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In This Lecture

« Random Forest (15 minutes)
« Unsupervised Learning Intro (15 minutes)
« K-Means Clustering (15 minutes)



Coming Up Next

RANDOM FORESTS



Random Forests

Random forests take vote from a set of deep decision trees.

— Tend to be one of the best “out of the box” classifiers.
« Often close to the best performance of any method on the first run.
— And predictions are very fast.

Do deep decision trees make independent errors?
— No: with the same training data you’ll get the same decision tree.

Two key ingredients in random forests:
— Bootstrap sampling: online data augmentation
— Random trees: decision trees but with randomness

Special case of “bagging”:
— Bootstrapped aggregation



Bootstrap Sampling

- |ldea: give each modela __
— I.e. make each model behave uniquely
—i.e. help them make independent errors
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Bootstrap Sampling
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(put it back and re-shuffle)

Sample a random card:
(put it back and re-shuffle)

Sample a random card:
(put it back and re-shuffle)

(which may be a repeat)
Makes a new deck of the 52 samples:

Sample a random card:
aka “bootstrap sample”
Q: Does this deck look like
my original deck?

52. Sample a random card:

Start with a standard deck of 52 cards:
1
2.
3




Bootstrap Sampling
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— No, it doesn’t look like the original deck
— Some cards will be , and some cards will be

+ Calculations on the bootstrap sample will give different results than original data.
— Yes, it looks like the original deck

— The bootstrap sample roughly maintains trends:
* Roughly 25% of the cards will be diamonds.
* Roughly 3/13 of the cards will be “face” cards.
« There will be roughly four “10"” cards.
— Common use: compute a statistic based on several bootstrap samples.
* Gives you an idea of how the statistic varies as you vary the data.



Random Forest Ingredient 2: Random Trees

 For each split in a random tree model:

— Randomly choose a small number of possible features (typically Vd).
— Only consider these random features when searching for the optimal rule.
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Random Forest Ingredient 2: Random Trees

 For each split in a random tree model:

— Randomly choose a small number of possible features (typically Vd).
— Only consider these random features when searching for the optimal rule.
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Random Forest Ingredient 2: Random Trees

Choosing a small number of random features will
make the unigue for each tree

They will still overfit to the bootstrapped sample (WHY?)

— but hopefully errors will be more independent.
« We made both training data AND search space unique to each tree!

Recall: independent errors => improved ensemble performance
— So the vote tends to have a much lower test error.

Empirically, random forests are one of the “best” classifiers.

— Fernandez-Delgado et al. [2014]:
« Compared 179 classifiers on 121 datasets.
« Random forests are most likely to be the best classifier.



Beyond Voting: Model Averaging

« Voting is a special case of “averaging” ensemble methods.
— Where we somehow ‘““average” the predictions of different models.

« Other averaging:

— For “regression” (where y; is continuous), take average y, predictions:
N N N /N

}’; = YTyt
— Wlth probabmstlc classifiers, take ’?he average probabilities:
}X)”B,O,(/, )x7+l ( = ])r/) + L Pj(/v/ )),)

— And there are variations where some classifiers get more weight (see
bonus):

w=llx)=1 0,
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Types and Goals of Ensemble Methods

« Remember the fundamental trade-off:

1. E,,n How small you can make the training error.
VS.

2. E,pprox: HOw well training error approximates the test error.

Q: How are E;, and E, o« for a single random tree?

Q: How are E;, and E, ;o4 fOr a random forest?

12



Types and Goals of Ensemble Methods

e Goal of ensemble methods is that our meta-classifier:

— Does much better on E,, or E g o than individual classifiers.
« Random forest has much better (A2)

— Doesn’t do too much worse on the other.
« How can random forest have better E, ., with super low E; ;,?

« Two types of ensemble methods:
1. Averaging: improves approximation error of classifiers with high E
« This is the point of “voting”.
2. Boosting: improves training error of classifiers with high E ...
« Covered later in course.

approx-

13



End of Part 1: Key Concepts

« Fundamental ideas:

Training vs. test error (memorization vs. learning).

lID assumption (examples come independently from same distribution).
Golden rule of ML (test set should not influence training).

Fundamental trade-off (between training error vs. approximation error).
Validation sets and cross-validation (can approximate test error)
Optimization bias (we can overfit the training set and the validation set).
Decision theory (we should consider costs of predictions).

