# CPSC 340: Machine Learning and Data Mining

Probabilistic Classification Summer 2021

#### Admin

- Monday:
  - Assignment 1 due
  - Assignment 2 out, due the following Monday
- Next Friday: Assignment 3 out
  - Due the following Friday
  - To make enough time for you to study for midterm
- Midterm will be Tuesday, June 1, 2021
  - Canvas for autograded portion
  - Gradescope for manually graded portion
  - Stay tuned for instructions
- Piazza: partner search post is up.
  - See my recommendations for teamwork.
- Contact us on Piazza if you need help with Gradescope.

# Waiting List Situation

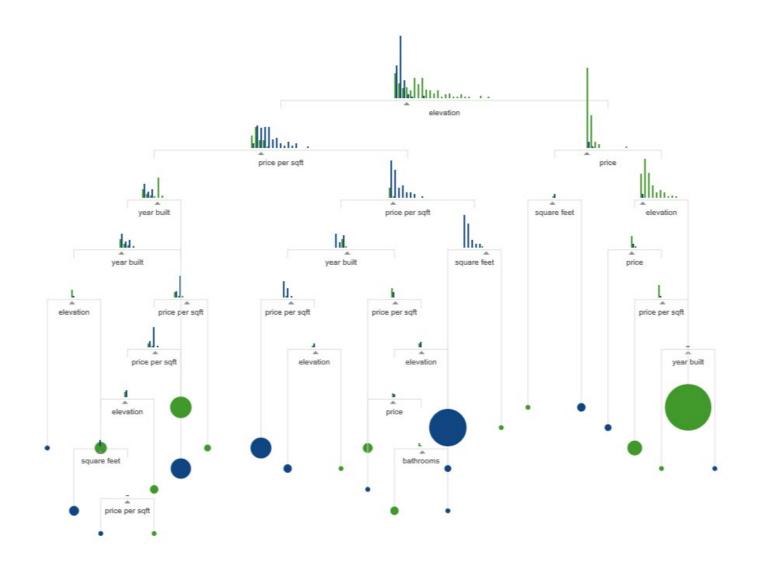
#### You are assigned to the following sections in 2021S:

| Select All | Course               | Term | Starts     | Ends       | Meetings                       |    | Enrolment |   |
|------------|----------------------|------|------------|------------|--------------------------------|----|-----------|---|
|            | CPSC340 - 911        | 1    | 2021-05-10 | 2021-06-17 | MonWedFri: 9:30 AM to 12:00 PM |    | 145 / 50  | Г |
|            | <u>CPSC340 - 9W1</u> | 1    | 2021-05-10 | 2021-06-17 | MonWedFri: 9:30 AM to 12:00 PM | \  | 15 / 999  |   |
|            |                      |      |            |            |                                | 71 |           |   |

#### In This Lecture

- More on Optimization Bias (10 minutes)
- Cross-Validation (10 minutes)
- "Best" Machine Learning Model (10 minutes)
- Naïve Bayes (20 minutes)

#### Last Time: Decision Trees

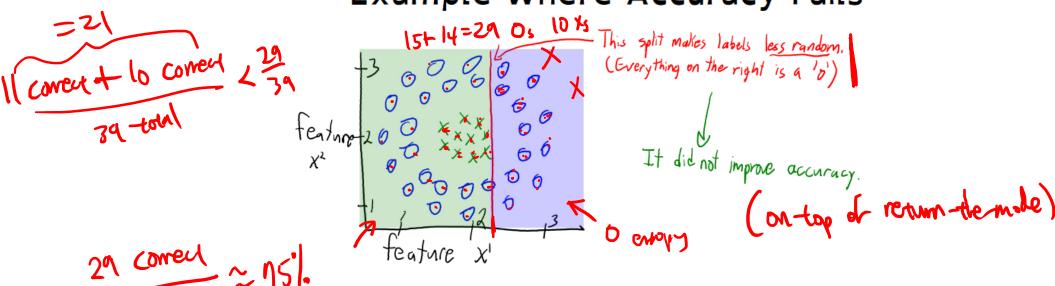


#### Clarification: Score

- Be careful about how scores are implemented in code.
  - Maximizing accuracy = Minimizing \_\_ever\_\_\_\_\_
  - We want to (maximize)/minimize) information gain
  - Baseline accuracy is accuracy return the mole.

#### Clarification: Baseline

#### Example Where Accuracy Fails



- Recall: my baseline is return-the-mode.
- When searching for a decision stump with accuracy score, we should try to beat the baseline, not "accuracy=0"
- Using "accuracy=0" as baseline, you will get a different behaviour.
  - E.g. GRS will actually continue splitting, since we get accuracy > 0 from above split.

#### Last Time: Training, Testing, and Validation

Training step:

Prediction step:

Input: set of 't' testing examples 
$$\tilde{x}_i$$
 and a model. Output: predictions  $\hat{y}_i$  for the testing examples.

- What we are interested in is the test error:
  - Error made by prediction step on new data.

#### Last Time: Fundamental Trade-Off

We decomposed test error to get a fundamental trade-off:

- Where  $E_{approx} = (E_{test} - E_{train})$ .

test error

Emprox

Training error

decision tree depth

- E<sub>train</sub> goes down as model gets complicated:
  - Training error goes down as a decision tree gets deeper.
- But E<sub>approx</sub> goes up as model gets complicated:
  - Training error becomes a worse approximation of test error.

#### Last Time: Validation Error

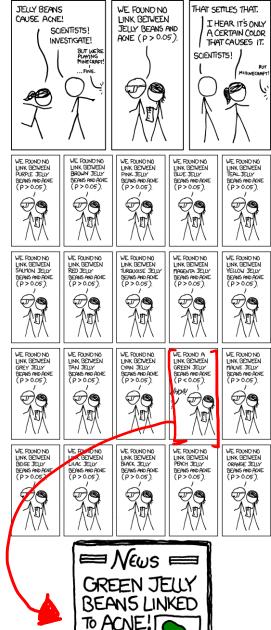
- Golden rule: we can't look at test data during training.
- But we can approximate  $E_{test}$  with a validation error:
  - Error on a set of training examples we "hid" during training.

- Find the decision tree based on the "train" rows.
- Validation error is the error of the decision tree on the "validation" rows.
  - We typically choose "hyper-parameters" like depth to minimize the validation error.

