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In This Lecture
• Laplace Smoothing (5 minutes)
• Decision Theory (10 minutes)
• K-Nearest Neighbours (30 minutes)



LAPLACE SMOOTHING
Coming Up Next



Naïve Bayes
• Naïve Bayes formally: 

• Post-lecture slides: how to train/test by hand on a simple example.



Laplace Smoothing
• Our estimate of p(‘lactase’ = 1| ‘spam’) is:

– But there is a problem if you have no spam messages with lactase:
• p(‘lactase’ | ‘spam’) = 0, so spam messages with lactase automatically get through.

– Common fix is Laplace smoothing:
• Add 1 to numerator,

and 2 to denominator (for binary features).
– Acts like a “fake” spam example that has lactase, 

and a “fake” spam example that doesn’t.



Laplace Smoothing
• Laplace smoothing:

– Typically you do this for all features.
• Helps against overfitting by biasing towards the uniform distribution.

• A common variation is to use a real number β rather than 1.
– Add ‘βk’ to denominator if feature has ‘k’ possible values (so it sums to 1).



“Regularization”
• Laplace smoothing is a special case of regularization.

– Regularization: control the complexity of model
– We will see more examples of regularization in this class.



DECISION THEORY
Coming Up Next

My mother’s day email when my 
mom’s spam filter throws it out



Decision Theory
• Are we equally concerned about “spam” vs. “not spam”?
• True positives, false positives, false negatives, true negatives:

• The costs mistakes might be different:
– Letting a spam message through (false negative) is not a big deal.
– Filtering a not spam (false positive) message will make users mad.

Predict / True True ‘spam’ True ‘not spam’
Predict ‘spam’ True Positive False Positive

Predict ‘not spam’ False Negative True Negative



Decision Theory
• We can give a cost to each scenario, such as:

• Instead of most probable label, take �𝑦𝑦i minimizing expected cost:

• Even if “spam” has a higher probability, 
predicting “spam” might have a expected higher cost.

Predict / True True ‘spam’ True ‘not spam’
Predict ‘spam’ 0 100

Predict ‘not spam’ 10 0



• Consider a test example we have p( �𝑦𝑦i = “spam” | �𝑥𝑥i) = 0.6, then:

• Even though “spam” is more likely, we should predict “not spam”.

Predict / True True ‘spam’ True ‘not spam’
Predict ‘spam’ (0.6, 0) (0.4, 100)

Predict ‘not spam’ (0.6, 10) (0.4, 0)

(probability, cost)



K-NEAREST NEIGHBOURS
Coming Up Next



What is K-Nearest Neighbours (KNN)?
• Can you tell whether ? is orange or blue?

?
test example

13Feature space
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What is K-Nearest Neighbours (KNN)?
• Can you tell whether ? is orange or blue?

?

• You probably did this:
1. Look at the neighbours of ?
2. See if there are more 

oranges or blues in the 
neighbourhood

Distances between ? and 
5 nearest neighbours

Neighbours := “near” datapoints
(nearness depends on definition of distance)

15Feature space



What is K-Nearest Neighbours (KNN)?
• Can you tell whether ? is orange or blue?

?

Q: How many neighbours
should we look at?

1-nearest neighbour → orange
3-nearest neighbours → blue
5-nearest neighbours → orange

16Feature space



MORE FORMAL DISCUSSION OF KNN
Coming Up Next:

17



What is K-Nearest Neighbours (KNN)?
• An old/simple classifier: k-nearest neighbours (KNN).
• To classify an example �𝑥𝑥i:

1. Find the ‘k’ training examples xi that are “nearest” to �𝑥𝑥i.
2. Classify using the most common label of “nearest” training examples.

𝑋𝑋
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Defining “Distance”

?

Difference
between points

Length
of difference

?= −

Q: How do we measure 
the length of a vector?

19

Feature space



Defining “Distance” with “Norms”
• A common way to define the “distance” between examples:

– Take the “norm” of the difference between feature vectors.
• Norms are a way to measure the “length” of a vector.