Parametric vs. non-parametric (whether model size depends on ‘n’).

No free lunch theorem (there is no “best” model).



End of Part 1: Key Concepts

« We saw 3 ways of “learning”:
— Searching for rules.
« Decision trees (greedy recursive splitting using decision stumps).
— Counting frequencies.
« Naive Bayes (probabilistic classifier based on conditional independence).
— Measuring distances.
« K-nearest neighbours (non-parametric classifier with universal consistency).

« We saw 2 generic ways of improving performance:

— Encouraging invariances with data augmentation.

— Ensemble methods (combine predictions of several models).
« Random forests (averaging plus randomization to reduce overfitting).



Part 2: Unsupervised Learning



UNSUPERVISED LEARNING INTRO



Application: Classifying Cancer Types

“I collected gene expression data for 1000 different types of cancer cells,
can you tell me the different classes of cancer?”

We are not given the class labels y, but want meaningful labels.
An example of unsupervised learning.

18



Unsupervised Learning

- Supervised learning:

— We have features x; and class labels Yy..

— Write a program that produces y,; from x..
« Unsupervised learning:

— We only have x; values, but no explicit target labels.
— You want to do “something” with them.



Unsupervised Learning

« Some unsupervised learning tasks:
— Qutlier detection: Is this a ‘normal’ x;?
— Similarity search: Which examples look like this x;?
— Association rules: Which x/ occur together?
— Latent-factors: What ‘parts’ are the x; made from?
— Data visualization: What does the high-dimensional X look like?
— Ranking: Which are the most important x;?
— Clustering: What types of x; are there?



Assumption: different-looking examples belong to different groups

o

Q:

Clustering

Do these examples
“look” different?

Feature space
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Clustering

Assumption: different-looking examples belong to different groups

o

’.‘\Q:

Do these examples
“look” different?

Feature space
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Clustering

Assumption: different-looking examples belong to different groups
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Clustering

Clustering:

— Input: set of examples described by features x..

— Qutput: an assignment of examples to ‘groups’.
Unlike classification, we are not given the ‘groups’.
— Algorithm must discover groups.

Example of groups we might discover in email:
— ‘Spam’ group.

— ‘Not spam’ group.

With in ‘Spam’ group:

— ‘Weight loss’ group

— '‘Fake special reward’ group

— ‘Free money’ group



Clustering Example
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Clustering Example

Input: feature matrix ‘X". ~
Qutput: clusters ¥.
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Data Clustering

« General goal of clustering algorithms:

Examples in the same group should be ‘similar’.
Examples in different groups should be ‘different’.

- But the ‘best’ clustering is hard to define:

We don’'t have a test error.

Generally, there is no ‘best’ method in unsupervised Learning.
« So there are lots of methods: we'll focus on important/representative ones.

« Why cluster?

You could want to know what the groups are.
You could want to find the group for a new example x..
You could want to find examples related to a new example Xx;.

You could want a ‘canonical’ example for each group.
+ E.g. what does the most typical breakfast look like?

27



Other Clustering Applications

NASA: what types of stars are there?
Biology: are there sub-species?

Documents: what kinds of documents are on my HDD?

Commercial: what kinds of customers do | have?

Pointer
Irish Setter
German Shorthaired Pointer
Welsh Springer Spaniel
English Cocker Spaniel
American Cacker Spaniel
American Water Spaniel
Cavalier King Charles Spaniel
Chesapeake Bay Relriever
Golden Retriever
Poruguese Water Dag
Miniature Schnauzer
Standard Schnauzer
Giant Sehnauzer
Ameican Hairless Terrier
Waest Highland White Terrier
Caim Terrier
Australian Terrier
Airedale Terrier
Doberman Pinscher
Italian Greyhound
Ibizan Houndr
Pharach Hound
Old English Sheepdog
Border Collie
Schipperke
Beagle
Basset Hound
Bicodhound

Presa Canaria
Rottweiler
Bullmastiff

Newfoundiand

German Shephard Dog

French Bulldog ‘,

Clumber Spaniel

Australian Shepherd Miniature Bull Terrier
Rhodesian Ridgeback Bulidag
Boxer

Irish Terrier
Bedlington Terrier

Kerry Blue Terrier
Soft Coated Wheaten Terrier
Flat-Coated Retriever
Labrador Retriever
Chihuahua g

