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Admin
• Monday: 

– Assignment 1 due 
– Assignment 2 out, due the following Monday

• Next Friday: Assignment 3 out
– Due the following Friday
– To make enough time for you to study for midterm

• Midterm will be Tuesday, June 1, 2021
– Canvas for autograded portion
– Gradescope for manually graded portion
– Stay tuned for instructions

• Piazza: partner search post is up.
– See my recommendations for teamwork.

• Contact us on Piazza if you need help with Gradescope.
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In This Lecture
• More on Optimization Bias (10 minutes)
• Cross-Validation (10 minutes)
• “Best” Machine Learning Model (10 minutes)
• Naïve Bayes (20 minutes)
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Last Time: Decision Trees
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Clarification: Score
• Be careful about how scores are implemented in code.

– Maximizing accuracy = Minimizing ____________
– We want to (maximize/minimize) information gain
– Baseline accuracy is ______________________.
– Baseline information gain is _____.
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Clarification: Baseline
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• Recall: my baseline is return-the-mode.
• When searching for a decision stump with accuracy score, 

we should try to beat the baseline, not “accuracy=0”
• Using “accuracy=0” as baseline, you will get a different behaviour.

– E.g. GRS will actually continue splitting, since we get accuracy > 0 from above split.



Last Time: Training, Testing, and Validation
• Training step:

• Prediction step:

• What we are interested in is the test error:
– Error made by prediction step on new data.
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Last Time: Fundamental Trade-Off
• We decomposed test error to get a fundamental trade-off:

– Where Eapprox = (Etest – Etrain).

• Etrain goes down as model gets complicated:
– Training error goes down as a decision tree gets deeper.

• But Eapprox goes up as model gets complicated:
– Training error becomes a worse approximation of test error.
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Last Time: Validation Error
• Golden rule: we can’t look at test data during training.
• But we can approximate Etest with a validation error:

– Error on a set of training examples we “hid” during training.

– Find the decision tree based on the “train” rows.
– Validation error is the error of the decision tree on the “validation” rows.

• We typically choose “hyper-parameters” like depth to minimize the validation error.
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MORE ON OPTIMIZATION BIAS
Coming Up Next
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https://xkcd.com/882/

P-value hacking:
One instance of optimization bias



“Search Space”
• Search space := the space of objects that are evaluated

Q: What is the search space for a decision stump?
• We looked at the grid of all possible {j,t} values
• j ∈ {1, 2, …, d}, t ∈ {1, 2, …, k}
• Search space is a d-by-k grid

– Enumerating all possible decision stumps
• We evaluated all of the d-by-k grid

– i.e. we evaluate the training error
d*k times

• You could make the search space smaller
– i.e. only look at certain j,t values

d

k

Space of possible decision stumps11



“Search Space”
Q: Between training error and validation error, 

which one has lower optimization bias for decision trees?

Q: What are the search spaces associated with 
training error and validation error? 

Used to optimize
____________

Used to optimize 
____________

Search space for training error:
Space of possible _____

Search space for validation error:
Space of possible ______

12
Larger search space => more optimization bias



Finding a “Hack” Instead of Learning

• Achieve high score in boat-racing
– Not by finishing race
– Circle around infinitely collecting bonus
– “reward hacking”
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https://openai.com/blog/faulty-reward-functions/



Search Space and Optimization Bias

Hyper-parameter space

Super low validation error here

Small search space

Q: Should I trust the validation error?
(low validation error => low test error?)

Possible explanations:
1. My model is trash but I found some “hack value”

• This hack makes my validation error low
2. My model is doing something right
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Search Space and Optimization Bias

Hyper-parameter space

Super low validation error here

Small search space

Q: Is it likely that I found a hack in this search?
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Search Space and Optimization Bias

Hyper-parameter space

Super low validation error here

Larger search space

Super low validation error here
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Q: Is it likely that I found a hack in this search?



Search Space and Optimization Bias

Hyper-parameter space

Super low validation error here

Super low validation error here

Super low validation error here

Super low validation error here
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Q: Is it likely that I found a hack in this search?



Validation Error Might Do This

Hyper-parameter value
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• Noise in the data can make validation error behave strangely in a very fine scale
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Is Validation Error Trustworthy?

