually 0.

[OM OB ONN I O ONEN BN ool o
H © © O M B © © ©



Hamming Distance vs. Jaccard Coefficient

« Let’s say we want to find the tumour in
an MR image.

* We have an expert label (top) and a
prediction from our ML system (bottom).

 The normalized Hamming distance
between the predictions at each pixel is
0.91. This sounds good, but since there
are so many non-tumour pixels this is
misleading.

 The ML system predicts a much bigger
tumour so hasn’t done well. The Jaccard
coefficient between the two sets of
tumour pixels is only 0.11 so reflects this.

83



Coupon Collecting

Consider trying to collect 50 uniformly-distributed states, drawing at
random.

The probability of getting a new state if there ‘x’ states left: p=x/50.

So expected number of samples before next “success” (getting a new
state) is 50/x.
(mean of geometric random variable with p=x/50)

So the expected number of draws is the sum of 50/x for x=1:50.
For ‘n’ states instead of 50, summing until you have all ‘n’ gives:

2
Zn,iﬂ: /\éj’ < n(\+/09(m)>:0(m 109;’1)

/':l



Huge Datasets and Parallel/Distributed Computation

Most sufficient statistics can be computed in linear time.
For example, the mean of ‘n’ numbers is computed as:

N

This costs O(n), which is great.

But if ‘n’ is really big, we can go even faster with parallel
computing...



Huge Datasets and Parallel/Distributed Computation

« Computing the mean with multiple cores:
— Each of the ‘c’ cores computes the sum of O(n/c) of

the data:
X Y,
( y; i ) — Sum|
,f / Ynte
- \3[ ;:21'2 Sum’)
X.Jn/c



Huge Datasets and Parallel/Distributed Computation

« Computing the mean with multiple cores:
— Each of the ‘¢’ cores computes the sum of O(n/c) of the data:
— Add up the ‘c’ results from each core to get the mean.

X A (
Y | — Sum
,f)‘ ] / {;(../:) /\

_-YV\




Huge Datasets and Parallel/Distributed Computation

« Computing the mean with multiple cores:
— Each of the ‘c’ cores computes the sum of O(n/c) of the data.
— Add up the ‘c’ results from each core to get the mean.
— Cost is only O(n/c + ¢), which can be much faster for large ‘n’.

« This assumes cores can access data in parallel (not always true).
« Can reduce cost to O(n/c) by having cores write to same register.
— But need to “lock” the register and might effectively cost O(n).



Huge Datasets and Parallel/Distributed Computation

« Sometimes ‘n’ is so big that data can’t fit on one computer.

« In this case the data might be distributed across ‘c’ machines:
— Hopefully, each machine has O(n/c) of the data.

« We can solve the problem similar to the multi-core case:
— “Map” step: each machine computes the sum of its data.

— “Reduce” step: each machine communicates sum to a “master” computer,
which adds them together and divides by ‘n’.



Huge Datasets and Parallel/Distributed Computation

 Many problems in DM and ML have this flavour:
— “Map” computes an operation on the data on each machine (in parallel).
— “Reduce” combines the results across machines.

S —

’ reduce()

Split sort Merge
[k1,vl] bykil k1, [v1, v2, v3..]]

Input Data
Qutput Data




Huge Datasets and Parallel/Distributed Computation

« Many problems in DM and ML have this flavour:
— “Map” computes an operation on the data on each machine (in parallel).
— “Reduce” combines the results across machines.
— These are standard operations in parallel libraries like MPI.

« Can solve many problems almost ‘c’ times faster with ‘c’ computers.

« To make it up for the high cost communicating across machines:
— Assumes that most of the computation is in the “map" step.
— Often need to assume data is already on the computers at the start.


https://en.wikipedia.org/wiki/Message_Passing_Interface

Huge Datasets and Parallel/Distributed Computation

- Another challenge with “Google-sized” datasets:

— You may need so many computers to store the data,
that it’s inevitable that some computers are going to fail.

« Solution to this is a distributed file system.

« Two popular examples are Google’s MapReduce and Hadoop DFS:
— Store data with redundancy (same data is stored in many places).
« And assume data isn’t changing too quickly.
— Have a strategy for restarting “map” operations on computers that fail.

— Allows fast calculation of more-fancy things than sufficient statistics:
« Database queries and matrix multiplications.



Other Considerations for Food Allergy Example

« What types of preprocessing might we do?
— Data cleaning: check for and fix missing/unreasonable values.

— Summary statistics:
« Can help identify “unclean” data.
« Correlation might reveal an obvious dependence (“sick” & “peanuts”).
— Data transformations:
- Convert everything to same scale? (e.g., grams)
« Add foods from day before? (maybe “sick” depends on multiple days)
- Add date? (maybe what makes you “sick” changes over time).
— Data visualization: look at a scatterplot of each feature and the label.
« Maybe the visualization will show something weird in the features.
« Maybe the pattern is really obvious!
« What you do might depend on how much data you have:

— Very little data:

- Represent food by common allergic ingredients (lactose, gluten, etc.)?

— Lots of data:
« Use more fine-grained features (bread from bakery vs. hamburger bun)?



Julia Decision Stump Code (not O(n Log n) yet)
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Going from O(n4d) to O(nd log n) for Numerical Features

Do we have to compute score from scratch?

— As an example, assume we eat integer number of eggs:
+ So the rules (egg > 1) and (egg > 2) have same decisions, except when (egg == 2).

We can actually compute the best rule involving ‘egg’ in O(n Log n):
— Sort the examples based on ‘egg’, and use these positions to re-arrange ‘y’.

