
CPSC 340:
Machine Learning and Data Mining

K-Means Clustering
Summer 2021

1

In This Lecture
• Random Forest (15 minutes)
• Unsupervised Learning Intro (15 minutes)
• K-Means Clustering (15 minutes)

2

RANDOM FORESTS
Coming Up Next

3

Tree 1
Tree 2

Tree 3
Tree 4

Tree 5
Tree 6

Random Forests
• Random forests take vote from a set of deep decision trees.

– Tend to be one of the best “out of the box” classifiers.
• Often close to the best performance of any method on the first run.

– And predictions are very fast.

• Do deep decision trees make independent errors?
– No: with the same training data you’ll get the same decision tree.

• Two key ingredients in random forests:
– Bootstrap sampling: online data augmentation
– Random trees: decision trees but with randomness

• Special case of “bagging”:
– Bootstrapped aggregation

4

Bootstrap Sampling
• Idea: give each model a _________ training data

– i.e. make each model behave uniquely
– i.e. help them make independent errors

5

Bootstrap Sampling
• Start with a standard deck of 52 cards:

1. Sample a random card:
(put it back and re-shuffle)

2. Sample a random card:
(put it back and re-shuffle)

3. Sample a random card:
(put it back and re-shuffle)

– …
52. Sample a random card:

(which may be a repeat)
• Makes a new deck of the 52 samples:
• aka “bootstrap sample”

https://commons.wikimedia.org/wiki/File:English_pattern_playing_cards_deck.svg
6

Q: Does this deck look like
my original deck?

Bootstrap Sampling

– No, it doesn’t look like the original deck
– Some cards will be ___________, and some cards will be ___________.

• Calculations on the bootstrap sample will give different results than original data.
– Yes, it looks like the original deck
– The bootstrap sample roughly maintains trends:

• Roughly 25% of the cards will be diamonds.
• Roughly 3/13 of the cards will be “face” cards.
• There will be roughly four “10” cards.

– Common use: compute a statistic based on several bootstrap samples.
• Gives you an idea of how the statistic varies as you vary the data.

7

Random Forest Ingredient 2: Random Trees
• For each split in a random tree model:

– Randomly choose a small number of possible features (typically √𝑑).
– Only consider these random features when searching for the optimal rule.

8

Random Forest Ingredient 2: Random Trees
• For each split in a random tree model:

– Randomly choose a small number of possible features (typically √𝑑).
– Only consider these random features when searching for the optimal rule.

9

Random Forest Ingredient 2: Random Trees
• Choosing a small number of random features will

make the __________________ unique for each tree
• They will still overfit to the bootstrapped sample (WHY?)

– but hopefully errors will be more independent.
• We made both training data AND search space unique to each tree!

• Recall: independent errors => improved ensemble performance
– So the vote tends to have a much lower test error.

• Empirically, random forests are one of the “best” classifiers.
– Fernandez-Delgado et al. [2014]:

• Compared 179 classifiers on 121 datasets.
• Random forests are most likely to be the best classifier.

10

Beyond Voting: Model Averaging
• Voting is a special case of “averaging” ensemble methods.

– Where we somehow “average” the predictions of different models.
• Other averaging:

– For “regression” (where yi is continuous), take average yi predictions:

– With probabilistic classifiers, take the average probabilities:

– And there are variations where some classifiers get more weight (see
bonus):

11

Types and Goals of Ensemble Methods
• Remember the fundamental trade-off:

1. Etrain: How small you can make the training error.
vs.

2. Eapprox: How well training error approximates the test error.

12

Q: How are Etrain and Eapprox for a single random tree?

Q: How are Etrain and Eapprox for a random forest?

Types and Goals of Ensemble Methods
• Goal of ensemble methods is that our meta-classifier:

– Does much better on Etrain or Eapprox than individual classifiers.
• Random forest has much better __________ (A2)

– Doesn’t do too much worse on the other.
• How can random forest have better Eapprox with super low Etrain?

• Two types of ensemble methods:
1. Averaging: improves approximation error of classifiers with high Eapprox.

• This is the point of “voting”.
2. Boosting: improves training error of classifiers with high Etrain.

• Covered later in course.

13

End of Part 1: Key Concepts
• Fundamental ideas:

– Training vs. test error (memorization vs. learning).
– IID assumption (examples come independently from same distribution).
– Golden rule of ML (test set should not influence training).
– Fundamental trade-off (between training error vs. approximation error).
– Validation sets and cross-validation (can approximate test error)
– Optimization bias (we can overfit the training set and the validation set).
– Decision theory (we should consider costs of predictions).
– Parametric vs. non-parametric (whether model size depends on ‘n’).
– No free lunch theorem (there is no “best” model).