Size of search space
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• Large search space => training error is not trustworthy 
• Smaller search space => validation error is more trustworthy
• The more you look validation error, it becomes less trustworthy
• It’s best to look the validation error only once

 In practice, a “small” number of times is good enough 19



Is Validation Error Trustworthy?

Number of training examples
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• More training examples => better representation of distribution
 Under IID, training examples and test examples become more similar
 Likewise, validation examples and test examples become more similar

• It becomes harder to find a “lucky” case with more training examples
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Train/Validation/Test Terminology
• Training set: used (a lot) to set parameters.
• Validation set: used (a few times) to set hyper-parameters.
• Testing set: used (once) to evaluate final performance.
• Deployment (real-world): what you really care about.
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Validation Error and Optimization Bias
• Optimization bias is small if you only compare a few models:

– Best decision tree on the training set among depths 1, 2, 3,…, 10.
– Risk of overfitting to validation set is low if we try 10 things.

• Optimization bias is large if you compare a lot of models:
– All possible decision trees of depth 10 or less.
– Here we’re using the validation set to pick between a billion+ models:

• Risk of overfitting to validation set is high: could have low validation error by chance.

– If you did this, you might want a second validation set to detect overfitting.

• And optimization bias shrinks as you grow size of validation set.
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Optimization Bias leads to Publication Bias
• Suppose that 20 researchers perform the exact same experiment:

• They each test whether their effect is “significant” (p < 0.05).
– 19/20 find that it is not significant.
– But the 1 group finding it’s significant publishes a paper about the effect.

• This is again optimization bias, contributing to publication bias.
– A contributing factor to many reported effects being wrong.
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CROSS-VALIDATION
Coming Up Next
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Recall: Evalid and Etest

• The mean of error is a function of ______________
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Evalid is an unbiased approximator of Etest …
… as long as it’s evaluated only once. 



Recall: Evalid and Etest
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Cross-Validation (CV)

• Idea: let’s create multiple subsets of X and y.
– 80% of data training set Xtrain and ytrain
– 20% of data validation set Xvalidate and yvalidate
– We can do this split 5 times

• To do this, let’s divide X and y into 5 chunks
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Q: How do we make multiple validation sets 
from the same training data?

Chunk 1
Chunk 2
Chunk 3
Chunk 4
Chunk 5

X y
1
2
3
4
5



Cross-Validation (CV)
TRAIN
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TRAIN

VALIDATION
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Hyper-Parameter Tuning with CV Pseudo-Code

29

Chunk 1
Chunk 2
Chunk 3
Chunk 4
Chunk 5

X y
1
2
3
4
5

H h
Evalid 1
Evalid 2
Evalid 3
Evalid 4
Evalid 5

mean CVErr(h)

Choose h that has smallest CVErr(h)

Post-lecture slides:
More formal pseudo-code



Cross-Validation (CV)
• You can take this idea further (“k-fold cross-validation”):

– 10-fold cross-validation: train on 90% of data and validate on 10%.
• Repeat 10 times and average (test on fold 1, then fold 2,…, then fold 10),

– Leave-one-out cross-validation: train on all but one training example.
• Repeat n times and average.

• Gets more accurate but more expensive with more folds.
– To choose depth we compute the cross-validation score for each depth.

• As before, if data is ordered then folds should be random splits.
– Randomize first, then split into fixed folds.
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Cross-Validation Theory
• Does CV give unbiased estimate of test error?

– Yes!
• Since each data point is only used once in validation, expected validation error on each data point is test error.

– But again, if you use CV to select among models then it is no longer unbiased.

• What about variance of CV?
– Hard to characterize.
– CV variance on ‘n’ data points is worse than with a validation set of size ‘n’.

• But we believe it is close.

• Does cross-validation remove optimization bias?
– No, but the bias might be smaller since you have more “test” points.
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“BEST” MACHINE LEARNING MODEL
Coming Up Next
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Me waiting to hear about the best ML model 
so I can make lots of money



There is None
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• Decision trees are not always most accurate on test error.
• What is the “best” machine learning model?
• An alternative measure of performance is the generalization error:

– Average error over all xi vectors that are not seen in the training set.
– “How well we expect to do for a completely unseen feature vector”.

rest

The “Best” Machine Learning Model

Training Set

Feature space

Generalization error:
Go through all of “rest” region,
Make prediction, compute error
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The “Best” Machine Learning Model
• No free lunch theorem (proof in bonus slides):

– There is no “best” model achieving 
the best generalization error for every problem.