P-value hacking:
One instance of optimization bias https://xkcd.com/882/

Coming Up Next

#### MORE ON OPTIMIZATION BIAS



95% CONFIDENCE

# "Search Space"

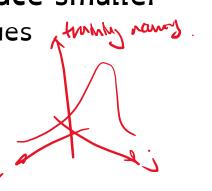


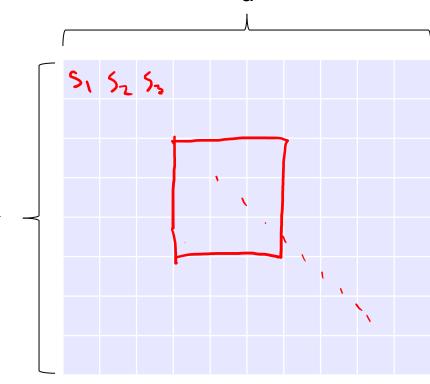
Search space := the space of objects that are evaluated

Q: What is the search space for a decision stump?

- We looked at the grid of all possible {j,t} values
- $j \in \{1, 2, ..., d\}, t \in \{1, 2, ..., k\}$
- Search space is a d-by-k grid
  - Enumerating all possible decision stumps
- We evaluated all of the d-by-k grid
  - i.e. we evaluate the training error d\*k times
- You could make the search space smaller

- i.e. only look at certain j,t values thinky rand





Space of possible decision stumps

# "Search Space"

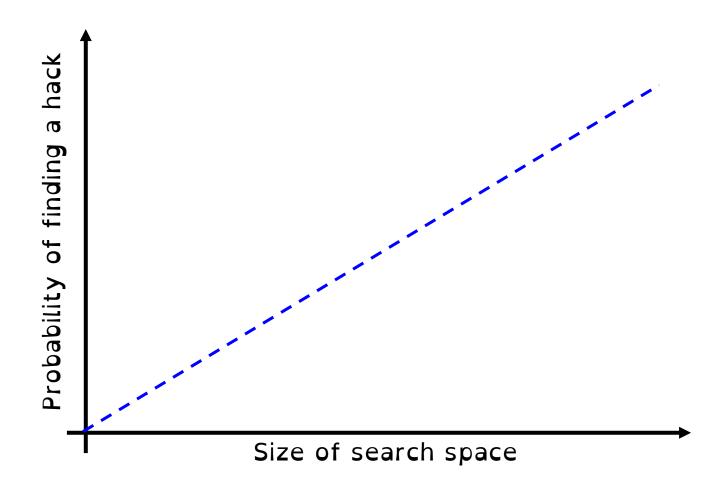
Q: Between training error and validation error, which one has lower optimization bias for decision trees?

Larger search space => more optimization bias

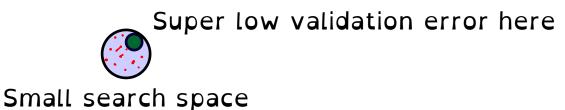
### Finding a "Hack" Instead of Learning



- Achieve high score in boat-racing
  - Not by finishing race
  - Circle around infinitely collecting bonus
  - "reward hacking"





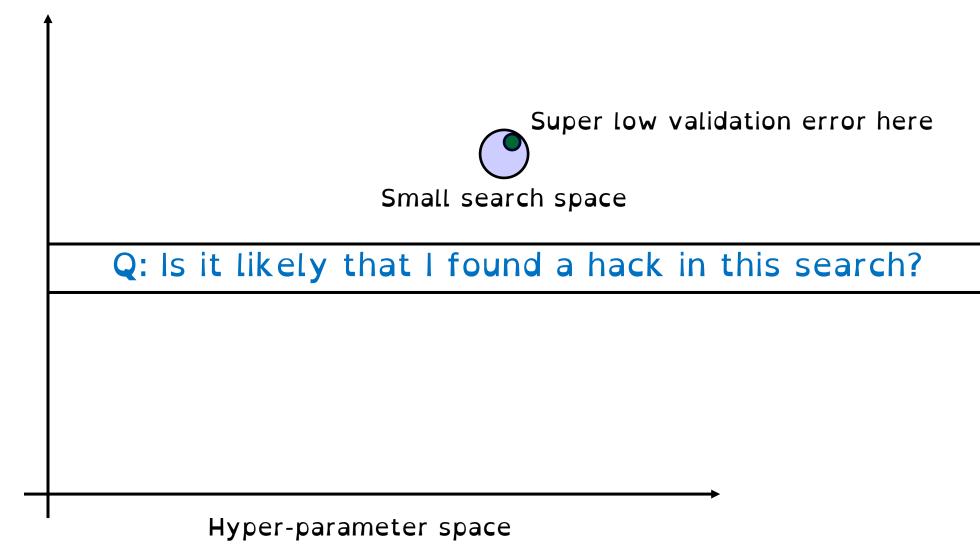


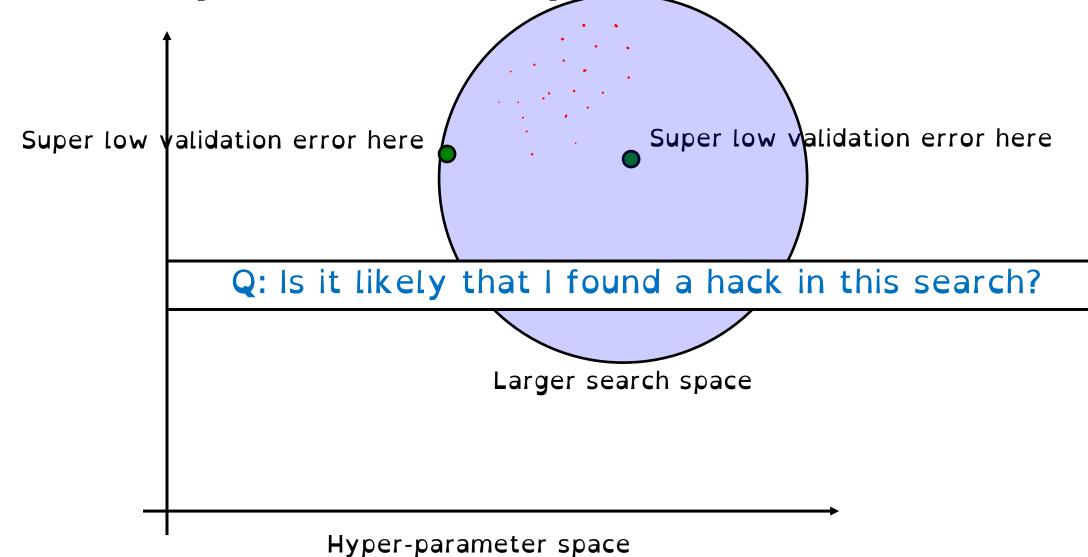
Q: Should I trust the validation error? (low validation error => low test error?)