14

End of Part 1: Key Concepts
• We saw 3 ways of “learning”:

– Searching for rules.
• Decision trees (greedy recursive splitting using decision stumps).

– Counting frequencies.
• Naïve Bayes (probabilistic classifier based on conditional independence).

– Measuring distances.
• K-nearest neighbours (non-parametric classifier with universal consistency).

• We saw 2 generic ways of improving performance:
– Encouraging invariances with data augmentation.
– Ensemble methods (combine predictions of several models).

• Random forests (averaging plus randomization to reduce overfitting).

15

Part 2: Unsupervised Learning

16

UNSUPERVISED LEARNING INTRO
Coming Up Next

17

Application: Classifying Cancer Types
• “I collected gene expression data for 1000 different types of cancer cells,

can you tell me the different classes of cancer?”

• We are not given the class labels y, but want meaningful labels.
• An example of unsupervised learning.

18

X =

https://corelifesciences.com/human-long-non-coding-rna-expression-microarray-service.html

Unsupervised Learning
• Supervised learning:

– We have features xi and class labels yi.
– Write a program that produces yi from xi.

• Unsupervised learning:
– We only have xi values, but no explicit target labels.
– You want to do “something” with them.

19

Unsupervised Learning
• Some unsupervised learning tasks:

– Outlier detection: Is this a ‘normal’ xi?
– Similarity search: Which examples look like this xi?
– Association rules: Which xj occur together?
– Latent-factors: What ‘parts’ are the xi made from?
– Data visualization: What does the high-dimensional X look like?
– Ranking: Which are the most important xi?
– Clustering: What types of xi are there?

20

Clustering
• Assumption: different-looking examples belong to different groups

21Feature space

Q: Do these examples
“look” different?

Clustering
• Assumption: different-looking examples belong to different groups

22Feature space

Q: Do these examples
“look” different?

Clustering
• Assumption: different-looking examples belong to different groups

23Feature space
Group 1

Group 2

Clustering
• Clustering:

– Input: set of examples described by features xi.
– Output: an assignment of examples to ‘groups’.

• Unlike classification, we are not given the ‘groups’.
– Algorithm must discover groups.

• Example of groups we might discover in email:
– ‘Spam’ group.
– ‘Not spam’ group.

• With in ‘Spam’ group:
– ‘Weight loss’ group
– ‘Fake special reward’ group
– ‘Free money’ group

24

Clustering Example

25

Input: feature matrix ‘X’.

Clustering Example

26

Output: clusters 𝑦.Input: feature matrix ‘X’.

Data Clustering
• General goal of clustering algorithms:

– Examples in the same group should be ‘similar’.
– Examples in different groups should be ‘different’.

• But the ‘best’ clustering is hard to define:
– We don’t have a test error.
– Generally, there is no ‘best’ method in unsupervised learning.

• So there are lots of methods: we’ll focus on important/representative ones.
• Why cluster?

– You could want to know what the groups are.
– You could want to find the group for a new example xi.
– You could want to find examples related to a new example xi.
– You could want a ‘canonical’ example for each group.

• E.g. what does the most typical breakfast look like?
27

Other Clustering Applications
• NASA: what types of stars are there?
• Biology: are there sub-species?
• Documents: what kinds of documents are on my HDD?
• Commercial: what kinds of customers do I have?

28http://www.eecs.wsu.edu/~cook/dm/lectures/l9/index.html
http://www.biology-online.org/articles/canine_genomics_genetics_running/figures.html

K-MEANS CLUSTERING
Coming Up Next

29

K-Means
• Most popular clustering method is k-means.
• Input:

– The number of clusters ‘k’ (hyper-parameter).
– Initial guess of the center (the “mean”) of each cluster.

• A 2-step iterative algorithm:
1. Assign each xi to label of closest mean.
2. Update the means based on the assignment.
Repeat until convergence.

30

“Mean”

31Feature space

The “mean”
Aka “canonical example”

Aka “prototype”
Aka “centroid”

K “Means”

32Feature space

Mean 1 Mean 2

Mean k

Index of nearest mean
for example 1

K-Means Example

33

Start with ‘k’ initial ‘means’
(usually, random data points)

Input: feature matrix ‘X’.

K-Means Example

34

Assign each example to
the closest mean.

Input: feature matrix ‘X’.