– If model A generalizes better to new data than model B on one dataset, 
there is another dataset where model B works better.

• This question is like asking which is “best” among “rock”, “paper”, and “scissors”.
• Given a dataset, we need to try out multiple models.
• So which ones to study in CPSC 340?

– We’ll usually motivate each method by a specific application.
– But we’re focusing on models that have been effective in many applications.

• Machine learning research:
– Large focus on models that are useful across many applications.
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“State-Of-The-Art” Models
• A subset of ML research is OBSESSED with beating the 

state-of-the-art performance on benchmark tasks
 State-of-the-art (SOTA)

:= test accuracy is best in the world
 Benchmark tasks 

:= well-known learning tasks
(e.g. object recognition, machine translation, etc.)

• SOTA models for each task is very specialized.
 Models that perform well on task A 

don’t necessarily perform well on task B

• Reviewers look carefully for whether your model works 
well across different datasets for the same task
 Otherwise, you are not SOTA. 

You just overfitted to one dataset!
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NAÏVE BAYES INTRO
Coming Up Next

37

Rev. Thomas Bayes



Application: Email Spam Filtering
• Want a build a system that detects spam emails.

– Context: spam used to be a big problem.

38

Q: How do we formulate this as supervised learning?



Representing Emails
• Assumption: spam emails have a predictable pattern

– Certain words occur more often in spams
• E.g. “exclusive”, “offer”, “reward”, “Vicodin”, “keto”, etc.

– Some words occur together more often in spams
• E.g. “hi there”, “you have been selected”, “too late”, etc.

• We will represent emails with bag-of-words

• xij = 1 if word/phrase ‘j’ is in email ‘i’, xij = 0 if it is not.
39

$ Hi CPSC 340 Vicodin Offer …
1 1 0 0 1 0 …
0 0 0 0 1 1 …
0 1 1 1 0 0 …
… … … … … … …

d features: keywords for bag



Space of Emails

40Feature space

Spam
Not-spam

Spams have predictable patterns 
=> spams and not-spams look different in space of emails



Spam Filtering as Supervised Learning
• Collect a large number of emails, gets user to label them.

• yi = 1 if email ‘i’ is spam, yi = 0 if email is not spam.

$ Hi CPSC 340 Vicodin Offer …
1 1 0 0 1 0 …
0 0 0 0 1 1 …
0 1 1 1 0 0 …
… … … … … … …

Spam?
1
1
0
…
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Probabilistic Classifiers
• For years, best spam filtering methods used naïve Bayes.

– A probabilistic classifier based on Bayes rule.
– It tends to work well with bag of words.
– Recently shown to improve on state of the art for CRISPR “gene editing” (link).

• Probabilistic classifiers: use probability for generating predictions
– Model the conditional probability, p(yi | xi).
– “If a message has words xi, what is probability that message is spam?”

• Classify it as spam if probability of spam is higher than not spam:
– If p(yi = “spam” | xi) > p(yi = “not spam” | xi)

• return “spam”.
– Else 

• return “not spam”.
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Note on Learned Probability
• p(yi = “spam” | xi) reads:

“probability that message is spam given these features”

• In practice, we treat it more like a score:
“the spam-ness of the input message”

• Our goal is to build a model that can compute the spam-ness, 
based on the examples of spam messages 
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Visualizing Spam-ness

44

Feature space

Thicker colour:
Higher spam-ness

Q: Does this “look” like a spam?



Visualizing Spam-ness

45

Feature space

Thicker colour:
Higher spam-ness Q: Does this “look” like a spam?



NAÏVE BAYES DETAILS
Coming Up Next
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Computing Spam-ness
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p(yi = “spam” | xi) 
• Naïve Bayes uses Bayes rule:

• On the right we have three terms:
– Marginal probability p(yi) that an email is spam.
– Marginal probability p(xi) that an email has the set of words xi.
– Conditional probability p(xi | yi) that a spam e-mail has the words xi.

• And the same for non-spam e-mails.