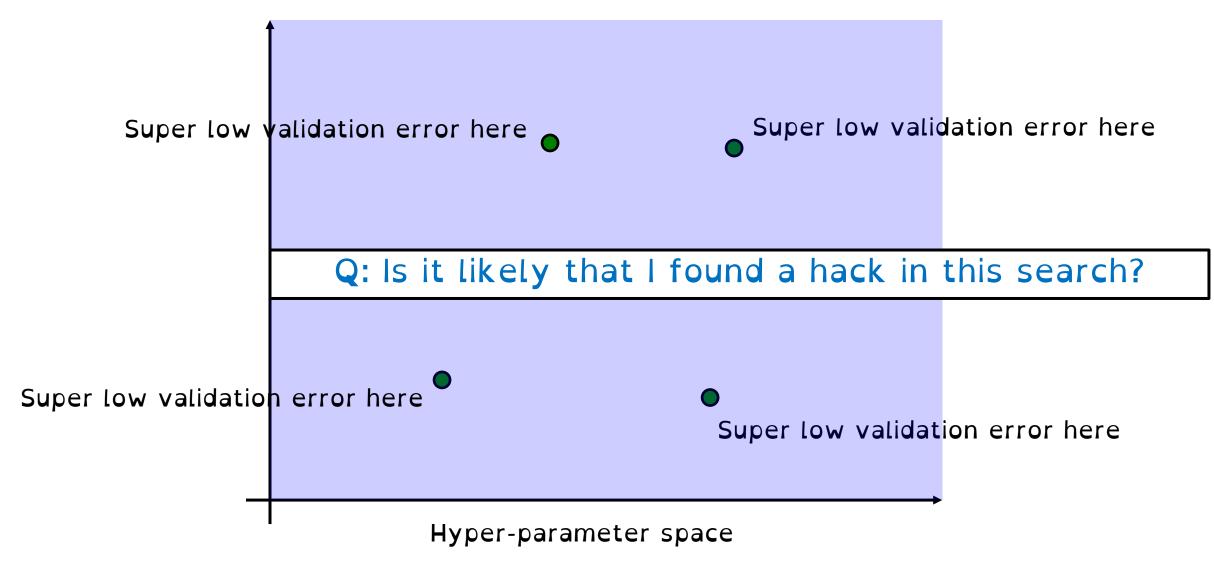
#### Possible explanations:

- 1. My model is trash but I found some "hack value"
  - This hack makes my validation error low
- 2. My model is doing something right

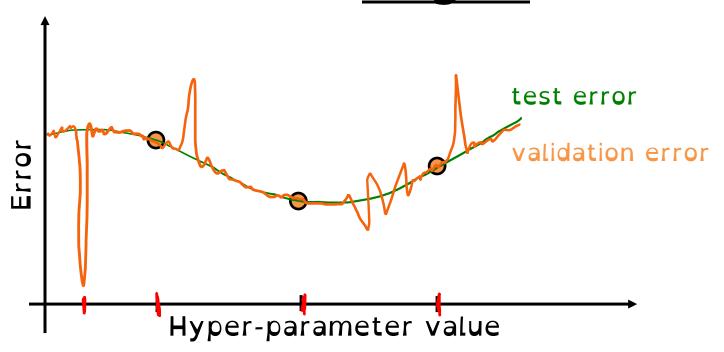
Hyper-parameter space





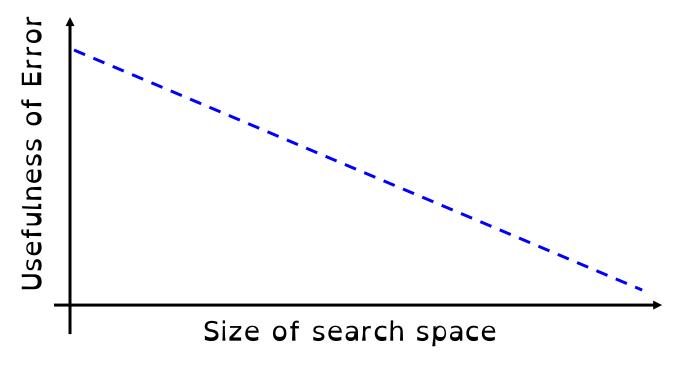


# Validation Error Might Do This



· Noise in the data can make validation error behave strangely in a very fine scale

# Is Validation Error Trustworthy?



- Large search space => training error is not trustworthy
- Smaller search space => validation error is more trustworthy
- The more you look validation error, it becomes less trustworthy
- It's best to look the validation error only once
  - > In practice, a "small" number of times is good enough

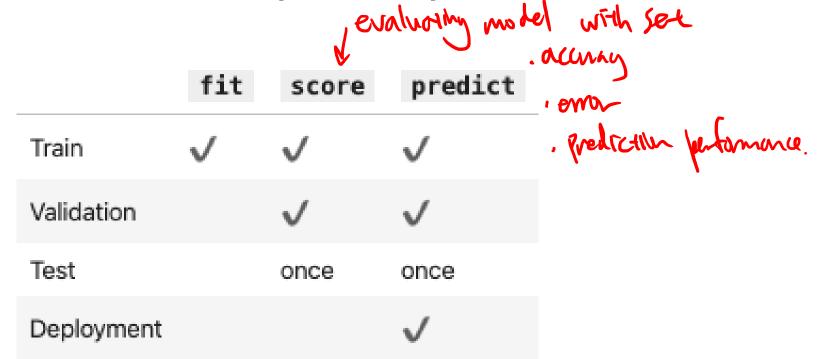
# Is Validation Error Trustworthy?



- More training examples => better representation of distribution
  - > Under IID, training examples and test examples become more similar
  - > Likewise, validation examples and test examples become more similar
- It becomes harder to find a "lucky" case with more training examples

# Train/Validation/Test Terminology

- Training set: used (a lot) to set parameters.
- Validation set: used (a few times) to set hyper-parameters.
- Testing set: used (once) to evaluate final performance.
- Deployment (real-world): what you really care about.