K-Means Example

35

Update the mean
of each group.

Input: feature matrix ‘X’.

K-Means Example

36

Assign each example to
the closest mean.

Input: feature matrix ‘X’.

K-Means Example

37

Update the mean
of each group.

Input: feature matrix ‘X’.

K-Means Example

38

Assign each example to
the closest mean.

Input: feature matrix ‘X’.

K-Means Example

39

Update the mean
of each group.

Input: feature matrix ‘X’.

K-Means Example

40

Assign each example to
the closest mean.

Input: feature matrix ‘X’.

K-Means Example

41

Stop if no examples
change groups.
(Convergence!)

Input: feature matrix ‘X’.

K-Means Example

42
Interactive demo:
https://www.naftaliharris.com/blog/visualizing-k-means-clustering

Output:
- Clusters ‘𝑦’.
- Means ‘W’.Input: feature matrix ‘X’.

K-Means Issues
• Guaranteed to converge when using Euclidean distance.

• Given a new test example:
– Assign it to the nearest mean to cluster it.

• Assumes you know number of clusters ‘k’.
– Lots of heuristics to pick ‘k’, none satisfying:

• https://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set

• Each example is assigned to one (and only one) cluster:
– No possibility for overlapping clusters or leaving examples unassigned.

43

Q: Does K-means always converge to
the “optimal” clustering?

K-Means Clustering with Different Initialization

44

• Classic approach to dealing with sensitivity to initialization: random restarts.
– Try several different random starting points, choose the “best”.

• See bonus slides for a more clever approach called k-means++.

KNN vs. K-Means
• Don’t confuse KNN classification and k-means clustering:

45

Property KNN Classification K-Means Clustering

Task Supervised learning (given yi) Unsupervised learning (no given yi).

Meaning of ‘k’ Number of neighbours to consider
(not number of classes).

Number of clusters (always consider
single nearest mean).

Initialization No training phase. Training that is sensitive to initialization.

Model complexity Model is complicated for small ‘k’,
simple for large ‘k’.

Model is simple for small ‘k’, complicated
for large ‘k’.

Parametric? Non-parametric:
- Stores data ‘X’

Parametric (for ‘k’ not depending on ‘n’)
- Stores means ‘W’

What is K-Means Doing?
• We can interpret K-means steps as minimizing an objective:

– Total sum of squared distances from each example xi to its center 𝑤 :

• The k-means steps:
– Minimize ‘f’ in terms of the 𝑦i (update cluster assignments).
– Minimize ‘f’ in terms of the wc (update means).

• Termination of the algorithm follows because:
– Each step does not increase the objective.
– There are a finite number of assignments to k clusters.

46

What is K-Means Doing?
• We can interpret K-means steps as minimizing an objective:

– Total sum of squared distances from each example xi to its center 𝑤 :

• The k-means steps:
– Minimize ‘f’ in terms of the 𝑦i (update cluster assignments).
– Minimize ‘f’ in terms of the wc (update means).

• Use ‘f’ to choose between initializations (fixed ‘k’).
• Need to change wc update under other distances:

– L1-norm: set wc to median (“k-medians”, see bonus).
47

Cost of K-means
• Bottleneck is calculating distance from each xi to each mean wc:

48

Cost of K-means
• Bottleneck is calculating distance from each xi to each mean wc:

– Each time we do this costs O(_).
• We need to compute distance from ‘n’ examples to ‘k’ clusters.
• Total cost of assigning examples to clusters is O(___).

– Fast if k is not too large.
• Updating means is cheaper: O(__).

49

Vector Quantization
• K-means originally comes from signal processing.
• Designed for vector quantization:

– Replace examples with the mean of their cluster (“prototype”)
– An instance of learned compression algorithm

• Example:
– Facebook places: 1 location summarizes many.
– What sizes of clothing should I make?

50
http://wannabite.com/wp-content/uploads/2014/10/ragu-pasta-sauce-printable-coupon.jpg

Vector Quantization for Basketball Players
• Clustering NBA basketball players based on shot type/percentage:

• The “prototypes” (means) give offensive styles (like “catch and shoot”).
51

https://fansided.com/2018/08/23/nylon-calculus-shooting-volume-versus-efficiency/

Vector Quantization Example

52

• Political parties can be thought as a form of vector quantization:

– Hope is that parties represent what a cluster of voters want.
• With larger ‘k’ more voters have a party that closely reflects them.
• With smaller ‘k’, parties are less accurate reflections of people.