Mastiff

T ——

Saint Bernard

y # Bomeranian RCTeater Sv\Dnss Maunta
Dachshund i)

Pug
Bichen Frise
Standard Poodle
Whippet
Manchester Termer
| Keeshond
|| Nonwegian Elkhound
Komondor
Kuvasz

[

3

Great Dane
Samoyed
%ﬁv Lhasa Apso
Pekingess
-~
B Shif Tzu

Tibetan Terrier
Afghan Hound
e Akita
Shiba Inu
Chow Chow

Chinese Shar-Pei
Alaskan Malamute
Siberian Husky
Baseniji

Bernese Mountain Dog

Irish Wotfhound
Greyhound
Borzol

Belgain Sheepdog

Belgian Tervuren

Collie
Shetland Sheepdog




K-MEANS CLUSTERING



K-Means

- Most popular clustering method is k-means.
e Input:

— The number of clusters ‘k’ (hyper-parameter).

— Initial guess of the center (the “mean”) of each cluster.
« A 2-step iterative algorithm:

1. Assign each x; to label of closest mean.

2. Update the means based on the assignment.
Repeat until convergence.



The “mean”
Aka “canonical example”
Aka “prototype”
Aka “centroid”

Feature space

31



K “Means”

W =
— 7y ]

Index of nearest mean
for example 1
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K-Means Example
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K-Means Example

Input: feature matrix ‘X'. 5L .°°%.°: ‘..o, .::s.w::“.
— 'ﬁ i ° o0
F___ qo ’75 ! il * Q..:~:.
_ | -9 -10 Assign each example to
X"’ 10 - g
137 113 the closest mean.
(3,8 204 5
129 206
: ; J 0F ..;...-:.
- " A
5 * ..‘...#{g
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K-Means Example

Input: feature matrix ‘X'. 5L .°.°%': ....‘ .::s.w::“.
(-90 -737 s g "’,o?":' "
X= -1p9 - 10 6 o Update the mean
137 113 of each group.
(3.3 404 5t
2.9 a06
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K-Means Example

Input: feature matrix ‘X'. 54l .°°%': ‘..: .::g.w::“.
- 4 ooe
F—. qo ’75 ! 5L ® Q..:g:o
_ | -9 -90 e Assign each example to
)('-— 10 g
137 113 the closest mean.
(3.3 404 5
129 206
: ; \; 0F ..;...-:.
L . A
5 * ..‘...#{g
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K-Means Example

Input: feature matrix ‘X'. 5oL ,'o'% ....s }g"éﬁs‘.
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137 113 of each group.
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K-Means Example

25
Input: feature matrix ‘X’. . ,"% ....s O::‘.m::“.
[~ 90 '757 15 ¢ ".?E.' "
y= | ~101 - 10 o e Assign each example to
137 113 the closest mean.
(3.3 404 5t
129 206
: ; J 0F .;...-:.
- . 4% .g.o
5 P .o.,.i:.‘ .4
10} ’
%0 s 0 5 0 5 10 5 20
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K-Means Example
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K-Means Example

Input: feature matrix ‘X'. . ,"%.; ....s .3:".‘;#‘::‘!'
_ o~ oor
F___ qo ’75 ! il o Q... ..
_ | -9 -10 Assign each example to
)('-— 10 g
137 113 the closest mean.
(3.3 404 5t
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K-Means Example

Input: feature matrix ‘X'. 54l .:0%': '..: .::‘.. i..las::“.
- g oo
F—. qo ’75 ! 15l ® Q..:g:o .
_ =109 _90 . Stop if no examples
X'= ' ol change groups.
137 13 (Convergencel)
(3.8 204 5|
2.9 a06
. ; J oF ..;...-:.
- 5 - o.‘.:%i;'{g‘
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Input: feature matrix ‘X’.

(- 90 -737]

yw= | 109 - 70
137 113

13,8 2404

2. ZU(J

Interactive demo:

25 -

K-Means Example
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https://www.naftaliharris.com/blog/visualizing-k-means-clustering
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- Means ‘W’.
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K-Means Issues

Guaranteed to converge when using Euclidean distance.