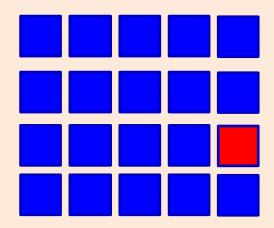


#### Validation Error and Optimization Bias

- Optimization bias is small if you only compare a few models:
  - Best decision tree on the training set among depths 1, 2, 3,..., 10.
  - Risk of overfitting to validation set is low if we try 10 things.
- Optimization bias is large if you compare a lot of models:
  - All possible decision trees of depth 10 or less.
  - Here we're using the validation set to pick between a billion+ models:
    - Risk of overfitting to validation set is high: could have low validation error by chance.
  - If you did this, you might want a second validation set to detect overfitting.
- And optimization bias shrinks as you grow size of validation set.

#### Optimization Bias leads to Publication Bias

Suppose that 20 researchers perform the exact same experiment:



- They each test whether their effect is "significant" (p < 0.05).
  - 19/20 find that it is not significant.
  - But the 1 group finding it's significant publishes a paper about the effect.
- This is again optimization bias, contributing to publication bias.
  - A contributing factor to many reported effects being wrong.

Coming Up Next

#### **CROSS-VALIDATION**

# Recall: E<sub>valid</sub> and E<sub>test</sub>

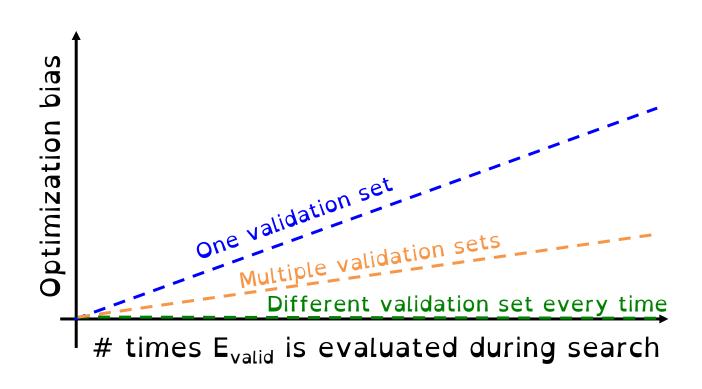
 $E_{valid}$  is an unbiased approximator of  $E_{test}$  ... as long as it's evaluated only once.

Evalid = 
$$E$$
 test +  $E$  noise if  $E$  valid is unbiased.

The mean of error ε is a function of the time you look of

# of times you look at validatin error

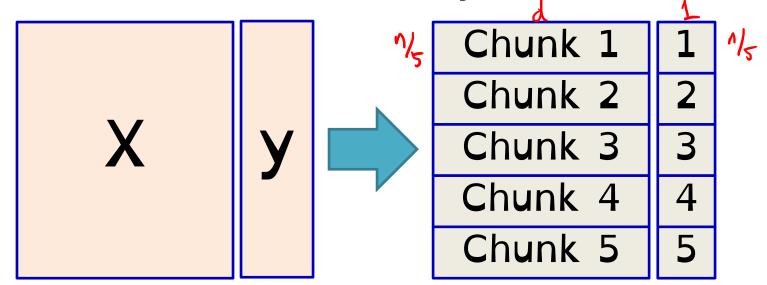
# Recall: E<sub>valid</sub> and E<sub>test</sub>



#### Cross-Validation (CV)

Q: How do we make multiple validation sets from the same training data?

- Idea: let's create multiple subsets of X and y.
  - -80% of data  $\rightarrow$  training set  $X_{train}$  and  $y_{train}$
  - -20% of data  $\rightarrow$  validation set  $X_{validate}$  and  $y_{validate}$
  - We can do this split 5 times
- To do this, let's divide X and y into 5 chunks



Cross-Validation (CV)

Fold 4:

TRAIN

VALIDATION

**TRAIN** 

**TRAIN** 

**TRAIN** 

Fold 1: fold 2: TRAIN TRAIN TRAIN **TRAIN VALIDATION** 

VALIDATION TRAIN

**TRAIN** 

TRAIN

**TRAIN** 

Fold 3: TRAIN TRAIN **VALIDATION** 

TRAIN TRAIN

Fold 5:

VALIDATION

**TRAIN** 

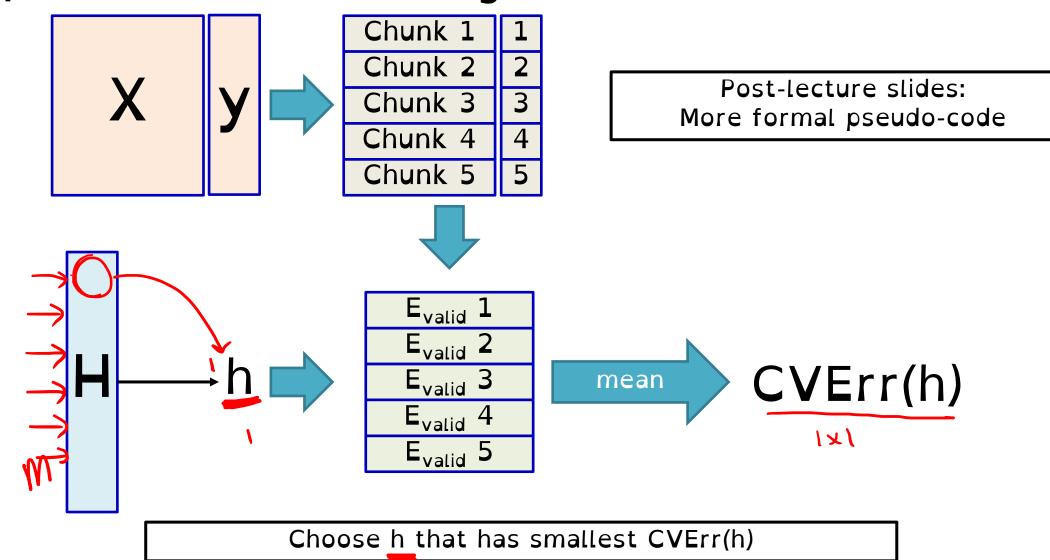
TRAIN

**TRAIN** 

**TRAIN** 

Error: 0.1 Error: 0.2 Error: 0.1 Error: 0.2 CV error estimate for this hyper-parameterimean (errors) = 0.16

#### Hyper-Parameter Tuning with CV Pseudo-Code



#### Cross-Validation (CV)

- You can take this idea further ("k-fold cross-validation"):
  - 10-fold cross-validation: train on 90% of data and validate on 10%.
    - Repeat 10 times and average (test on fold 1, then fold 2,..., then fold 10),
  - Leave-one-out cross-validation: train on all but one training example.