(Bad) Vector Quantization in Practice

53
https://globalnews.ca/news/5191123/federal-election-seat-projection-trudeau-liberals-minority/

Summary
• Random forests: bagging of deep randomized decision trees.

• One of the best “out of the box” classifiers.
• Type of ensemble methods:

– “Boosting” reduces Etrain and “averaging” reduces Eapprox.
• Unsupervised learning: fitting data without explicit labels.
• Clustering: finding ‘groups’ of related examples.
• K-means: simple iterative clustering strategy.

– Fast but sensitive to initialization.
• Vector quantization:

– Compressing examples by replacing them with the mean of their cluster.

• Next time:
– John Snow and non-parametric clustering. 54

Review Questions
• Q1: How do bootstrap samples look different from X and y?

How do they look like X and y?

• Q2: What makes unsupervised learning useful in the wild?

• Q3: What does it mean K-means clustering does not
converge to optimal clustering every time? How do we address this?

• Q4: How does vector quantization compress the data?

55

Clustering of Epstein-Barr Virus

56
http://jvi.asm.org/content/86/20/11096.abstract

Extremely-Randomized Trees
• Extremely-randomized trees add an extra level of randomization:

1. Each tree is fit to a bootstrap sample.
2. Each split only considers a random subset of the features.
3. Each split only considers a random subset of the possible thresholds.

• So instead of considering up to ‘n’ thresholds,
only consider 10 or something small.
– Leads to different partitions so potentially more independence.

57

Bayesian Model Averaging
• Recall the key observation regarding ensemble methods:

– If models overfit in “different” ways, averaging gives better performance.
• But should all models get equal weight?

– E.g., decision trees of different depths, when lower depths have low training
error.

– E.g., a random forest where one tree does very well (on validation error) and
others do horribly.

– In science, research may be fraudulent or not based on evidence.
• In these cases, naïve averaging may do worse.

58

Bayesian Model Averaging
• Suppose we have a set of ‘m’ probabilistic binary classifiers wj.
• If each one gets equal weight, then we predict using:

• Bayesian model averaging treats model ‘wj’ as a random variable:

• So we should weight by probability that wj is the correct model:
– Equal weights assume all models are equally probable.

59

Bayesian Model Averaging
• Can get better weights by conditioning on training set:

• The ‘likelihood’ p(y | wj, X) makes sense:
– We should give more weight to models that predict ‘y’ well.
– Note that hidden denominator penalizes complex models.

• The ‘prior’ p(wj) is our ‘belief’ that wj is the correct model.
• This is how rules of probability say we should weigh models.

– The ‘correct’ way to predict given what we know.
– But it makes some people unhappy because it is subjective.

60

What is K-Means Doing?
• How is a k-means step decreasing this objective?

• If we just write as function of a particular 𝑦i, we get:

– The “constant” includes all other terms, and doesn’t affect location of min.
– We can minimize in terms of 𝑦i by setting it to the ‘c’ with wc closest to xi.

61

What is K-Means Doing?
• How is a k-means step decreasing this objective?

• If we just write as function of a particular wcj we get:

• Derivative is given by:

• Setting equal to 0 and solving for wcj gives:
62

K-Medians Clustering
• With other distances k-means may not converge.

– But we can make it converge by changing the updates so that they are
minimizing an objective function.

• E.g., we can use the L1-norm objective:

• Minimizing the L1-norm objective gives the ‘k-medians’ algorithm:
– Assign points to clusters by finding “mean” with smallest L1-norm distance.
– Update ‘means’ as median value (dimension-wise) of each cluster.

• This minimizes the L1-norm distance to all the points in the cluster.
• This approach is more robust to outliers.

63

What is the “L1-norm and median” connection?
• Point that minimizes the sum of squared L2-norms to all points:

– Is given by the mean (just take derivative and set to 0):

• Point that minimizes the sum of L1-norms to all all points:

– Is given by the median (derivative of absolute value is +1 if positive and
-1 if negative, so any point with half of points larger and half of points
smaller is a solution).

64

K-Medoids Clustering
• A disadvantage of k-means in some applications:

– The means might not be valid data points.
– May be important for vector quantiziation.

• E.g., consider bag of words features like [0,0,1,1,0].
– We have words 3 and 4 in the document.

• A mean from k-means might look like [0.1 0.3 0.8 0.2 0.3].
– What does it mean to have 0.3 of word 2 in a document?

• Alternative to k-means is k-medoids:
– Same algorithm as k-means, except the means must be data points.
– Update the means by finding example in cluster minimizing squared L2-

norm distance to all points in the cluster.