What is p(yi)?
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• p(yi = “spam”) is the “baseline spam-ness”
– Probability that an email is a spam, without even looking at features.

Q: How do I learn this quantity?
Step 1: Look at all emails in existence in dataset
Step 2: Count the number of spams



What is p(xi)?
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• p(xi) is the is probability that a random email looks like xi

Q: How do I learn this quantity?
Step 1: Look at all emails in existence in dataset
Step 2: Count the number of times xi occurs



What is p(xi | yi)?
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• p(xi | yi=“spam”) is the is probability that a random spam looks like xi

Q: How do I learn this quantity?
Step 1: Look at all spams in existence in dataset
Step 2: Count the number of times xi occurs



IID Assumption
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ALL EMAILS
IN EXISTENCE EMAILS

IN DATASET

Too big to analyze n is smaller but decently large

• IID assumption lets us treat the dataset as a snapshot of truth
 i.e. emails in dataset (somewhat) accurately reflect 

the patterns in all emails in existence.
• Then probabilities can be estimated by frequencies in dataset



Counting for p(xi) and p(xi | yi)
• Seeing all possible examples at least once is extremely unlikely!

• I need to have O(_) examples in order to see all possible examples.
• If I had fewer examples than that, 

I’ll end up setting p(xi) and p(xi | yi) to 0 all the time
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$ Hi CPSC 340 Vicodin Offer …
1 0 0 0 0 0 …
0 1 0 0 0 0 …
0 0 1 0 0 0 …
… … … … … … …

d features: keywords for bag

Q: What should we do about that?



Getting Rid of p(xi)
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Naïve Bayes
• Naïve Bayes makes a big assumption to make things easier:

• We assume all features xi are conditionally independent give label yi.
– Once you know it’s spam, probability of “vicodin” doesn’t depend on “340”.
– Definitely not true, but sometimes a good approximation.

• And now we only need easy quantities like p(“vicodin” = 0| yi = “spam”).
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What is p(“Vicodin” = 0| yi = “spam”)?
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• p(“vicodin” = 0| yi = “spam”) is the 
is probability that a spam does not contain the word “Vicodin”

Q: How do I learn this quantity?
Step 1: Look at all spams in existence in dataset
Step 2: Count the number of times “Vicodin” doesn’t occur



Summary
• Optimization bias: using a validation set too much overfits.
• Cross-validation: allows better use of data to estimate test error.
• No free lunch theorem: there is no “best” ML model.
• Probabilistic classifiers: try to estimate p(yi | xi).
• Naïve Bayes: simple probabilistic classifier based on counting.

– Uses conditional independence assumptions to make training practical.

• Next time:
– A “best” machine learning model as ‘n’ goes to ∞.
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Review Questions
• Q1: Is having a super small search space always a good idea for hyper-parameter tuning?

• Q2: In practice, people rarely use cross-validation for very large datasets. Why?

• Q3: If we’re using Naïve Bayes for spam filtering, 
why can a non-binary bag-of-words be problematic?

• Q4: What is so naïve about Naïve Bayes?
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Cross-Validation Pseudo-Code
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Feature Representation for Spam
• Are there better features than bag of words?

– We add bigrams (sets of two words):
• “CPSC 340”, “wait list”, “special deal”.

– Or trigrams (sets of three words):
• “Limited time offer”, “course registration deadline”, “you’re a winner”.

– We might include the sender domain:
• <sender domain == “mail.com”>.

– We might include regular expressions:
• <your first and last name>.
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Back to Decision Trees
• Instead of validation set, you can use CV to select tree depth.

• But you can also use these to decide whether to split:
– Don’t split if validation/CV error doesn’t improve.
– Different parts of the tree will have different depths.

• Or fit deep decision tree and use [cross-]validation to prune:
– Remove leaf nodes that don’t improve CV error.

• Popular implementations that have these tricks and others.
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Random Subsamples
• Instead of splitting into k-folds, consider “random subsample” method:

– At each “round”, choose a random set of size ‘m’.
• Train on all examples except these ‘m’ examples.
• Compute validation error on these ‘m’ examples.

• Advantages: 
– Still an unbiased estimator of error.
– Number of “rounds” does not need to be related to “n”.

• Disadvantage:
– Examples that are sampled more often get more “weight”.
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Handling Data Sparsity
• Do we need to store the full bag of words 0/1 variables?

– No: only need list of non-zero features for each e-mail.

– Math/model doesn’t change, but more efficient storage.

$ Hi CPSC 340 Vicodin Offer …
1 1 0 0 1 0 …
0 0 0 0 1 1 …
0 1 1 1 0 0 …
1 1 0 0 0 1 …

Non-Zeroes
{1,2,5,…}
{5,6,…}

{2,3,4,…}
{1,2,6,…}

62



Generalization Error
• An alternative measure of performance is the generalization error:

– Average error over the set of xi values that are not seen in the training set.
– “How well we expect to do for a completely unseen feature vector”.

• Test error vs. generalization error when labels are deterministic:
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“Best” and the “Good” Machine Learning Models
• Question 1: what is the “best” machine learning model?

– The model that gets lower generalization error than all other models.
• Question 2: which models always do better than random guessing?

– Models with lower generalization error than “predict 0” for all problems.

• No free lunch theorem:
– There is no “best” model achieving the best generalization error for every problem.
– If model A generalizes better to new data than model B on one dataset, 

there is another dataset where model B works better.
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No Free Lunch Theorem
• Let’s show the “no free lunch” theorem in a simple setting:

– The xi and yi are binary, and yi being a deterministic function of xi.
• With ‘d’ features, each “learning problem” is a map from {0,1}d -> {0,1}.

– Assigning a binary label to each of the 2d feature combinations.

• Let’s pick one of these ‘y’ vectors (“maps” or “learning problems”) and:
– Generate a set training set of ‘n’ IID samples.
– Fit model A (convolutional neural network) and model B (naïve Bayes).

Feature 1 Feature 2 Feature 3
0 0 0
0 0 1
0 1 0
… … …

y (map 1) y (map 2) y (map 3) …
0 1 0 …
0 0 1 …
0 0 0 …
… … … …
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No Free Lunch Theorem
• Define the “unseen” examples as the (2d – n) not seen in training.

– Assuming no repetitions of xi values, and n < 2d.
– Generalization error is the average error on these “unseen” examples.

• Suppose that model A got 1% error and model B got 60% error.
– We want to show model B beats model A on another “learning problem”.

• Among our set of “learning problems” find the one where:
– The labels yi agree on all training examples.
– The labels yi disagree on all “unseen” examples.

• On this other “learning problem”:
– Model A gets 99% error and model B gets 40% error.

66



Proof of No Free Lunch Theorem
• Let’s show the “no free lunch” theorem in a simple setting:

– The xi and yi are binary, and yi being a deterministic function of xi.
• With ‘d’ features, each “learning problem” is a map from each 

of the 2d feature combinations to 0 or 1: {0,1}d -> {0,1}

• Let’s pick one of these maps (“learning problems”) and:
– Generate a set training set of ‘n’ IID samples.
– Fit model A (convolutional neural network) and model B (naïve Bayes).

Feature 1 Feature 2 Feature 3
0 0 0
0 0 1
0 1 0
… … …

Map 1 Map 2 Map 3 …
0 1 0 …
0 0 1 …
0 0 0 …
… … … …
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Proof of No Free Lunch Theorem
• Define the “unseen” examples as the (2d – n) not seen in training.

– Assuming no repetitions of xi values, and n < 2d.
– Generalization error is the average error on these “unseen” examples.

• Suppose that model A got 1% error and model B got 60% error.
– We want to show model B beats model A on another “learning problem”.

• Among our set of “learning problems” find the one where:
– The labels yi agree on all training examples.
– The labels yi disagree on all “unseen” examples.

• On this other “learning problem”:
– Model A gets 99% error and model B gets 40% error.
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Proof of No Free Lunch Theorem
• Further, across all “learning problems” with these ‘n’ examples:

– Average generalization error of every model is 50% on unseen examples.
• It’s right on each unseen example in exactly half the learning problems.

– With ‘k’ classes, the average error is (k-1)/k (random guessing).

• This is kind of depressing: 
– For general problems, no “machine learning” is better than “predict 0”.

• But the proof also reveals the problem with the NFL theorem:
– Assumes every “learning problem” is equally likely.
– World encourages patterns like “similar features implies similar labels”.
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