- Repeat n times and average.
- Gets more accurate but more expensive with more folds.
  - To choose depth we compute the cross-validation score for each depth.
- As before, if data is ordered then folds should be random splits.
  - Randomize first, then split into fixed folds.

### Cross-Validation Theory

- Does CV give unbiased estimate of test error?
  - Yes!
    - Since each data point is only used once in validation, expected validation error on each data point is test error.
  - But again, if you use CV to select among models then it is no longer unbiased.
- What about variance of CV?
  - Hard to characterize.
  - CV variance on 'n' data points is worse than with a validation set of size 'n'.
    - But we believe it is close.
- Does cross-validation remove optimization bias?
  - No, but the bias might be smaller since you have more "test" points.

Me waiting to hear about the best ML model so I can make lots of money



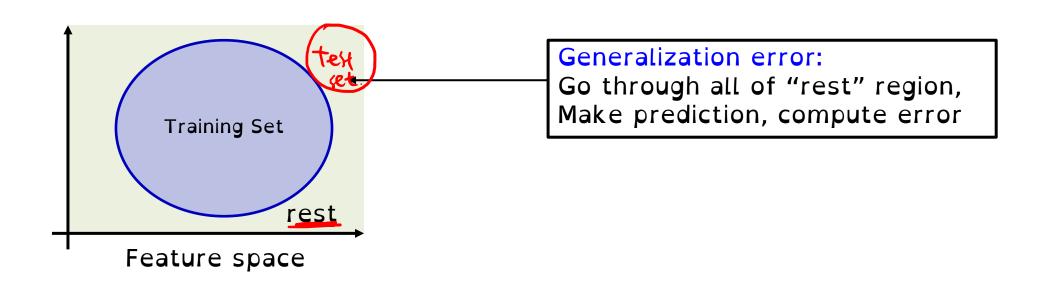
Coming Up Next

#### "BEST" MACHINE LEARNING MODEL

### There is None

# The "Best" Machine Learning Model

- Decision trees are not always most accurate on test error.
- What is the "best" machine learning model?
- An alternative measure of performance is the generalization error:
  - Average error over all  $x_i$  vectors that are not seen in the training set.
  - "How well we expect to do for a completely unseen feature vector".



# The "Best" Machine Learning Model

- No free lunch theorem (proof in bonus slides):
  - There is no "best" model achieving the best generalization error for every problem.
  - If model A generalizes better to new data than model B on one dataset,
     there is another dataset where model B works better.
- This question is like asking which is "best" among "rock", "paper", and "scissors".
- Given a dataset, we need to try out multiple models.
- So which ones to study in CPSC 340?
  - We'll usually motivate each method by a specific application.
  - But we're focusing on models that have been effective in many applications.
- Machine learning research:
  - Large focus on models that are useful across many applications.

#### "State-Of-The-Art" Models



- A subset of ML research is OBSESSED with beating the state-of-the-art performance on benchmark tasks
  - > State-of-the-art (SOTA)
    := test accuracy is best in the world
  - > Benchmark tasks
    := well-known learning tasks
    (e.g. object recognition, machine translation, etc.)
- SOTA models for each task is very specialized.
  - Models that perform well on task A don't necessarily perform well on task B
- Reviewers look carefully for whether your model works well across different datasets for the same task
  - Otherwise, you are not SOTA.
    You just overfitted to one dataset!

Coming Up Next

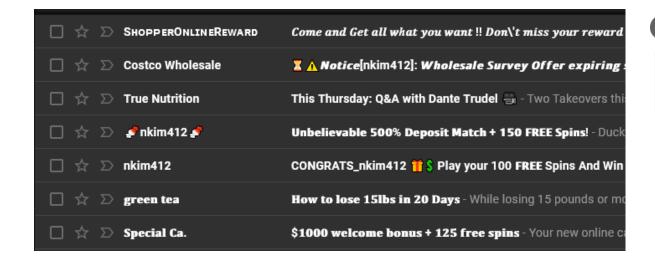
# NAÏVE BAYES INTRO

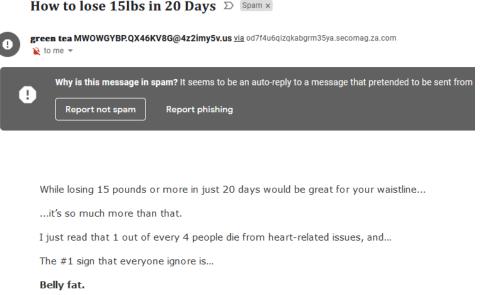


Rev. Thomas Bayes

# Application: Email Spam Filtering

- Want a build a system that detects spam emails.
  - Context: spam used to be a big problem.





Q: How do we formulate this as supervised learning?

# Representing Emails

- Assumption: spam emails have a predictable pattern
  - Certain words occur more often in spams
    - E.g. "exclusive", "offer", "reward", "Vicodin", "keto", etc.
  - Some words occur together more often in spams
    - E.g. "hi there", "you have been selected", "too late", etc.
- We will represent emails with bag-of-words

| \$ | Hi | CPSC | 340 | Vicodin | Offer | ••• |
|----|----|------|-----|---------|-------|-----|
| 1  | 1  | 0    | 0   | 1       | 0     | ••• |
| 0  | 0  | 0    | 0   | 1       | 1     |     |
| 0  | 1  | 1    | 1   | 0       | 0     |     |
|    |    |      | ••• |         | •••   |     |