– The most common norm is the “L2-norm” (or “Euclidean norm”):

– Here, the “norm” of the difference is the standard Euclidean distance.
– There are many other ways to define distance (bonus slides) 20



L2-norm, L1-norm, and L∞-Norms.
• The three most common norms: L2-norm, L1-norm, and L∞-norm.

– Visualizing 2D cases:

– Definitions of these norms in d-dimensions.

Infinite Series Video
21

https://www.youtube.com/watch?v=ineO1tIyPfM


Decision Trees vs. KNN
Trained decision tree

Q: What does this 
decision tree predict?

22



Decision Trees vs. KNN
Trained decision tree

Q: What does 1-nearest 
neighbour predict?

Dataset
milk egg lactose
0 0 0
0.5 0 0
0.7 2 0
1.0 3 3
3 3 3

sick
0
0
1
1
1
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Decision Trees vs. KNN
Trained decision tree

Q: Why is there no model structure?
What does a trained KNN model look like?

Dataset
milk egg lactose
0 0 0
0.5 0 0
0.7 2 0
1.0 3 3
3 3 3

sick
0
0
1
1
1
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How Do We “Train” KNN?
• There is no training phase in KNN (“lazy” learning).

– You just store the training data.
– Costs O(1) if you use a pointer.

• But predictions are expensive: O(nd) to classify 1 test example.
– Need to do O(d) distance calculation for all ‘n’ training examples.
– So prediction time grows with number of training examples.

• Tons of work on reducing this cost (we’ll discuss this later).

• But storage is expensive: needs O(nd) memory to store ‘X’ and ‘y’.
– So memory grows with number of training examples.
– When storage depends on ‘n’, we call it a non-parametric model.

25



How Does ‘k’ Affect KNN’s Behaviour?
• With large ‘k’ (hyper-parameter), KNN model will be very simple.

– With k=n, you just return the mode of the labels.
– Model gets more complicated as ‘k’ decreases. (WHY?)

• The 1st nearest neighbour is very sensitive to the trend of the data

• Effect of ‘k’ on fundamental trade-off:
– As ‘k’ grows, training error increases and approximation error decreases.

26



NON-PARAMETRIC MODELS
Coming Up Next

When you train KNN

No



Parametric vs. Non-Parametric
• Parametric models:

– Have fixed number of parameters: trained “model” size is O(1) in terms ‘n’.
• E.g., naïve Bayes just stores counts. 
• E.g., fixed-depth decision tree just stores rules for that depth.

– You can estimate the fixed parameters more accurately with more data.
– But eventually more data doesn’t help: model is too simple.

• Non-parametric models:
– Number of parameters grows with ‘n’: size of “model” depends on ‘n’.
– Model gets more complicated as you get more data.

• E.g., KNN stores all the training data, so size of “model” is O(nd).
• E.g., decision tree whose depth grows with the number of examples.



Parametric vs. Non-Parametric Models
• Parametric models have bounded memory.
• Non-parametric models can have unbounded memory.



Effect of ‘n’ in KNN.
• With a small ‘n’, KNN model will be very simple.

• Model gets more complicated as ‘n’ increases.
– Requires more memory, but detects subtle differences between examples.

Feature space Feature space

Q: Does that mean we overfit with large n?



Consistency of KNN (‘n’ going to ‘∞’)
• KNN has appealing consistency properties:

– As ‘n’ goes to ∞, KNN test error is less than twice best possible error.
• For fixed ‘k’ and binary labels (under mild assumptions).

• Stone’s Theorem: KNN is “universally consistent”.
– If k/n goes to zero and ‘k’ goes to ∞, converges to the best possible error.

• For example, k = log(n).
• First algorithm shown to have this property.

• Does Stone’s Theorem violate the no free lunch theorem?
– No: it requires a continuity assumption on the labels.
– Consistency says nothing about finite ‘n’ (see "Dont Trust Asymptotics”).

https://www.naftaliharris.com/blog/asymptotics/


Parametric vs. Non-Parametric Models
• With parametric models, there is an accuracy limit.

– Even with infinite ‘n’, may not be able to achieve optimal error (Ebest).



Parametric vs. Non-Parametric Models
• With parametric models, there is an accuracy limit.

– Even with infinite ‘n’, may not be able to achieve optimal error (Ebest).
• Many non-parametric models (like KNN) converge to optimal error.



CURSE OF DIMENSIONALITY
Coming Up Next



Application: Netflix Show Recommendation
• I want to recommend shows according to “likes”:

– A simplified case of “recommender systems”

All shows on Netflix

Should I recommend this show?

👍👍👍👍
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Application: Netflix Show Recommendation

36

x1 x2 x3 x4

1 0 1 0
0 0 0 0
0 0 0 1
0 0 1 0
1 1 1 0

y
0
0
1
0
1

𝑥𝑥𝑖𝑖𝑖𝑖 ≔ 1 if user i liked show j
0 otherwise

𝑦𝑦𝑖𝑖 ≔ 1 if user i liked Space Force
0 otherwise

1 1 0 0Your preference Q: Should I recommend Space Force?



Curse of Dimensionality
• What if I have n=5 users and d=10000 shows?

– Much less likely that nearest neighbours have “perfect match”
– In fact, not very likely to have similar preferences at all.
– “Curse of dimensionality”: problems with high-dimensional spaces.
– For each additional show, we need exponentially more users

to preserve the usefulness of nearest neighbours

• KNN is also problematic if features have very different scales.
– What if feature 1 is binary and feature 2 is continuous and can be huge?

• Nevertheless, KNN is really easy to use and often hard to beat! 

37



Summary
• Decision theory allows us to consider costs of predictions.
• K-Nearest Neighbours: use most common label of nearest examples.

• Often works surprisingly well.
• Suffers from high prediction and memory cost.
• Canonical example of a “non-parametric” model.
• Can suffer from the “curse of dimensionality”.

• Non-parametric models grow with number of training examples.
– Can have appealing “consistency” properties.

• Next Time:
• Fighting the fundamental trade-off and Microsoft Kinect.



Review Questions
• Q1: Suppose I am learning Naïve Bayes with Laplace Smoothing. 

If I have 0 examples in class c, what probability do I assign to p(xi | yi = c)?

• Q2: Increasing true positives can increase false positives.
When is this an acceptable risk?

• Q3: How do we choose the value of k in KNN?

• Q4: Is decision tree a parametric model?



Naïve Bayes Training Phase
• Training a naïve Bayes model:
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• Training a naïve Bayes model:



Naïve Bayes Training Phase
• Training a naïve Bayes model:



Naïve Bayes Prediction Phase
• Prediction in a naïve Bayes model: 
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Naïve Bayes Prediction Phase
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Naïve Bayes Prediction Phase
• Prediction in a naïve Bayes model: 



Naïve Bayes Prediction Phase
• Prediction in a naïve Bayes model: 



“Proportional to” for Probabilities
• When we say “p(y) ∝ exp(-y2)” for a function ‘p’, we mean:

• However, if ‘p’ is a probability then it must sum to 1.
– If 𝑦𝑦 ∈ 1,2,3,4 then

• Using this fact, we can find β:



Probability of Paying Back a Loan and Ethics
• Article discussing predicting “whether someone will pay back a loan”: 

– https://www.thecut.com/2017/05/what-the-words-you-use-in-a-loan-application-
reveal.html

• Words that increase probability of paying back the most:
– debt-free, lower interest rate, after-tax, minimum payment, graduate.

• Words that decrease probability of paying back the most:
– God, promise, will pay, thank you, hospital.

• Article also discusses an important issue: are all these features ethical?
– Should you deny a loan because of religion or a family member in the hospital?
– ICBC is limited in the features it is allowed to use for prediction.

https://www.thecut.com/2017/05/what-the-words-you-use-in-a-loan-application-reveal.html


Avoiding Underflow
• During the prediction, the probability can underflow:

• Standard fix is to (equivalently) maximize the logarithm of the probability:



Less-Naïve Bayes
• Given features {x1,x2,x3,…,xd}, naïve Bayes approximates p(y|x) as:

• The assumption is very strong, and there are “less naïve” versions:
– Assume independence of all variables except up to ‘k’ largest ‘j’ where j < i.