65

K-Means Initialization
• K-means is fast but sensitive to initialization.

• Classic approach to initialization: random restarts.
– Run to convergence using different random initializations.
– Choose the one that minimizes average squared distance of data to means.

• Newer approach: k-means++
– Random initialization that prefers means that are far apart.
– Yields provable bounds on expected approximation ratio.

66

K-Means++
• Steps of k-means++:

1. Select initial mean w1 as a random xi.
2. Compute distance dic of each example xi to each mean wc.

3. For each example ‘i’ set di to the distance to the closest mean.

4. Choose next mean by sampling an example ‘i’ proportional to (di)2.

5. Keep returning to step 2 until we have k-means.
• Expected approximation ratio is O(log(k)).

67

K-Means++

68

K-Means++

69

First mean is a
random example.

K-Means++

70

Weight examples by distance
to mean squared.

K-Means++

71

Sample mean proportional
to distances squared.

K-Means++

72

Weight examples by squared
distance to nearest mean.

K-Means++

73

Sample mean proportional
to minimum distances squared.

K-Means++

74

Weight examples by squared
distance to mean.

K-Means++

75

Sample mean proportional
to distances squared.

(Now hit chosen target k=4.)

K-Means++

76

Start k-means: assign examples
to the closest mean.

K-Means++

77

Update the mean
of each cluster.

K-Means++

78In this case: just 2 iterations!

Update the mean
of each cluster.

Discussion of K-Means++
• Recall the objective function k-means tries to minimize:

• The initialization of ‘W’ and ‘c’ given by k-means++ satisfies:

• Get good clustering with high probability by re-running.
• However, there is no guarantee that c* is a good clustering.

79

Uniform Sampling
• Standard approach to generating a random number from {1,2,…,n}:

1. Generate a uniform random number ‘u’ in the interval [0,1].
2. Return the largest index ‘i’ such that u ≤ i/n.

• Conceptually, this divides interval [0,1] into ‘n’ equal-size pieces:

• This assumes pi = 1/n for all ‘i’.

80

Non-Uniform Sampling
• Standard approach to generating a random number for general pi.

1. Generate a uniform random number ‘u’ in the interval [0,1].
2. Return the largest index ‘i’ such that u ≤

• Conceptually, this divides interval [0,1] into non-equal-size pieces:

• Can sample from a generic discrete probability distribution in O(n).
• If you need to generate ‘m’ samples:

– Cost is O(n + m log (n)) with binary search and storing cumulative sums.
81

How many iterations does k-means take?
• Each update of the ‘𝑦i’ or ‘wc’ does not increase the objective ‘f’.
• And there are kn possible assignments of the 𝑦i to ‘k’ clusters.
• So within kn iterations you cannot improve the objective by changing 𝑦i, and

the algorithm stops.

• Tighter-but-more-complicated “smoothed” analysis:
– https://arxiv.org/pdf/0904.1113.pdf

82

Vector Quantization: Image Colors
• Usual RGB representation of a pixel’s color: three 8-bit numbers.

– For example, [241 13 50] = .
– Can apply k-means to find set of prototype colours.

83

Original:
(24-bits/pixel)

K-means predictions:
(6-bits/pixel)

Run k-means with
26 clusters:

Vector Quantization: Image Colors
• Usual RGB representation of a pixel’s color: three 8-bit numbers.

– For example, [241 13 50] = .
– Can apply k-means to find set of prototype colours.

84

Original:
(24-bits/pixel)

K-means predictions:
(6-bits/pixel)

Run k-means with
26 clusters:

Vector Quantization: Image Colors
• Usual RGB representation of a pixel’s color: three 8-bit numbers.

– For example, [241 13 50] = .
– Can apply k-means to find set of prototype colours.

85

Original:
(24-bits/pixel)

K-means predictions:
(3-bits/pixel)

Run k-means with
26 clusters:

Vector Quantization: Image Colors
• Usual RGB representation of a pixel’s color: three 8-bit numbers.

– For example, [241 13 50] = .
– Can apply k-means to find set of prototype colours.

86

Original:
(24-bits/pixel)

K-means predictions:
(2-bits/pixel)

Run k-means with
26 clusters:

Vector Quantization: Image Colors
• Usual RGB representation of a pixel’s color: three 8-bit numbers.

– For example, [241 13 50] = .
– Can apply k-means to find set of prototype colours.

87

Original:
(24-bits/pixel)

K-means predictions:
(1-bit/pixel)

Run k-means with
26 clusters:

