CPSC 340: Machine Learning and Data Mining

Probabilistic Classification Summer 2021

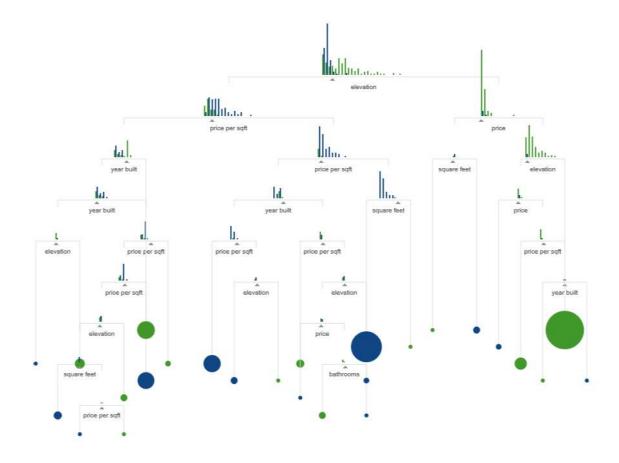
Admin

- Monday:
 - Assignment 1 due
 - Assignment 2 out, due the following Monday
- Next Friday: Assignment 3 out
 - Due the following Friday
 - To make enough time for you to study for midterm
- Midterm will be Tuesday, June 1, 2021
 - Canvas for autograded portion
 - Gradescope for manually graded portion
 - Stay tuned for instructions
- Piazza: partner search post is up.
 - See my recommendations for teamwork.
- Contact us on Piazza if you need help with Gradescope.

In This Lecture

- More on Optimization Bias (10 minutes)
- Cross-Validation (10 minutes)
- "Best" Machine Learning Model (10 minutes)
- Naïve Bayes (20 minutes)

Last Time: Decision Trees

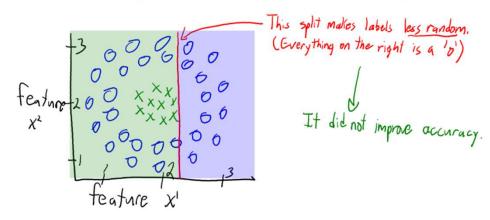


Clarification: Score

- Be careful about how scores are implemented in code.
 - Maximizing accuracy = Minimizing
 - We want to (maximize/minimize) information gain
 - Baseline accuracy is _____.
 - Baseline information gain is _____.

Clarification: Baseline

Example Where Accuracy Fails



- Recall: my baseline is return-the-mode.
- When searching for a decision stump with accuracy score, we should try to beat the baseline, not "accuracy=0"
- Using "accuracy=0" as baseline, you will get a different behaviour.
 - E.g. GRS will actually continue splitting, since we get accuracy > 0 from above split.

Last Time: Training, Testing, and Validation

• Training step:

Input: set of 'n' training examples x_i with <u>labels</u> y_i Output: a <u>model</u> that maps from arbitrary x_i to a $\hat{y_i}$

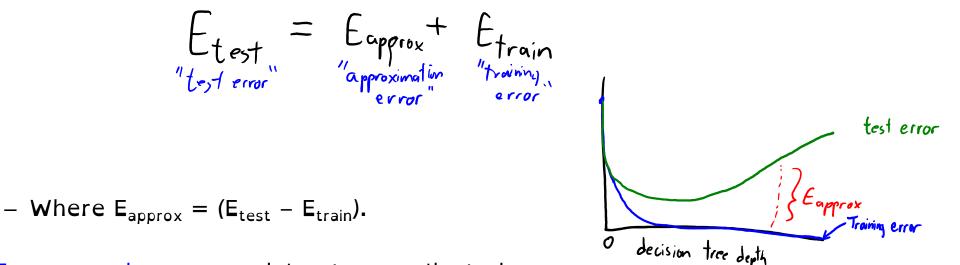
Prediction step:

Inputi set of '(' testing examples \tilde{x}_i and a model. Output predictions \hat{y}_i for the testing examples.

What we are interested in is the test error:
 – Error made by prediction step on new data.

Last Time: Fundamental Trade-Off

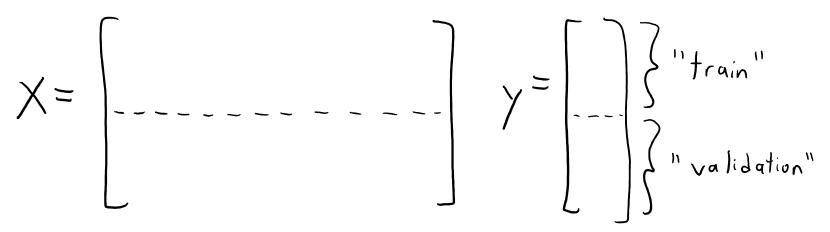
We decomposed test error to get a fundamental trade-off:



- E_{train} goes down as model gets complicated:
 - Training error goes down as a decision tree gets deeper.
- But E_{approx} goes up as model gets complicated:
 - Training error becomes a worse approximation of test error.

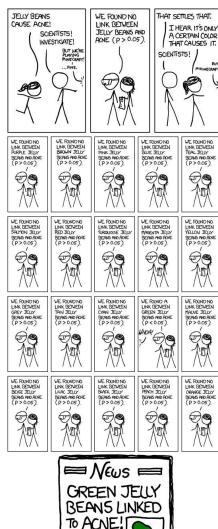
Last Time: Validation Error

- Golden rule: we can't look at test data during training.
- But we can approximate $\mathsf{E}_{\mathsf{test}}$ with a validation error:
 - Error on a set of training examples we "hid" during training.



- Find the decision tree based on the "train" rows.
- Validation error is the error of the decision tree on the "validation" rows.
 - We typically choose "hyper-parameters" like depth to minimize the validation error.

P-value hacking: One instance of optimization bias <u>https://xkcd.com/882/</u>



75% CONFIDENCE

=

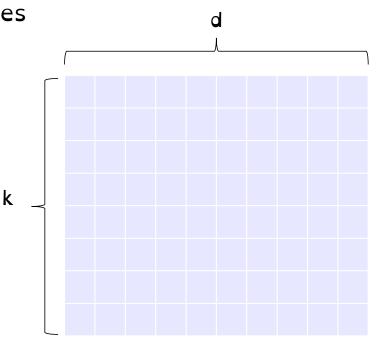
SCIENTISTS.

"Search Space"

• Search space := the space of objects that are evaluated

Q: What is the search space for a decision stump?

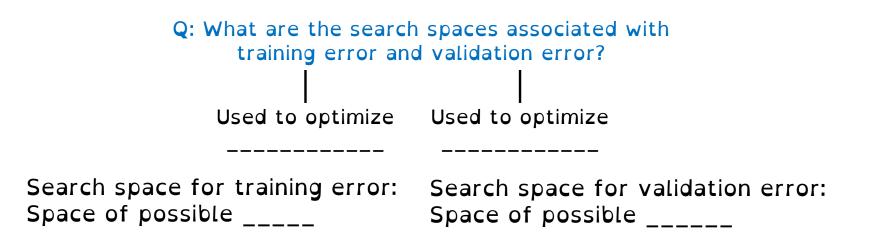
- We looked at the grid of all possible {j,t} values
- $j \in \{1, 2, ..., d\}, t \in \{1, 2, ..., k\}$
- Search space is a d-by-k grid
 - Enumerating all possible decision stumps
- We evaluated all of the d-by-k grid
 - i.e. we evaluate the training error d*k times
- You could make the search space smaller
 - i.e. only look at certain j,t values



Space of possible decision stumps

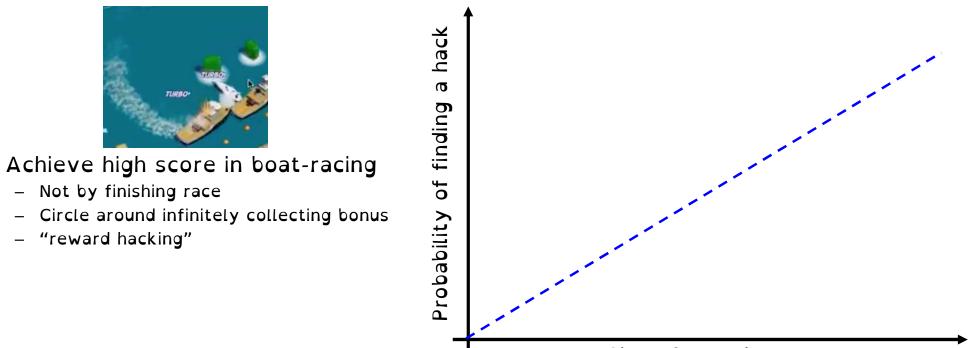
"Search Space"

Q: Between training error and validation error, which one has lower optimization bias for decision trees?