• E.g., naïve Bayes has k=0 and with k=2 we would have:

• Fewer independence assumptions so more flexible, but hard to estimate for large ‘k’. 
– Another practical variation is “tree-augmented” naïve Bayes.



Computing p(xi) under naïve Bayes
• Generative models don’t need p(xi) to make decisions.
• However, it’s easy to calculate under the naïve Bayes assumption:



Gaussian Discriminant Analysis
• Classifiers based on Bayes rule are called generative classifier:

– They often work well when you have tons of features.
– But they need to know p(xi | yi), probability of features given the class.

• How to “generate” features, based on the class label.

• To fit generative models, usually make BIG assumptions:
– Naïve Bayes (NB) for discrete xi:

• Assume that each variables in xi is independent of the others in xi given yi.

– Gaussian discriminant analysis (GDA) for continuous xi.
• Assume that p(xi | yi) follows a multivariate normal distribution.
• If all classes have same covariance, it’s called “linear discriminant analysis”.



Other Performance Measures
• Classification error might be wrong measure:

– Use weighted classification error if have different costs.
– Might want to use things like Jaccard measure: TP/(TP + FP + FN).

• Often, we report precision and recall (want both to be high):
– Precision: “if I classify as spam, what is the probability it actually is spam?”

• Precision = TP/(TP + FP).
• High precision means the filtered messages are likely to really be spam.

– Recall: “if a message is spam, what is probability it is classified as spam?”
• Recall = TP/(TP + FN)
• High recall means that most spam messages are filtered.



Precision-Recall Curve
• Consider the rule p(yi = ‘spam’ | xi) > t, for threshold ‘t’.
• Precision-recall (PR) curve plots precision vs. recall as ‘t’ varies.

http://pages.cs.wisc.edu/~jdavis/davisgoadrichcamera2.pdf



ROC Curve
• Receiver operating characteristic (ROC) curve:

– Plot true positive rate (recall) vs. false positive rate (FP/FP+TN).
(negative examples classified as positive)

– Diagonal is random, perfect classifier would be in upper left.
– Sometimes papers report area under curve (AUC).

• Reflects performance for different possible thresholds on the probability.

http://pages.cs.wisc.edu/~jdavis/davisgoadrichcamera
2 pdf



More on Unbalanced Classes
• With unbalanced classes, there are many alternatives to 

accuracy as a measure of performance:
– Two common ones are the Jaccard coefficient and the F-score.

• Some machine learning models don’t work well with unbalanced 
data. Some common heuristics to improve performance are:
– Under-sample the majority class (only take 5% of the spam messages).

• https://www.jair.org/media/953/live-953-2037-jair.pdf
– Re-weight the examples in the accuracy measure (multiply training error 

of getting non-spam messages wrong by 10).
– Some notes on this issue are here.

https://www.jair.org/media/953/live-953-2037-jair.pdf
http://www.ele.uri.edu/faculty/he/research/ImbalancedLearning/ImbalancedLearning_lecturenotes.pdf


Decision Theory Discussion
• In other applications, the costs could be different.

– In cancer screening, maybe false positives are ok,
but don’t want to have false negatives.

• Decision theory and “darts”:
– http://www.datagenetics.com/blog/january12012/index.html

• Decision theory and video poker:
– http://datagenetics.com/blog/july32019/index.html

• Decision theory can help with “unbalanced” class labels:
– If 99% of e-mails are spam, you get 99% accuracy by always predicting “spam”.
– Decision theory approach avoids this.
– See also precision/recall curves and ROC curves in the bonus material.

http://www.datagenetics.com/blog/january12012/index.html
http://datagenetics.com/blog/july32019/index.html


Decision Theory and Basketball
• “How Mapping Shots In The NBA Changed It Forever”

https://fivethirtyeight.com/features/how-mapping-shots-in-the-nba-changed-it-forever/



More on Weirdness of High Dimensions
• In high dimensions:

– Distances become less meaningful:
• All vectors may have similar distances.

– Emergence of “hubs” (even with random data):
• Some datapoints are neighbours to many more points than average.