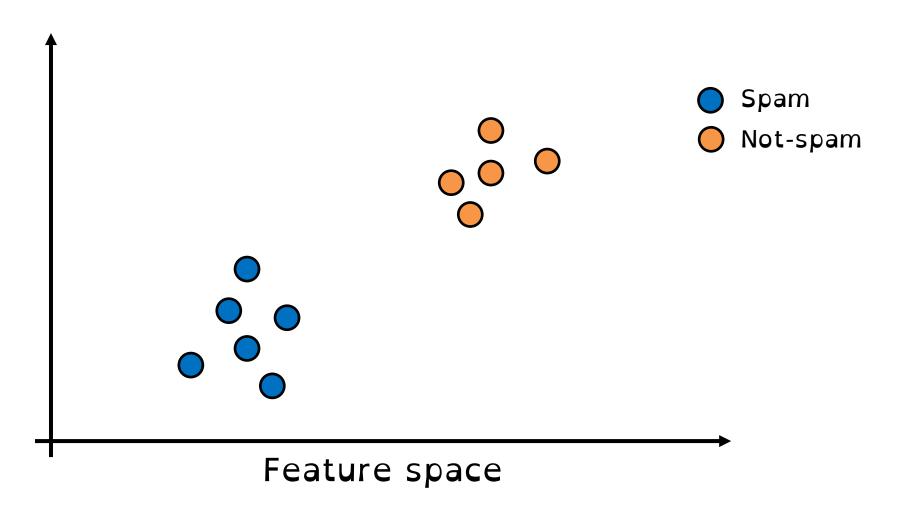
d features: keywords for bag

•  $x_{ij} = 1$  if word/phrase 'j' is in email 'i',  $x_{ij} = 0$  if it is not.

## Space of Emails

Spams have predictable patterns

=> spams and not-spams look different in space of emails



## Spam Filtering as Supervised Learning

Collect a large number of emails, gets user to label them.

| \$ | Hi | CPSC | 340 | Vicodin | Offer | ••• | Spam? |
|----|----|------|-----|---------|-------|-----|-------|
| 1  | 1  | 0    | 0   | 1       | 0     | ••• | 1     |
| 0  | 0  | 0    | 0   | 1       | 1     |     | 1     |
| 0  | 1  | 1    | 1   | 0       | 0     | ••• | 0     |
|    |    | •••  |     |         |       |     | •••   |

•  $y_i = 1$  if email 'i' is spam,  $y_i = 0$  if email is not spam.

#### Probabilistic Classifiers

- For years, best spam filtering methods used naïve Bayes.
  - A probabilistic classifier based on Bayes rule.
  - It tends to work well with bag of words.
  - Recently shown to improve on state of the art for CRISPR "gene editing" (link).
- Probabilistic classifiers: use probability for generating predictions
  - Model the conditional probability,  $p(y_i | x_i)$ .
  - "If a message has words  $x_i$ , what is probability that message is spam?"
- Classify it as spam if provading, ...

   If  $p(y_i = \text{"spam"} \mid x_i) > p(y_i = \text{"not spam"} \mid x_i)$ \*\*Trans" Classify it as spam if probability of spam is higher than not spam:

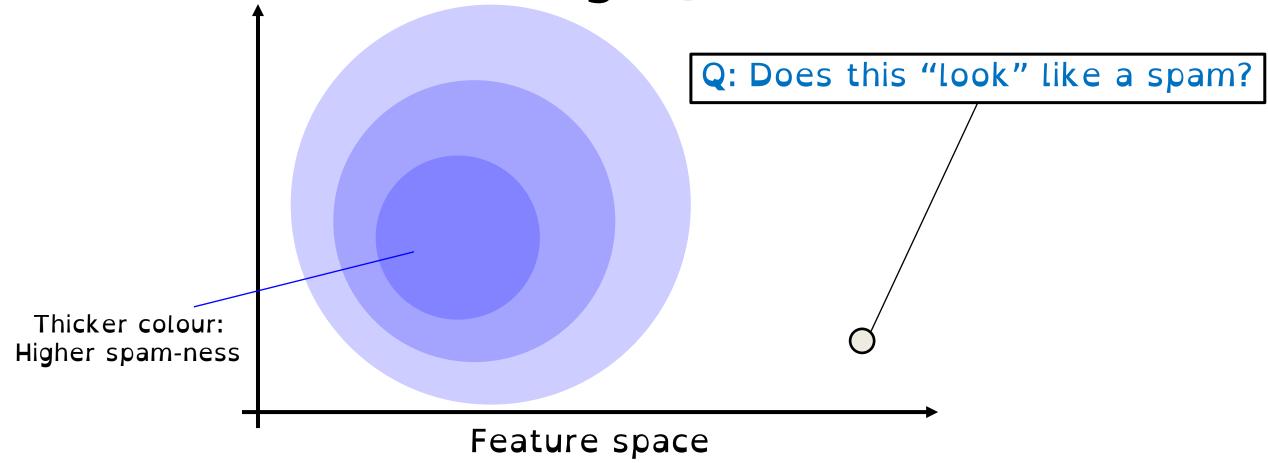
  - Else
    - return "not spam".



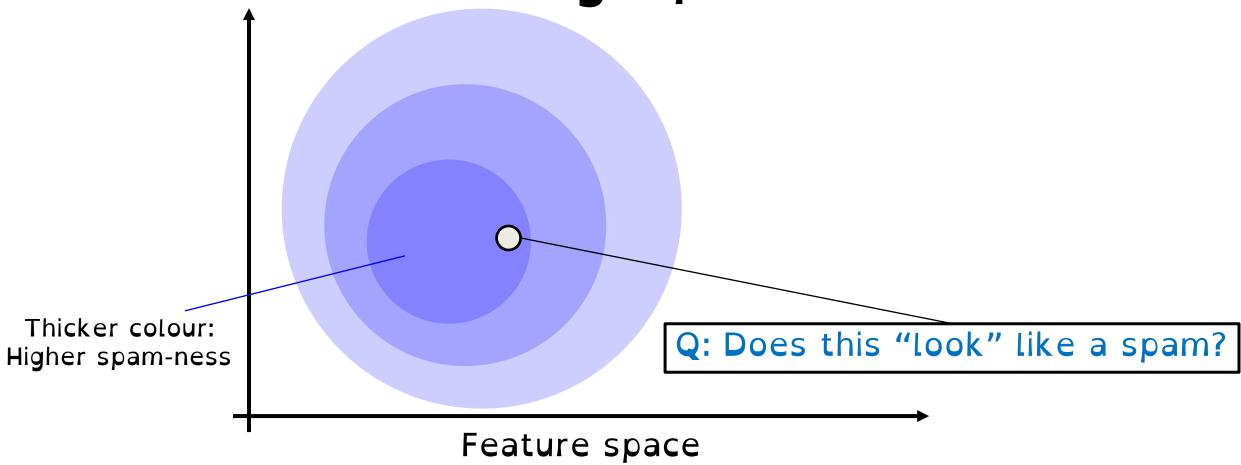
#### Note on Learned Probability

- p(y<sub>i</sub> = "spam" | x<sub>i</sub>) reads:
   "probability that message is spam given these features"
- In practice, we treat it more like a score: "the spam-ness of the input message"
- Our goal is to build a model that can compute the spam-ness, based on the examples of spam messages