Larger search space => more optimization bias

Finding a "Hack" Instead of Learning

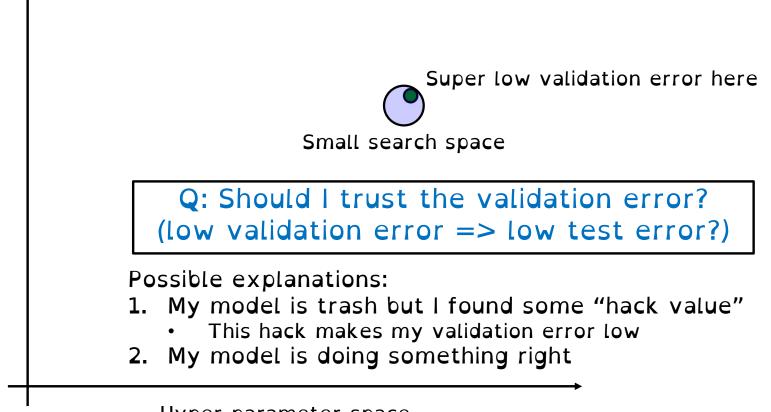


Size of search space

https://openai.com/blog/faulty-reward-functions/

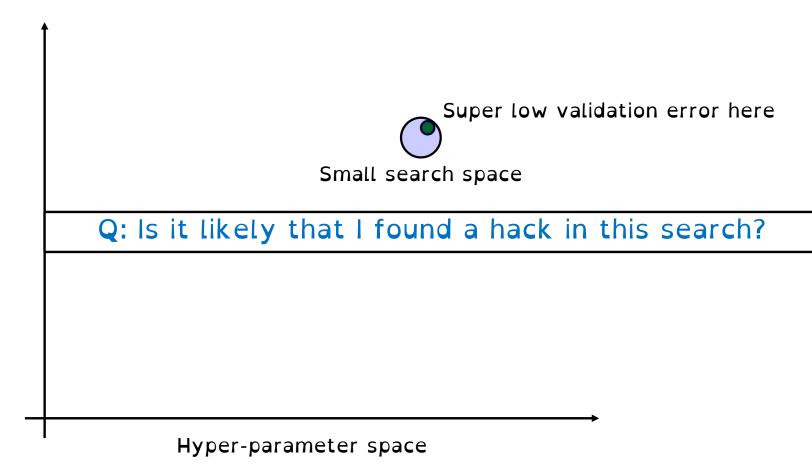
٠

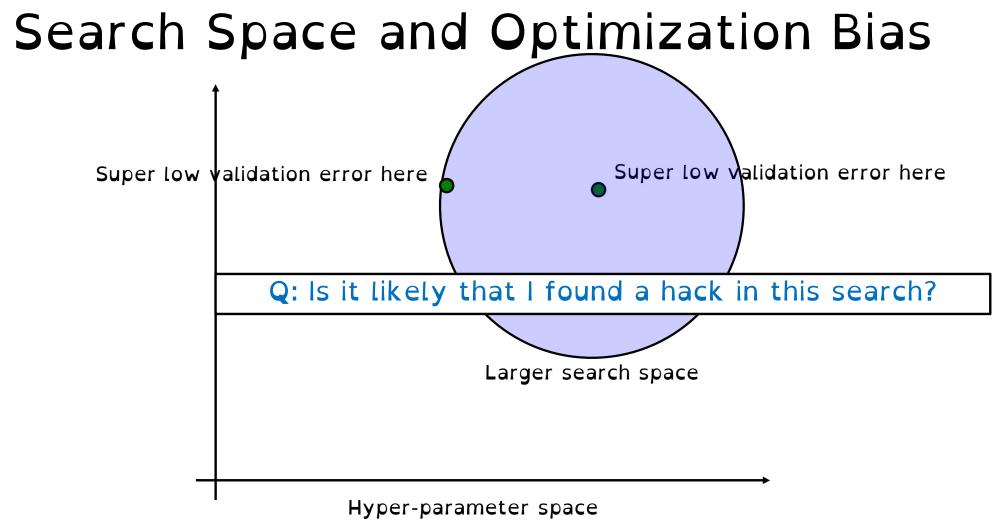
Search Space and Optimization Bias



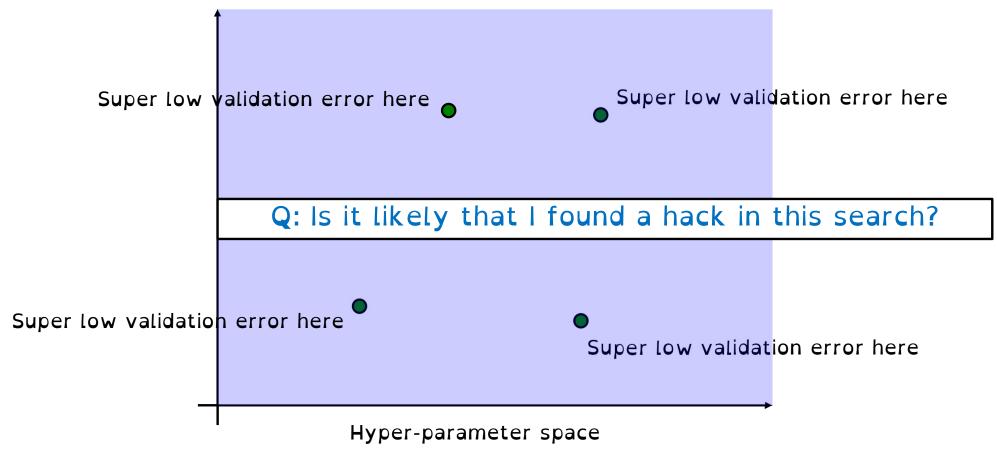
Hyper-parameter space

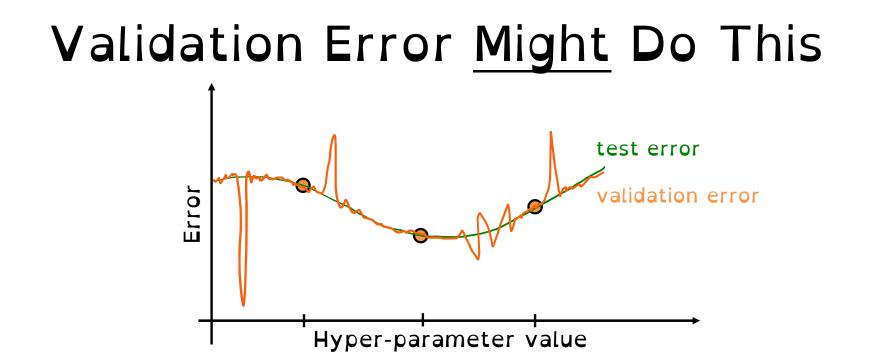
Search Space and Optimization Bias





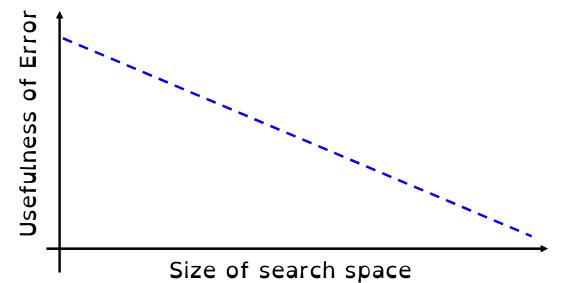
Search Space and Optimization Bias





• Noise in the data can make validation error behave strangely in a very fine scale

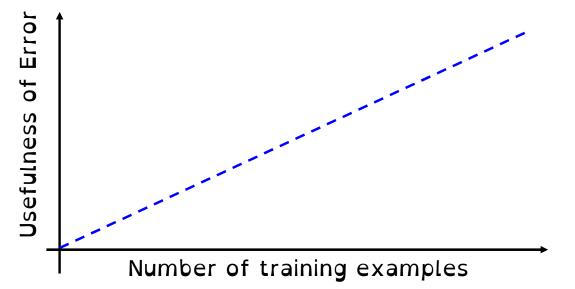
Is Validation Error Trustworthy?



- Large search space => training error is not trustworthy
- Smaller search space => validation error is more trustworthy
- The more you look validation error, it becomes less trustworthy
- It's best to look the validation error only once

> In practice, a "small" number of times is good enough

Is Validation Error Trustworthy?



- More training examples => better representation of distribution
 > Under IID, training examples and test examples become more similar
 - > Likewise, validation examples and test examples become more similar
- It becomes harder to find a "lucky" case with more training examples

Train/Validation/Test Terminology

- Training set: used (a lot) to set parameters.
- Validation set: used (a few times) to set hyper-parameters.
- Testing set: used (once) to evaluate final performance.
- **Deployment** (real-world): what you really care about.

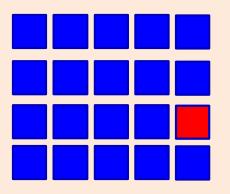
	fit	score	predict
Train	\checkmark	\checkmark	\checkmark
Validation		\checkmark	\checkmark
Test		once	once
Deployment			\checkmark

Validation Error and Optimization Bias

- Optimization bias is small if you only compare a few models:
 - Best decision tree on the training set among depths 1, 2, 3,..., 10.
 - Risk of overfitting to validation set is low if we try 10 things.
- Optimization bias is large if you compare a lot of models:
 - All possible decision trees of depth 10 or less.
 - Here we're using the validation set to pick between a billion+ models:
 - Risk of overfitting to validation set is high: could have low validation error by chance.
 - If you did this, you might want a second validation set to detect overfitting.
- And optimization bias shrinks as you grow size of validation set.

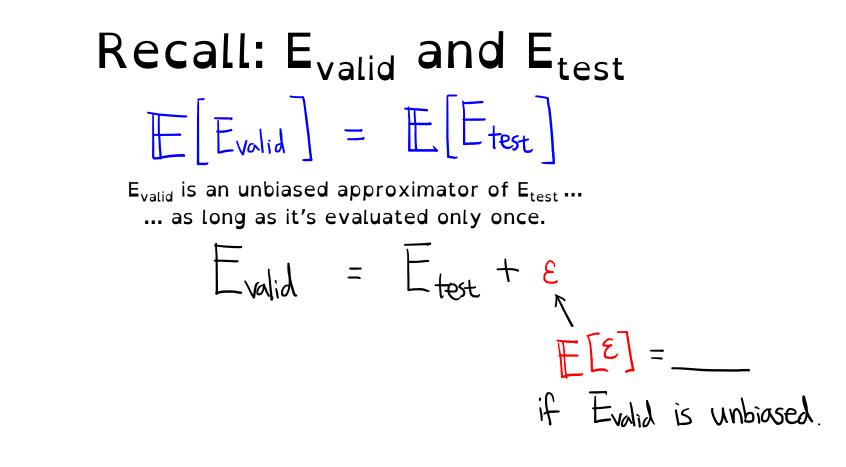
Optimization Bias leads to Publication Bias

• Suppose that 20 researchers perform the exact same experiment:



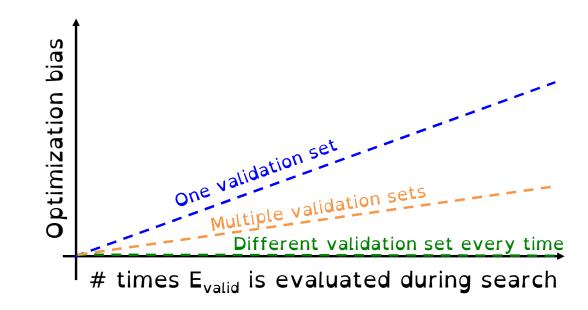
- They each test whether their effect is "significant" (p < 0.05).
 - 19/20 find that it is not significant.
 - But the 1 group finding it's significant publishes a paper about the effect.
- This is again optimization bias, contributing to publication bias.
 A contributing factor to many reported effects being wrong.

Coming Up Next
CROSS-VALIDATION



• The mean of error ϵ is a function of

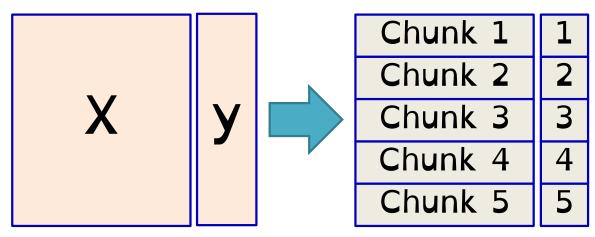
Recall: E_{valid} and E_{test}

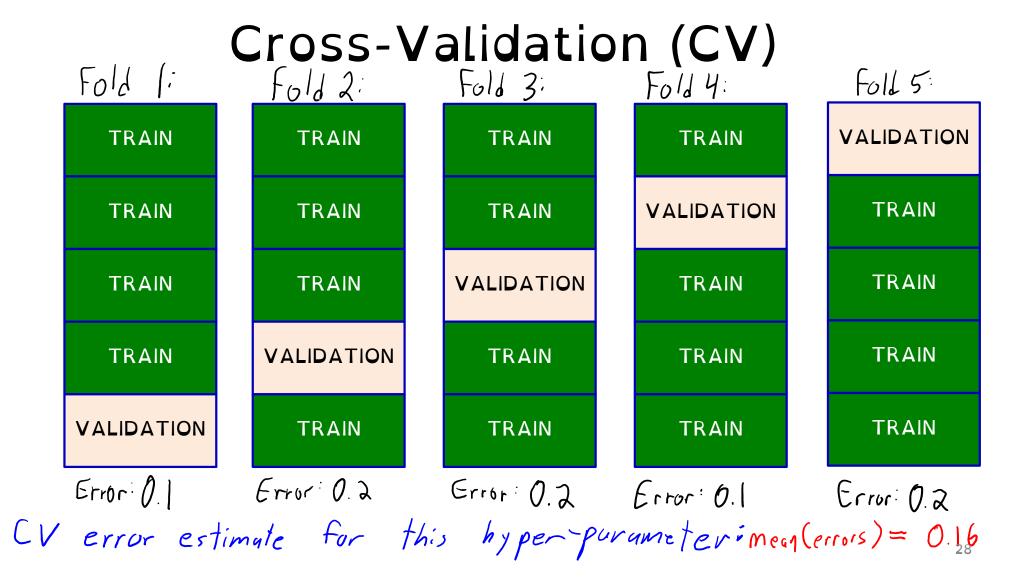


Cross-Validation (CV)

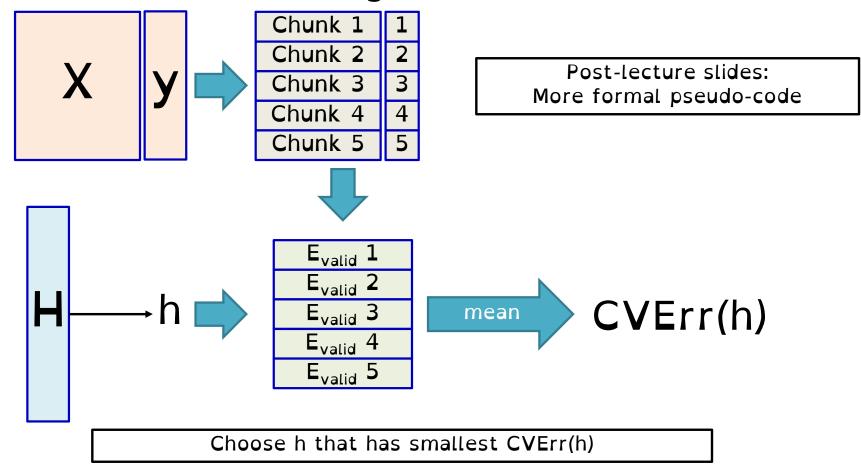
Q: How do we make multiple validation sets from the same training data?

- Idea: let's create multiple subsets of X and y.
 - 80% of data \rightarrow training set X_{train} and y_{train}
 - 20% of data \rightarrow validation set $X_{validate}$ and $y_{validate}$
 - We can do this split 5 times
- To do this, let's divide X and y into 5 chunks





Hyper-Parameter Tuning with CV Pseudo-Code



Cross-Validation (CV)

- You can take this idea further ("k-fold cross-validation"):
 - 10-fold cross-validation: train on 90% of data and validate on 10%.
 - Repeat 10 times and average (test on fold 1, then fold 2,..., then fold 10),
 - Leave-one-out cross-validation: train on all but one training example.
 - Repeat n times and average.
- Gets more accurate but more expensive with more folds.
 - To choose depth we compute the cross-validation score for each depth.
- As before, if data is ordered then folds should be random splits.
 - Randomize first, then split into fixed folds.

Cross-Validation Theory

- Does CV give unbiased estimate of test error?
 - Yes!
 - Since each data point is only used once in validation, expected validation error on each data point is test error.
 - But again, if you use CV to select among models then it is no longer unbiased.
- What about variance of CV?
 - Hard to characterize.
 - CV variance on 'n' data points is worse than with a validation set of size 'n'.
 - But we believe it is close.
- Does cross-validation remove optimization bias?
 - No, but the bias might be smaller since you have more "test" points.

Me waiting to hear about the best ML model so I can make lots of money

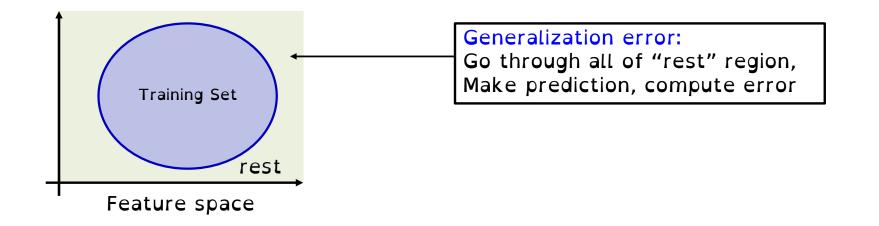
Coming Up Next

"BEST" MACHINE LEARNING MODEL

There is None

The "Best" Machine Learning Model

- Decision trees are not always most accurate on test error.
- What is the "best" machine learning model?
- An alternative measure of performance is the generalization error:
 - Average error over all x_i vectors that are not seen in the training set.
 - "How well we expect to do for a completely unseen feature vector".



The "Best" Machine Learning Model

- No free lunch theorem (proof in bonus slides):
 - There is no "best" model achieving the best generalization error for every problem.
 - If model A generalizes better to new data than model B on one dataset, there is another dataset where model B works better.
- This question is like asking which is "best" among "rock", "paper", and "scissors".
- Given a dataset, we need to try out multiple models.
- So which ones to study in CPSC 340?
 - We'll usually motivate each method by a specific application.
 - But we're focusing on models that have been effective in many applications.
- Machine Learning research:
 - Large focus on models that are useful across many applications.

"State-Of-The-Art" Models

- A subset of ML research is OBSESSED with beating the state-of-the-art performance on benchmark tasks
 - > State-of-the-art (SOTA)
 - := test accuracy is best in the world
 - Benchmark tasks := well-known learning tasks
 - (e.g. object recognition, machine translation, etc.)
- SOTA models for each task is very specialized.
 - Models that perform well on task A don't necessarily perform well on task B
- Reviewers look carefully for whether your model works well across different datasets for the same task
 - Otherwise, you are not SOTA. You just overfitted to one dataset!

Coming Up Next **NAÏVE BAYES INTRO**

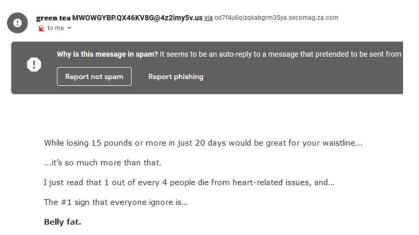
Rev. Thomas Bayes

Application: Email Spam Filtering

Want a build a system that detects spam emails.
 Context: spam used to be a big problem.

SHOPPERONLINEREWARD	Come and Get all what you want !! Don\'t miss your reward
Costco Wholesale	X 🗚 Notice[nkim412]: Wholesale Survey Offer expiring :
True Nutrition	This Thursday: Q&A with Dante Trudel 🟐 - Two Takeovers this
🖋 nkim412 🧬	Unbelievable 500% Deposit Match + 150 FREE Spins! - Duck
nkim412	CONGRATS_nkim412 🎁 🖇 Play your 100 FREE Spins And Win
green tea	How to lose 15lbs in 20 Days - While losing 15 pounds or mo
Special Ca.	\$1000 welcome bonus + 125 free spins - Your new online ca

How to lose 15lbs in 20 Days ∑ Spam ×



Q: How do we formulate this as supervised learning?

Representing Emails

- Assumption: spam emails have a predictable pattern
 - Certain words occur more often in spams
 - E.g. "exclusive", "offer", "reward", "Vicodin", "keto", etc.
 - Some words occur together more often in spams
 - E.g. "hi there", "you have been selected", "too late", etc.
- We will represent emails with bag-of-words

\$	Hi	CPSC	340	Vicodin	Offer	
1	1	0	0	1	0	
0	0	0	0	1	1	
0	1	1	1	0	0	
ι						J

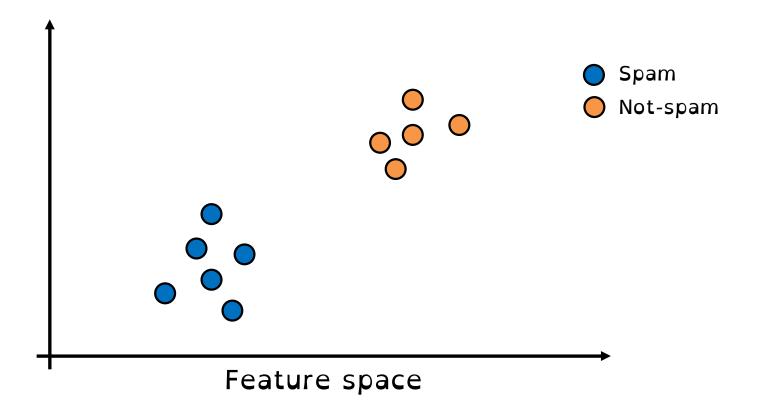
d features: keywords for bag

• $x_{ij} = 1$ if word/phrase 'j' is in email 'i', $x_{ij} = 0$ if it is not.

Space of Emails

Spams have predictable patterns

=> spams and not-spams look different in space of emails



Spam Filtering as Supervised Learning

• Collect a large number of emails, gets user to label them.

\$	Hi	CPSC	340	Vicodin	Offer	•••	Spam?
1	1	0	0	1	0	•••	1
Ο	0	0	0	1	1		1
Ο	1	1	1	0	0	•••	0
•••	•••		•••			•••	

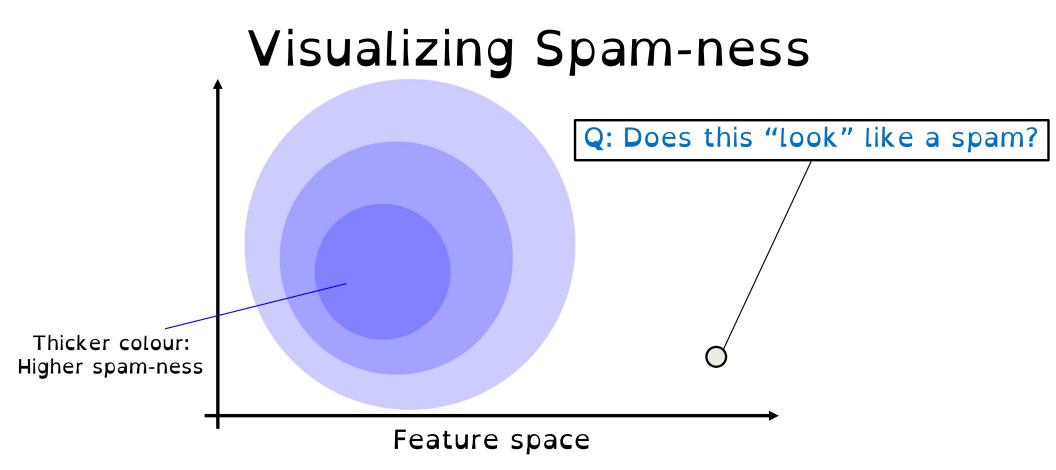
• $y_i = 1$ if email 'i' is spam, $y_i = 0$ if email is not spam.

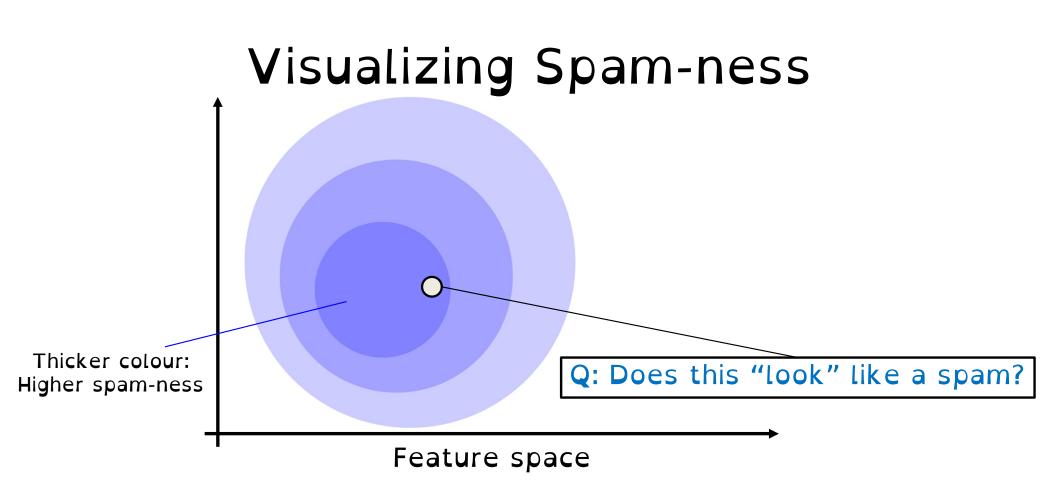
Probabilistic Classifiers

- For years, best spam filtering methods used naïve Bayes.
 - A probabilistic classifier based on Bayes rule.
 - It tends to work well with bag of words.
 - Recently shown to improve on state of the art for CRISPR "gene editing" (Link).
- Probabilistic classifiers: use probability for generating predictions
 - Model the conditional probability, $p(y_i | x_i)$.
 - "If a message has words x_i , what is probability that message is spam?"
- Classify it as spam if probability of spam is higher than not spam:
 - If $p(y_i = "spam" | x_i) > p(y_i = "not spam" | x_i)$
 - return "spam".
 - Else
 - return "not spam".

Note on Learned Probability

- p(y_i = "spam" | x_i) reads:
 "probability that message is spam given these features"
- In practice, we treat it more like a score: "the spam-ness of the input message"
- Our goal is to build a model that can compute the spam-ness, based on the examples of spam messages





Coming Up Next NAÏVE BAYES DETAILS

Computing Spam-ness p(y_i = "spam" | x_i)

Naïve Bayes uses Bayes rule:

$$p(y_i = "spam" | x_i) = p(x_i | y_i = "spam")p(y_i = "spam") p(x_i)$$

- On the right we have three terms:
 - Marginal probability $p(y_i)$ that an email is spam.
 - Marginal probability $p(x_i)$ that an email has the set of words x_i .
 - Conditional probability $p(x_i | y_i)$ that a spam e-mail has the words x_i .
 - And the same for non-spam e-mails.

What is
$$p(y_i)$$
?
 $p(y_i = "spam" | x_i) = \frac{p(x_i | y_i = "spam")}{p(x_i)} p(y_i = "spam")$

p(y_i = "spam") is the "baseline spam-ness"
 Probability that an email is a spam, without even looking at features.

Q: How do I learn this quantity?

Step 1: Look at all emails in existence in dataset Step 2: Count the number of spams

What is
$$p(x_i)$$
?
 $p(y_i = "spam" | x_i) = p(x_i | y_i = "spam")p(y_i = "spam")$
 $p(x_i)$

• $p(x_i)$ is the is probability that a random email looks like x_i

Q: How do I learn this quantity?

Step 1: Look at all emails in existence in dataset Step 2: Count the number of times x_i occurs

What is
$$p(x_i | y_i)$$
?
 $p(y_i = "spam" | x_i) = \frac{p(x_i | y_i = "spam")}{p(x_i)} p(y_i = "spam")$

• $p(x_i | y_i = "spam")$ is the is probability that a random spam looks like x_i

Q: How do I learn this quantity?

Step 1: Look at all spams in existence in dataset Step 2: Count the number of times x_i occurs

IID Assumption

Too big to analyze

n is smaller but decently large

EMAILS

IN DATASET

- IID assumption lets us treat the dataset as a snapshot of truth
 - i.e. emails in dataset (somewhat) accurately reflect the patterns in all emails in existence.
- Then probabilities can be estimated by frequencies in dataset

Counting for $p(x_i)$ and $p(x_i | y_i)$

• Seeing all possible examples at least once is extremely unlikely!

\$	Hi	CPSC	340	Vicodin	Offer	••••
1	0	Ο	Ο	O	O	••••
Ο	1	O	Ο	O	0	•••
O	0	1	O	O	0	•••
	•••	•••	•••		•••	•••
					_	

d features: keywords for bag

- I need to have O(_) examples in order to see all possible examples.
- If I had fewer examples than that,
 I'll end up setting p(x_i) and p(x_i | y_i) to 0 all the time

Q: What should we do about that?

Getting Rid of
$$p(x_i)$$

 $p(y_i = "spam" | x_i) = \frac{p(x_i | y_i = "spam")p(y_i = "spam")}{p(x_i)}$

Naive Bayes returns "span" if
$$p(y_i = "span" \mid x_i) > p(y_i = "not span" \mid x_i)$$
.
By Bayes rule this means $p(x_i \mid y_i = "span")p(y_i = "span") > p(x_i \mid y_i = "not span")dy_i = "not your")dy_i = "not your")dy_i = "not you")dy_i = "not you"$

Naïve Bayes

• Naïve Bayes makes a big assumption to make things easier:

- We assume all features x_i are conditionally independent give label y_i.
 - Once you know it's spam, probability of "vicodin" doesn't depend on "340".
 - Definitely not true, but sometimes a good approximation.
- And now we only need easy quantities like $p("vicodin" = 0 | y_i = "spam")$.

What is $p("Vicodin" = 0 | y_i = "spam")$?

$$p(hello=1, vicodin=0, 340=1|spam) \approx p(hello=1/spam) p(vicodin=0/span) p(340=1/spam)$$

• $p("vicodin" = 0| y_i = "spam")$ is the is probability that a spam does not contain the word "Vicodin"

Q: How do I learn this quantity?

Step 1: Look at all spams in existence in dataset Step 2: Count the number of times "Vicodin" doesn't occur

Summary

- Optimization bias: using a validation set too much overfits.
- Cross-validation: allows better use of data to estimate test error.
- No free lunch theorem: there is no "best" ML model.
- Probabilistic classifiers: try to estimate p(y_i | x_i).
- Naïve Bayes: simple probabilistic classifier based on counting.
 - Uses conditional independence assumptions to make training practical.
- Next time:
 - A "best" machine learning model as 'n' goes to ∞ .

Review Questions

- Q1: Is having a super small search space always a good idea for hyper-parameter tuning?
- Q2: In practice, people rarely use cross-validation for very large datasets. Why?
- Q3: If we're using Naïve Bayes for spam filtering, why can a non-binary bag-of-words be problematic?
- Q4: What is so naïve about Naïve Bayes?

Cross-Validation Pseudo-Code

Notes: - This fits 100 models! (20 depths times 5 folds) - We get one (average) Score for each of the 20 depths. - Vse this score fo pick depth

Feature Representation for Spam

- Are there better features than bag of words?
 - We add bigrams (sets of two words):
 - "CPSC 340", "wait list", "special deal".
 - Or trigrams (sets of three words):
 - "Limited time offer", "course registration deadline", "you're a winner".
 - We might include the sender domain:
 - <sender domain == "mail.com">.
 - We might include regular expressions:
 - <your first and last name>.

Back to Decision Trees

- Instead of validation set, you can use CV to select tree depth.
- But you can also use these to decide whether to split:
 - Don't split if validation/CV error doesn't improve.
 - Different parts of the tree will have different depths.
- Or fit deep decision tree and use [cross-]validation to prune:
 Remove leaf nodes that don't improve CV error.
- Popular implementations that have these tricks and others.

Random Subsamples

- Instead of splitting into k-folds, consider "random subsample" method:
 - At each "round", choose a random set of size 'm'.
 - Train on all examples except these 'm' examples.
 - Compute validation error on these 'm' examples.
- Advantages:
 - Still an unbiased estimator of error.
 - Number of "rounds" does not need to be related to "n".
- Disadvantage:
 - Examples that are sampled more often get more "weight".

Handling Data Sparsity

- Do we need to store the full bag of words 0/1 variables?
 - No: only need list of non-zero features for each e-mail.

\$	Hi	CPSC	340	Vicodin	Offer	••••		Non-Zeroes
1	1	O	0	1	0	•••		{ 1,2,5, }
0	0	O	0	1	1		VS.	{5,6,}
0	1	1	1	0	O	•••		{ 2 , 3 , 4 ,}
1	1	0	0	0	1	•••		{1,2,6,}

Math/model doesn't change, but more efficient storage.

Generalization Error

- An alternative measure of performance is the generalization error:
 - Average error over the set of x^i values that are not seen in the training set.
 - "How well we expect to do for a completely unseen feature vector".
- Test error vs. generalization error when labels are deterministic:

"Best" and the "Good" Machine Learning Models

- Question 1: what is the "best" machine learning model?
 - The model that gets lower generalization error than all other models.
- Question 2: which models always do better than random guessing?
 - Models with lower generalization error than "predict 0" for all problems.
- No free lunch theorem:
 - There is **no** "best" model achieving the best generalization error for every problem.
 - If model A generalizes better to new data than model B on one dataset, there is another dataset where model B works better.

No Free Lunch Theorem

- Let's show the "no free lunch" theorem in a simple setting:
 - The x^i and y^i are binary, and y^i being a deterministic function of x^i .
- With 'd' features, each "learning problem" is a map from {0,1}^d -> {0,1}.
 Assigning a binary label to each of the 2^d feature combinations.

Feature 1	Feature 2	Feature 3	y (map 1)	y (map 2)	y (map 3)	
0	0	0	O	1	0	
0	0	1	Ũ	0	1	
0	1	Ο	0	0	0	

- Let's pick one of these 'y' vectors ("maps" or "learning problems") and:
 - Generate a set training set of 'n' IID samples.
 - Fit model A (convolutional neural network) and model B (naïve Bayes).

No Free Lunch Theorem

- Define the "unseen" examples as the (2^d n) not seen in training.
 - Assuming no repetitions of x^i values, and $n < 2^d$.
 - Generalization error is the average error on these "unseen" examples.
- Suppose that model A got 1% error and model B got 60% error.
 - We want to show model B beats model A on another "learning problem".
- Among our set of "learning problems" find the one where:
 - The labels yⁱ agree on all training examples.
 - The labels yⁱ disagree on all "unseen" examples.
- On this other "learning problem":
 - Model A gets 99% error and model B gets 40% error.

Proof of No Free Lunch Theorem

- Let's show the "no free lunch" theorem in a simple setting:
 The xⁱ and yⁱ are binary, and yⁱ being a deterministic function of xⁱ.
- With 'd' features, each "learning problem" is a map from each of the 2^d feature combinations to 0 or 1: {0,1}^d -> {0,1}

Feature 1	Feature 2	Feature 3	Map 1	Map 2	Мар З	
0	0	Ũ	0	1	0	
0	0	1	0	O	1	
0	1	0	0	Ũ	0	

- Let's pick one of these maps ("learning problems") and:
 - Generate a set training set of 'n' IID samples.
 - Fit model A (convolutional neural network) and model B (naïve Bayes).

Proof of No Free Lunch Theorem

- Define the "unseen" examples as the (2^d n) not seen in training.
 - Assuming no repetitions of x^i values, and $n < 2^d$.
 - Generalization error is the average error on these "unseen" examples.
- Suppose that model A got 1% error and model B got 60% error.
 - We want to show model B beats model A on another "learning problem".
- Among our set of "learning problems" find the one where:
 - The labels yⁱ agree on all training examples.
 - The labels y_i disagree on all "unseen" examples.
- On this other "learning problem":
 - Model A gets 99% error and model B gets 40% error.

Proof of No Free Lunch Theorem

- Further, across all "learning problems" with these 'n' examples:
 - Average generalization error of every model is 50% on unseen examples.
 - It's right on each unseen example in exactly half the learning problems.
 - With 'k' classes, the average error is (k-1)/k (random guessing).
- This is kind of depressing:
 - For general problems, no "machine learning" is better than "predict 0".
- But the proof also reveals the problem with the NFL theorem:
 - Assumes every "learning problem" is equally likely.
 - World encourages patterns like "similar features implies similar labels".