Given a new test example:
— Assign it to the nearest mean to cluster it.

Assumes you know number of clusters ‘k’.

— Lots of heuristics to pick ‘k’, none satisfying:
* https://en.wikipedia.org/wiki/Determining _the number of clusters in_a data set

Each example is assigned to one (and only one) cluster:
— No possibility for overlapping clusters or leaving examples unassigned.

Q: Does K-means always converge to
the “optimal” clustering?
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K-Means Clustering with Different

25 -

20+

-10+

-15

K-Means clustering
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-15

I I 1 | I |
-5 0 5 10 15 20

Initialization

Classic approach to dealing with sensitivity to initialization: random restarts.
— Try several different random starting points, choose the “best”.

See bonus slides for a more clever approach called k-means++.



KNN vs. K-Means

- Don’t confuse KNN classification and k-means clustering:

KNN Classification K-Means Clustering

Task Supervised learning (given y;)

Meaning of ‘k’ Number of neighbours to consider
(not number of classes).

Initialization No training phase.

Model complexity Model is complicated for small ‘k’,
simple for large ‘k’.

Parametric? Non-parametric:
- Stores data ‘X’

Unsupervised learning (no given y;).

Number of clusters (always consider
single nearest mean).

Training that is sensitive to initialization.

Model is simple for small ‘k’, complicated
for large ‘k’.

Parametric (for ‘k’ not depending on ‘n’)
- Stores means ‘W’



What is K-Means Doing?

« We can interpret K-means steps as minimizing an objective:
— Total sum of squared distances from each example x; to its center wy:

‘F(Wu)""z)"'v h) )’ ) )/.z ) ) Z “W" Xi “
I—l
k_——ﬁ (,‘Mj','#/ o{ €ynmr ii)
yi €32 K

« The k-means steps:

— Minimize ‘f" in terms of the y, (update cluster assignments).
— Minimize ‘f" in terms of the w_ (update means).

- Termination of the algorithm follows because: We | —w—
— Each step does not increase the objective. ‘5 k
— There are a finite number of assignments to k clusters. » w, —
7



What is K-Means Doing?

We can interpret K-means steps as minimizing an objective:
— Total sum of squared distances from each example x; to its center wy:

‘F(wnwz) Wi, Y ) Yz ) ) Z ”WA X “

I—P
k—’ﬁ (,‘M5+W of €¥nmr ii)
¢
The k-means steps: ) S"’ 4

— Minimize ‘f" in terms of the y, (update cluster assignments).
— Minimize ‘f" in terms of the w_ (update means).

— W, —

Use ‘f’ to choose between initializations (fixed k), /- | —— w, —

Need to change w_ update under other distances: ﬂ

— L1-norm: set w, to median (“k-medians”, see bonus). » —_—Ww,
7
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Cost of K-means

- Bottleneck is calculating distance from each x; to each mean w_:

L{ :
HWC, X, ”2 o J:Z' (Wc\.)“')(b-)z vector
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Cost of K-means

Bottleneck is calculating distance from each x; to each mean w:

d
= 1= Z =)
J— |
— Each time we do this costs O( ).
We need to compute distance from ‘n’ examples to ‘k’ clusters.

Total cost of assigning examples to clusters is O(__ ).
— Fast if k is not too large.
Updating means is cheaper: O(__).
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Vector Quantization

« K-means originally comes from signal processing.

« Designed for vector quantization:
— Replace examples with the mean of their cluster (“prototype”)
— An instance of learned compression algorithm

« Example:
— Facebook places: 1 location summarizes many.
— What sizes of clothing should | make?

Places

9
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Vector Quantization for Basketball Players

Clustering NBA basketball players based on shot type/percentage:

Restricted Area vs Unassisted Percentages
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The “prototypes” (means) give

offensive

K-Means Clusters of Restricted Area vs Unassisted Percentages
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styles (like “catch and shoot”).
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Vector Quantlzatlon
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(Bad) Vector Quantization in Practice

Political parties can be thought as a form of vector quantization:

Liberal #% green

» ). E’
€  \WES. PN

— Hope is that parties represent what a cluster of voters want.
« With larger ‘k’ more voters have a party that closely reflects them.
« With smaller ‘k’, parties are less accurate reflections of people.
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summary

Random forests: bagging of deep randomized decision trees.
« One of the best “out of the box” classifiers.

Type of ensemble methods:
— “Boosting” reduces E,,;, and “averaging” reduces E -

Unsupervised learning: fitting data without explicit labels.
Clustering: finding ‘groups’ of related examples.

K-means: simple iterative clustering strategy.
— Fast but sensitive to initialization.

Vector quantization:
— Compressing examples by replacing them with the mean of their cluster.

Next time:
— John Snow and non-parametric clustering.



Review Questions

Ql: How do bootstrap samples Look different from X and y?
How do they look like X and y?

Q2: What makes unsupervised Learning useful in the wild?

Q3: What does it mean K-means clustering does not
converge to optimal clustering every time? How do we address this?

Q4: How does vector quantization compress the data?

55



Clustering of Epstein-Barr Virus

B cell

Expression

Profile

GROUP B-P-L
1 /
2 /_
Wa

4

5 _/
6 \_

7a \
7D N
8 N

# Genes

48

232

Lk

35

144

146

106

25
33

Genes of Interest

CCND2, CDC25C, CDK6,
E2F7, OAS3, XRCC4

AURKA/B, BRCA2, BUB1,
CCNAZ2, CCNB1/2, CCNE1,
CD38, CDC2, CDC25A,
CDC45L, CENPA, DNMT1,
FEN1, HIST1H3A, IF144L,
IFIT1, IFITM1, MKIB?, NEIL3,
PLK1, RFC3, TOP2A

ASPM, BLMH, BRCA1,
CCNE2, CDC6, CENP (F/K),
CLSPN, E2F2, EXO1,
FANCA, KIF2C, MCM
(2,3,4,7,10), MYB, ORC1L,
POLE2, POLQ, SMC (2/4)

FOS, EGR1

ACTN1, AICDA, ATF3,
BCL2L10, EBI3, ICAM1,
IL10, MSC(ABF1), OPTN,
PLA1A, PLD1, RHOC,
TRAF1, VCAMA1

BACH1, BCL6, BCOR,
CASP8, CXCR4, EBF1,
ELK3, IL6, JUND, SPIB

BCL11A, CIITA, FCRL1/2,
FOXP1, FYN, JAK1,
SWAP70

BACH2, BANK1, FCRL3,
NFATC2, NOTCH2, TGFBR2
BCL2, CCR7, CD80, CFLAR,

NFKB2, STAT3, TNIP1
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Extremely-Randomized Trees

« Extremely-randomized trees add an extra level of randomization:
1. Each tree is fit to a bootstrap sample.
2. [Each split only considers a random subset of the features.
3. Each split only considers a random subset of the possible thresholds.

- So instead of considering up to ‘n’ thresholds,
only consider 10 or something small.

— Leads to different partitions so potentially more independence.



Bayesian Model Averaging

« Recall the key observation regarding ensemble methods:
— If models overfit in “different” ways, averaging gives better performance.
- But should all models get equal weight?

— E.g., decision trees of different depths, when lower depths have low training
error.

— E.g., a random forest where one tree does very well (on validation error) and
others do horribly.

— In science, research may be fraudulent or not based on evidence.
« In these cases, naive averaging may do worse.



Bayesian Model Averaging

Suppose we have a set of ‘m’ probabilistic binary classifiers w;.
If each one gets equal weight, then we predict using:

pIr:1)= L )+ s ey o s gl Pyt

Bayesian model averaging treats model ‘w;" as a random variable: wy L7

N\

oLy, m:é Pyl ) = 2 plylwx)plu )= 240 [y %) ple)

’b:/

So we should weight by probability that w; is the correct model:
— Equal weights assume all models are equally probable.



Bayesian Model Averaging Ay

)
(/\\/)

Can get better weights by conditioning on training set: f
(F(WJ ,X>y>b<d>(\/ le)X>P(WJl X>‘: yb(y’%jx)y)(%>

The ‘likelihood’ p(y | w;, X) makes sense:

— We should give more weight to models that predict ‘y’ well.

— Note that hidden denominator penalizes complex models.

The ‘prior’ p(w)) is our ‘belief’ that w; is the correct model.
This is how rules of probability say we should weigh models.

— The ‘correct’ way to predict given what we know.
— But it makes some people unhappy because it is subjective.