# Visualizing Spam-ness



# Visualizing Spam-ness



Coming Up Next

# NAÏVE BAYES DETAILS

## Computing Spam-ness

$$p(y_i = "spam" | x_i)$$

Naïve Bayes uses Bayes rule:

$$\rho(y_i = ||span''||x_i) = \frac{\rho(x_i | y_i = ||span''|)\rho(y_i = ||span''|)}{\rho(x_i)}$$

- On the right we have three terms:
  - Marginal probability p(y<sub>i</sub>) that an email is spam.
  - Marginal probability  $p(x_i)$  that an email has the set of words  $x_i$ .
  - Conditional probability  $p(x_i | y_i)$  that a spam e-mail has the words  $x_i$ .
    - And the same for non-spam e-mails.

baseline:

Performance

What is 
$$p(y_i)$$
?

I want to bear this performance.

Super simple method.

$$p(y_i = ||span|| ||x_i|) = p(x_i | y_i = ||span||) p(y_i = ||span||)$$

$$p(x_i)$$

- $p(y_i = \text{"spam"})$  is the "baseline spam-ness"
  - Probability that an email is a spam, without even looking at features.

Q: How do I learn this quantity?

Step 1: Look at all emails in existence in dataset

Step 2: Count the number of spams

# What is $p(x_i)$ ?

$$\rho(y_i = ||span''||x_i) = \rho(x_i | y_i = ||span''|)\rho(y_i = ||span''|)$$

p(x<sub>i</sub>) is the is probability that a random email looks like x<sub>i</sub>

#### Q: How do I learn this quantity?

Step 1: Look at all emails in existence in dataset

Step 2: Count the number of times  $x_i$  occurs

# What is $p(x_i | y_i)$ ?

$$\rho(y_i = ||span''||x_i) = \frac{\rho(x_i | y_i = ||span''|)\rho(y_i = ||span''|)}{\rho(x_i)}$$

•  $p(x_i | y_i = \text{``spam''})$  is the is probability that a random spam looks like  $x_i$ 

#### Q: How do I learn this quantity?

Step 1: Look at all spams in existence in dataset

Step 2: Count the number of times  $x_i$  occurs

## IID Assumption







n is smaller but decently large

- IID assumption lets us treat the dataset as a snapshot of truth
  - > i.e. emails in dataset (somewhat) accurately reflect the patterns in all emails in existence.
- Then probabilities can be estimated by frequencies in dataset

#### Counting for $p(x_i)$ and $p(x_i | y_i)$

Seeing all possible examples at least once is extremely unlikely!

| \$  | Hi | CPSC | 340 | Vicodin | Offer | ••• |
|-----|----|------|-----|---------|-------|-----|
| 1   | 0  | 0    | 0   | 0       | 0     | ••• |
| 0   | 1  | 0    | 0   | 0       | 0     |     |
| 0   | 0  | 1    | 0   | 0       | 0     | ••• |
| ••• |    |      |     |         |       |     |
|     |    |      |     |         |       |     |

d features: keywords for bag

- ullet I need to have  ${f O}({f 1})$  examples in order to see all possible examples.
- If I had fewer examples than that,
   I'll end up setting p(x<sub>i</sub>) and p(x<sub>i</sub> | y<sub>i</sub>) to 0 all the time

Q: What should we do about that?

# Getting Rid of $p(x_i)$

$$p(y_i = ||span|| ||x_i|) = \frac{p(x_i | y_i = ||span||)}{p(x_i)} p(y_i = ||span||)$$

Naive Bayes returns "spam" if 
$$p(y_i = "spam" \mid x_i) > p(y_i = "not spam" \mid x_i)$$
  
By Bayes rule this means  $p(x_i \mid y_i = "spam")p(y_i = "spam") > p(x_i \mid y_i = "not spam")dy_i = "not spam" | p(x_i) > p(x_i \mid y_i = "not spam")dy_i = "not spam" | p(x_i) > p(x_i \mid y_i = "not spam")dy_i = not spam" | p(x_i) > p(x_i \mid y_i = "not spam")dy_i = not spam" | p(x_i) > p(x_i) >$ 

 $\left[ p(x_i | y_i = "spam") p(y_i = "spam") > p(x_i | y_i = "not span") dy_i = "not span" \right]$ 

# Naïve Bayes

Naïve Bayes makes a big assumption to make things easier:

- We assume all features  $x_i$  are conditionally independent give label  $y_i$ .
  - Once you know it's spam, probability of "vicodin" doesn't depend on "340".
  - Definitely not true, but sometimes a good approximation.
- And now we only need easy quantities like  $p("vicodin" = 0| y_i = "spam")$ .

#### What is $p("Vicodin" = 0| y_i = "spam")$ ?

•  $p("vicodin" = 0| y_i = "spam")$  is the is probability that a spam does not contain the word "Vicodin"

#### Q: How do I learn this quantity?

Step 1: Look at all spams in existence in dataset

Step 2: Count the number of times "Vicodin" doesn't occur

## Summary

- Optimization bias: using a validation set too much overfits.
- Cross-validation: allows better use of data to estimate test error.
- No free lunch theorem: there is no "best" ML model.
- Probabilistic classifiers: try to estimate  $p(y_i \mid x_i)$ .
- Naïve Bayes: simple probabilistic classifier based on counting.
  - Uses conditional independence assumptions to make training practical.
- Next time:
  - A "best" machine learning model as 'n' goes to ∞.

#### Review Questions

• Q1: Is having a super small search space always a good idea for hyper-parameter tuning?

Q2: In practice, people rarely use cross-validation for very large datasets. Why?

 Q3: If we're using Naïve Bayes for spam filtering, why can a non-binary bag-of-words be problematic?

Q4: What is so naïve about Naïve Bayes?

#### Cross-Validation Pseudo-Code

To choose depth

for depth in 1:20

compute cross-validations core
return depth with highest score

To compute 5-fold cross-validation score:

for fold in 1:5

train 80% that doesn't include fold
test on fold
return average test error

Notes:

- This fits 100 models!
  (20 depths times 5 folds)
- We get one (average) Score for each of the 20 depths.
  - Use this score to pick depth

## Feature Representation for Spam

- Are there better features than bag of words?
  - We add bigrams (sets of two words):
    - "CPSC 340", "wait list", "special deal".
  - Or trigrams (sets of three words):
    - "Limited time offer", "course registration deadline", "you're a winner".
  - We might include the sender domain:
    - <sender domain == "mail.com">.
  - We might include regular expressions:
    - <your first and last name>.

#### Back to Decision Trees

- Instead of validation set, you can use CV to select tree depth.
- But you can also use these to decide whether to split:
  - Don't split if validation/CV error doesn't improve.
  - Different parts of the tree will have different depths.
- Or fit deep decision tree and use [cross-]validation to prune:
  - Remove leaf nodes that don't improve CV error.
- · Popular implementations that have these tricks and others.

## Random Subsamples

- Instead of splitting into k-folds, consider "random subsample" method:
  - At each "round", choose a random set of size 'm'.
    - Train on all examples except these 'm' examples.
    - Compute validation error on these 'm' examples.
- Advantages:
  - Still an unbiased estimator of error.
  - Number of "rounds" does not need to be related to "n".
- Disadvantage:
  - Examples that are sampled more often get more "weight".

# Handling Data Sparsity

- Do we need to store the full bag of words 0/1 variables?
  - No: only need list of non-zero features for each e-mail.

| \$ | Hi | CPSC | 340 | Vicodin | Offer |     |
|----|----|------|-----|---------|-------|-----|
| 1  | 1  | 0    | 0   | 1       | 0     | ••• |
| 0  | 0  | 0    | 0   | 1       | 1     |     |
| 0  | 1  | 1    | 1   | 0       | 0     |     |
| 1  | 1  | 0    | 0   | 0       | 1     |     |



| Non-Zeroes |
|------------|
| {1,2,5,}   |
| {5,6,}     |
| {2,3,4,}   |
| {1,2,6,}   |

Math/model doesn't change, but more efficient storage.

#### Generalization Error

- An alternative measure of performance is the generalization error:
  - Average error over the set of xi values that are not seen in the training set.
  - "How well we expect to do for a completely unseen feature vector".
- Test error vs. generalization error when labels are deterministic:

#### "Best" and the "Good" Machine Learning Models

- Question 1: what is the "best" machine learning model?
  - The model that gets lower generalization error than all other models.
- Question 2: which models always do better than random guessing?
  - Models with lower generalization error than "predict 0" for all problems.

#### No free lunch theorem:

- There is no "best" model achieving the best generalization error for every problem.
- If model A generalizes better to new data than model B on one dataset, there is another dataset where model B works better.

#### No Free Lunch Theorem

- Let's show the "no free lunch" theorem in a simple setting:
  - The  $x^i$  and  $y^i$  are binary, and  $y^i$  being a deterministic function of  $x^i$ .
- With 'd' features, each "learning problem" is a map from {0,1}<sup>d</sup> -> {0,1}.
  - Assigning a binary label to each of the 2d feature combinations.

| Feature 1 | Feature 2 | Feature 3 |
|-----------|-----------|-----------|
| 0         | 0         | 0         |
| 0         | 0         | 1         |
| 0         | 1         | 0         |
|           |           |           |

| y (map 1) | y (map 2) | y (map 3) |  |
|-----------|-----------|-----------|--|
| 0         | 1         | 0         |  |
| 0         | 0         | 1         |  |
| 0         | 0         | 0         |  |
|           |           |           |  |

- Let's pick one of these 'y' vectors ("maps" or "learning problems") and:
  - Generate a set training set of 'n' IID samples.
  - Fit model A (convolutional neural network) and model B (naïve Bayes).

#### No Free Lunch Theorem

- Define the "unseen" examples as the (2<sup>d</sup> n) not seen in training.
  - Assuming no repetitions of  $x^i$  values, and  $n < 2^d$ .
  - Generalization error is the average error on these "unseen" examples.
- Suppose that model A got 1% error and model B got 60% error.
  - We want to show model B beats model A on another "learning problem".
- Among our set of "learning problems" find the one where:
  - The labels y<sup>i</sup> agree on all training examples.
  - The labels y<sup>i</sup> disagree on all "unseen" examples.
- On this other "learning problem":
  - Model A gets 99% error and model B gets 40% error.

#### Proof of No Free Lunch Theorem

- Let's show the "no free lunch" theorem in a simple setting:
  - The  $x^i$  and  $y^i$  are binary, and  $y^i$  being a deterministic function of  $x^i$ .
- With 'd' features, each "learning problem" is a map from each of the  $2^d$  feature combinations to 0 or 1:  $\{0,1\}^d -> \{0,1\}$

| Feature 1 | Feature 2 | Feature 3 |
|-----------|-----------|-----------|
| 0         | 0         | 0         |
| 0         | 0         | 1         |
| 0         | 1         | 0         |
|           | •••       |           |

| Map 1 | Map 2 | Мар З |     |
|-------|-------|-------|-----|
| 0     | 1     | 0     | ••• |
| 0     | 0     | 1     | ••• |
| 0     | 0     | 0     |     |
|       |       |       | ••• |

- Let's pick one of these maps ("learning problems") and:
  - Generate a set training set of 'n' IID samples.
  - Fit model A (convolutional neural network) and model B (naïve Bayes).

#### Proof of No Free Lunch Theorem

- Define the "unseen" examples as the (2<sup>d</sup> n) not seen in training.
  - Assuming no repetitions of  $x^i$  values, and  $n < 2^d$ .
  - Generalization error is the average error on these "unseen" examples.
- Suppose that model A got 1% error and model B got 60% error.
  - We want to show model B beats model A on another "learning problem".
- Among our set of "learning problems" find the one where:
  - The labels y<sup>i</sup> agree on all training examples.
  - The labels y<sub>i</sub> disagree on all "unseen" examples.
- On this other "learning problem":
  - Model A gets 99% error and model B gets 40% error.

#### Proof of No Free Lunch Theorem

- Further, across all "learning problems" with these 'n' examples:
  - Average generalization error of every model is 50% on unseen examples.
    - It's right on each unseen example in exactly half the learning problems.
  - With 'k' classes, the average error is (k-1)/k (random guessing).
- This is kind of depressing:
  - For general problems, no "machine learning" is better than "predict 0".
- But the proof also reveals the problem with the NFL theorem:
  - Assumes every "learning problem" is equally likely.
  - World encourages patterns like "similar features implies similar labels".