– Visualizing high dimensions and sphere-packing

https://www.youtube.com/watch?v=zwAD6dRSVyI


Vectorized Distance Calculation
• To classify ‘t’ test examples based on KNN, cost is O(ndt).

– Need to compare ‘n’ training examples to ‘t’ test examples,
and computing a distance between two examples costs O(d).

• You can do this slightly faster using fast matrix multiplication:
– Let D be a matrix such that Dij contains:

where ‘i’ is a training example and ‘j’ is a test example.
– We can compute D in Julia using:

– And you get an extra boost because Julia uses multiple cores.



Condensed Nearest Neighbours
• Disadvantage of KNN is slow prediction time (depending on ‘n’).
• Condensed nearest neighbours:

– Identify a set of ‘m’ “prototype” training examples.
– Make predictions by using these “prototypes” as the training data.

• Reduces runtime from O(nd) down to O(md).



Condensed Nearest Neighbours
• Classic condensed nearest neighbours:

– Start with no examples among prototypes.
– Loop through the non-prototype examples ‘i’ in some order:

• Classify xi based on the current prototypes.
• If prediction is not the true yi, add it to the prototypes. 

– Repeat the above loop until all examples are classified correctly.
• Some variants first remove points from the original data,

if a full-data KNN classifier classifies them incorrectly 
(“outliers’).



Condensed Nearest Neighbours
• Classic condensed nearest neighbours:

• Recent work shows that finding optimal compression is NP-hard.
– An approximation algorithm algorithm was published in 2018:

• “Near optimal sample compression for nearest neighbors”

https://en.wikipedia.org/wiki/K-
nearest_neighbors_algorithm

https://papers.nips.cc/paper/5528-near-optimal-sample-compression-for-nearest-neighbors.pdf


Refined Fundamental Trade-Off
• Let Ebest be the irreducible error (lowest possible error for any model).

– For example, irreducible error for predicting coin flips is 0.5.
• Some learning theory results use Ebest to further decompose Etest:

• Eapprox measures how sensitive we are to training data.
• Emodel measures if our model is complicated enough to fit data.
• Ebest measures how low can any model make test error.

– Ebest does not depend on what model you choose.



Consistency and Universal Consistency
• A model is consistent for a particular learning problem if:

– Etest converges to Ebest as ‘n’ goes to infinity, for that particular problem.

• A model is universally consistent for a class of learning problems if:
– Etest converges to Ebest as ‘n’ goes to infinity, for all problems in the class.

• Class of learning problems will usually be “all problems satisfying”:
– A continuity assumption on the labels yi as a function of xi.

• E.g., if xi is close to xj then they are likely to receive the same label.
– A boundedness assumption of the set of xi.



Consistency of KNN 
(Discrete/Deterministic Case) 

• Let’s show universal consistency of KNN in a simplified setting.
– The xi and yi are binary, and yi being a deterministic function of xi.

• Deterministic yi implies that Ebest is 0.

• Consider KNN with k=1:
– After we observe an xi, KNN makes right test prediction for that vector.
– As ‘n’ goes to ∞, each feature vectors with non-zero probability is observed.
– We have Etest = 0 once we’ve seen all feature vectors with non-zero probability.

• Notes:
– “No free lunch” isn’t relevant as ‘n’ goes to ∞: we eventually see everything.

• But there are 2d possible feature vectors, so might need a huge number of training examples.
– It’s more complicated if labels aren’t deterministic and features are continuous.



Consistency of Non-Parametric Models
• Universal consistency can be been shown for many models we’ll cover:

– Linear models with polynomial basis.
– Linear models with Gaussian RBFs.
– Neural networks with one hidden layer and standard activations.

• Sigmoid, tanh, ReLU, etc.

• But it’s always the non-parametric versions that are consistent:
– Where size of model is a function of ‘n’.
– Examples:

• KNN needs to store all ‘n’ training examples.
• Degree of polynomial must grow with ‘n’ (not true for fixed polynomial).
• Number of hidden units must grow with ‘n’ (not true for fixed neural network).
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