7
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What is K-Means Doing?

How is a k-means step decreasing this objective?

il 2
‘F(‘“’nwz)"’vb"'\’) ;’\. ) ;’1 ) 9" ) - Z “V‘/f’ X*“

1=
If we just write as function of a particular y;, we get:

-?(S/\' > = “ W(/\i — X,‘”l -+ ((om5+o.v.'f>

— The “constant” includes all other terms, and doesn’t affect location of min.
— We can minimize in terms of y, by setting it to the ‘c’ with w_ closest to x..



What is K-Means Doing?

How is a k-means step decreasing this objective?
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If we just write as function of a particular wCJ we get:
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Derivative is given by: ‘r (Wc)): 2‘626 (Wc)-‘ 'J)

Setting equal to O and solving for w; gives: ‘“
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K-Medians Clustering

With other distances k-means may not converge.

— But we can make it converge by changing the updates so that they are
minimizing an objective function.

E.g., we can use the L1-norm objective:

7 =l

Minimizing the L1-norm objective gives the ‘k-medians’ algorithm:
— Assign points to clusters by finding “mean” with smallest L1-norm distance.

— Update ‘means’ as median value (dimension-wise) of each cluster.
* This minimizes the L1-norm distance to all the points in the cluster.

This approach is more robust to outliers.

1, K-mears will '0\4+ o Juster here



what is the “L1l-norm and median” connection?

« Point that minimizes the sum of squared L2-norms to all points:

— Is given by the mean (just take deriv’\ative and set to 0):
_ |
W = n i 4

=l

 Point that minimizes the sum of L1-norms to all all points:
N
fw)= 2wl

— Is given by the median (derivative of absolute value is +1 if positive and
-1 if negative, so any point with half of points larger and half of points
smaller is a solution).



K-Medoids Clustering

A disadvantage of k-means in some applications:

— The means might not be valid data points.

— May be important for vector quantiziation.

E.g., consider bag of words features like [0,0,1,1,0].

— We have words 3 and 4 in the document.

A mean from k-means might look like [0.1 0.3 0.8 0.2 0.3].
— What does it mean to have 0.3 of word 2 in a document?
Alternative to k-means is k-medoids:

— Same algorithm as k-means, except the means must be data points.

— Update the means by finding example in cluster minimizing squared L2-
norm distance to all points in the cluster.



K-Means Initialization

« K-means is fast but sensitive to initialization.

« Classic approach to initialization: random restarts.
— Run to convergence using different random initializations.
— Choose the one that minimizes average squared distance of data to means.

« Newer approach: k-means++
— Random initialization that prefers means that are far apart.
— Yields provable bounds on expected approximation ratio.



K-Means++

« Steps of k-means++:
1. Select initial mean w; as a random x;.
2. Compute distance d,. of each example x; to each mean w..

— d —
Aio - m — “Xa“wc lI.Z

3. For each example ‘i’ set d, to the distance to the closest mean.

Aj = m(_ih %Aicz
4. Choose next mean by sampling an example ‘i’ proportional to (d;)2.
2
P] X dj,l =7 (]i:' Ai Con be
’\Z D]J:Z cJOne "

= O(n)
"()ro/oa[-l'/l'fy TL;,‘/ we

Choose X, as next Mean

5. Keep returning to step 2 until we have k-means.
- Expected approximation ratio is O(log(k)).

A\



K-Means++
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K-Means++
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K-Means++

Weight examples by distance

to mean squared.
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K-Means++
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Sample mean proportional
to distances squared.
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K-Means++

Weight examples by squared
distance to nearest mean.
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K-Means++
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K-Means++

Sample mean proportional
to distances squared.
(Now hit chosen target k=4.)
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K-Means++

Start k-means: assign examples
to the closest mean.
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K-Means++

Update the mean
of each cluster.
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K-Means++

A AA
Update the mean
of each cluster.
do, *
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In this case: just 2 iterations!



Discussion of K-Means++

Recall the objective function k-means tries to minimize:

Flhe) = Z V= w7

O'\I M Lavy all
afsn)m/\"s

The initialization of ‘W’ and ‘c’ given by k-means++ satisfies:

£t PO Y L o toy(1)

I rwhe | |
Q)(’H(“‘«"‘or over /k__/\ b,d‘ Meen q./\J (,’msf‘ef"”‘) acC of’Jl "'}’
dow Samt,\tj ]Lo cLJ'oLf/\V\?.

r¢n
Get good clustering with high probability by re-running.
However, there is no guarantee that c¢* is a good clustering.