— Go through the sorted values in order, updating the counts of #sick and #not-sick that both
satisfy and don’t satisfy the rules.

— With these counts, it's easy to compute the classification accuracy (see bonus slide).
Sorting costs O(n log n) per feature.

Total cost of updating counts is O(n) per feature.

Total cost is reduced from O(n4d) to O(nd Log n).

This is a good runtime:
— 0O(nd) is the size of data, same as runtime up to a log factor.
— We can apply this algorithm to huge datasets.



How do we fit stumps in O(nd log n)?

- Let's say we're trying to find the best rule involving milk:

: : First grab the milk column and sort it - -
Mil Sick? J Mil Sick?
EI - (using the sort positions to re-arrange -

1 the sick column). This step costs v

0 0.7 1 O(n log n) due to sorting. 0 0

1 0.7 0] 0 0]

0 0 Now, we'll go through-the-milk values > | @
1 in order, keeping track of #sick and v

1 0.6 0 #not sick that are above/below the 0 0

1 0 1 ;urrent value. E.g., #sick above 0.3 is 0.3 1

2 0.6 1 ' 0.6 1

© 1 1 With these counts, accuracy score is 0.6 0

2 0 (sum of most common label above and 0.6 1
v below)/n.

0 0.3 0 0.7 1

2 0 1



How do we fit stumps in O(nd log n)?

Start with the baseline rule () which is always “satisfied”:

If satisfied, #sick=5 and #not-sick=6.
k

0 If not satisfied, #sick=0 and #not-sick=0.

0 0 This gives accuracy of (6+0)/n = 6/11.

v 0 Next try the rule (milk > 0), and update the counts based on these 4 rows:
0 0 If satisfied, #sick=5 and #not-sick=2.

0 If not satisfied, #sick=0 and #not-sick=4.
G v This gives accuracy of (5+4)/n = 9/11, which is better.

. 1
0.6 1 Next try the rule (milk > 0.3), and update the counts based on this 1 row:
0.6 If satisfied, #sick=5 and #not-sick=1.

' 0 If not satisfied, #sick=0 and #not-sick=5.
0.6 1 This gives accuracy of (5+5)/n = 10/11, which is better.
0.7 1 (and keep going until you get to the end...)
0.7 1



How do we fit stumps in O(nd log n)?

: : Notice that for each row, updating the counts only costs O(1).
Since there are O(n) rows, total cost of updating counts is O(n).
k

0
0 0 Instead of 2 labels (sick vs. not-sick), consider the case of ‘k’ labels:
0 - Updating the counts still costs O(n), since each row has one label.
0 - But computing the ‘max’ across the labels costs O(k), so cost is O(kn).
- 0
0 With ‘k’ labels, you can decrease cost using a “max-heap” data structure:
v - Cost of getting max is O(1), cost of updating heap for a row is O(log k).
0.3 1 - But k <= n (each row has only one label).
0.6 1 - So cost is in O(log n) for one row.
oS 0 Since the above shows we can find best rule in one column in O(n Log n),
0.6 1 total cost to find best rule across all ‘d’ columns is O(nd Log n).
0.7 1
0.7 1



Can decision trees re-visit a feature?

+ Yes. Gl 7 0.5
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Can decision trees have more complicated rules?

 Yes!
 Rules that depend on more than one feature:
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« But now searching for the best rule can get expensive.



Can decision trees have more complicated rules?

« Yes!
« Rules that depend on more than one threshold:
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« “Very Simple Classification Rules Perform Well on Most Commonly Used Datasets”
— Consider decision stumps based on multiple splits of 1 attribute.
— Showed that this gives comparable performance to more-fancy methods on many datasets.



https://webdocs.cs.ualberta.ca/%7Eholte/Publications/simple_rules.pdf

Does being greedy actually hurt?

Can’t you just go deeper to correct greedy decisions?
— Yes, but you need to “re-discover” rules with less data.

Consider that you are allergic to milk (and drink this often), and also get
sick when you (rarely) combine diet coke with mentos.

Greedy method should first split on milk (helps accuracy the most):
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Does being greedy actually hurt?

Can’t you just go deeper to correct greedy decisions?
— Yes, but you need to “re-discover” rules with less data.

Consider that you are allergic to milk (and drink this often), and also get
sick when you (rarely) combine diet coke with mentos.

Greedy method should first split on milk (helps accuracy the most).
Non-greedy method could get simpler tree (split on milk later):
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Decision Trees with Probabilistic Predictions

Often, we'll have multiple ‘y’ values at each leaf node.
In these cases, we might return probabilities instead of a label.

E.g., if in the leaf node we 5 have “sick” examples and 1 “not sick”:
— Return p(y = “sick” | x;) = 5/6 and p(y = “not sick” | x;) = 1/6.

In general, a natural estimate of the probabilities at the Leaf nodes:
— Let 'n.’ be the number of examples that arrive to leaf node ‘k’.

— Let ‘n, .’ be the number of times (y == ¢) in the examples at leaf node ‘k’.
— Maximum likelihood estimate for this leaf is p(y = ¢ | x;) = n,./n,.



Alternative Stopping Rules

 There are more complicated rules for deciding when *not* to split.

 Rules based on minimum sample size.
— Don’t split any nodes where the number of examples is less than some ‘m’.

— Don’t split any nodes that create children with less than ‘m’ examples.
 These types of rules try to make sure that you have enough data to justify decisions.

« Alternately, you can use a validation set (see next Lecture):
— Don’t split the node if it decreases an approximation of test accuracy.
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