Uniform Sampling

- Standard approach to generating a random number from {1,2,...,n}:
1. Generate a uniform random number ‘U’ in the interval [0,1].
2. Return the largest index ‘i’ such that u = i/n.

« Conceptually, this divides interval [0,1] into ‘n’ equal-size pieces:

Ya Vin M Y Vn Y l/n l/,\
/\4«/"»\/\/\'\/\"’\/""\

- roh— ”_H

ww
;’:\J P i P/\ Pic PIC' (‘ul {)l‘// Vu,\

I Z" “g\ Ilq\ lgh IL’\ ”n_[" THL

h
« This assumes p; = 1/n for all ‘'

N provabllity of pukim Nomber 1



Non-Uniform Sampling

- Standard approach to generating a random number for general p..
1. Generate a uniform random number ‘U’ in the interval [0,1].
2. Return the largest index ‘i’ such that u = Z Pi

« Conceptually, this divides interval [0,1] int’d'non-equal-size pieces:

{3‘ Pz{’; f"l /’; PA_I Pr\
‘\,\,ll\'f’— P 4_\4(’
A A~
\—'\/,T/L . \‘_‘A-fi_r Bt
F\(L\ Il Fic“ r
Pk, na”

« Can sample from a generic discrete probability distribution in O(n).

- If you need to generate ‘m’ samples:
— Cost is O(n + m log (n)) with binary search and storing cumulative sums.



How many iterations does k-means take?

Each update of the ‘y/ or ‘w_’ does not increase the objective ‘f’.
And there are k" possible assignments of the y; to ‘k’ clusters.

So within kM iterations you cannot improve the objective by changing y,, and
the algorithm stops.

Tighter-but-more-complicated “smoothed” analysis:
— https://arxiv.org/pdf/0904.1113.pdf




Vector Quantization: Image Colors

Usual RGB representation of a pixel’s color: three 8-bit numbers.
— For example, [241 13 50] = | .

— Can apply k-means to find set of prototype colours.

Original:
(24-bits/pixel)

—

Run k-means with K-means predictions:
26 clusters: (6-bits/pixel)

AV”W?e ffJ)i)/«mn) g

and b lue values in

|
2
; ' (_Iw)‘f(/- /. /\_ 3
E X: W_ é >/ 2 (_luj"Cr For
= 2
|
[

eackh pix
{:H €
H-P")‘!lﬁ (’
2
[ 5
. ’ | G‘loﬂl nnmb{r
2, \~ j which refers 1o
(ql g-hit) 5

CUcolows one of 2° Colowrs.



Vector Quantization: Image Colors

« Usual RGB representation of a pixel’s color: three 8-bit numbers.
— For example, [241 13 50] = | .
— Can apply k-means to find set of prototype colours.

Original: Run k-means with ~ K-means predictions: R’P/“’f Cl‘asfrr with mem:
(24-bits/pixel) 26 clusters: (6-bits/pixel)
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Vector Quantization: Image Colors

« Usual RGB representation of a pixel’s color: three 8-bit numbers.
— For example, [241 13 50] = | .

— Can apply k-means to find set of prototype colours.

Original: Run k-means with ~ K-means predictions: R’P/“’f C"asfrr with mem:
(24-bits/pixel) 26 clusters: (3-bits/pixel)
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Vector Quantization: Image Colors

« Usual RGB representation of a pixel’s color: three 8-bit numbers.
— For example, [241 13 50] = | .
— Can apply k-means to find set of prototype colours.

Original: Run k-means with ~ K-means predictions: R’P/“’f C"asfrr with mem:
(24-bits/pixel) 26 clusters: (2-bits/pixel)
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Vector Quantization: Image Colors

« Usual RGB representation of a pixel’s color: three 8-bit numbers.

— For example, [241 13 50] = | .

— Can apply k-means to find set of prototype colours.

Original: Run k-means with ~ K-means predictions: Replhce chaste, wi Th :
(24-bits/pixel) 26 clusters: (1-bit/pixel) P u s
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