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10 Lifted Markov Chain Monte Carlo

Mathias Niepert and Guy Van den Broeck

Abstract.
This chapter presents an approach to utilize exact and approximate symmetries in probabilistic

graphical models during Markov chain Monte Carlo (MCMC) inference. We discuss permutation
groups representing the symmetries of graphical models and how to compute them. Next, we intro-
duce orbital Markov chains, a family of lifted Markov chains leveraging model symmetries to reduce
mixing times. Unfortunately, the majority of real-world graphical models is asymmetric. This is even
the case for relational representations when evidence is given. Therefore, we extend lifted MCMC
to instead utilize approximate symmetries. Lifted MCMC leads to improved probability estimates
while remaining unbiased. Experiments demonstrate that the approach outperforms existing MCMC
algorithms.

10.1 Introduction

This chapter describes the use of group theoretical concepts and algorithms to perform
Markov chain Monte Carlo sampling in probabilistic models. Since relational models of-
ten exhibit strong topological symmetries, permutation groups offer a compact and well-
understood representation. Moreover, numerous efficient group theoretical algorithms are
implemented in comprehensive open-source group algebra frameworks such as GAP (GAP).

Symmetries on different syntactical levels of statistical relational formalism ultimately
lead to symmetries in the space of joint variable assignments. This space of possible as-
signments corresponds to the state space of Monte Carlo Markov chains such as the Gibbs
sampler that are often used for approximate probabilistic inference. Since the permutation
group modeling the symmetries induces a partition (the so-called orbit partition) on the
state space of these Markov chains, we investigate whether this can be exploited for more
efficient MCMC approaches to probabilistic inference. The basic idea is that lifted Markov
chains implicitly or explicitly operate on the partition of the state space instead of the space
of individual assignments. We describe orbital Markov chains, which are derived from an
existing Markov chain so as to leverage the symmetries in the underlying model. Under
mild conditions, orbital Markov chains have the same convergence properties as chains
operating on the state space partition without the need to explicitly compute this partition.
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While lifted inference algorithms perform well for highly symmetric graphical models,
they depend heavily on the presence of symmetries and perform worse for asymmetric
models due to their computational overhead. This is especially unfortunate as numerous
real-world graphical models are not symmetric. To bring the achievements of the lifted
inference community to the mainstream of machine learning and uncertain reasoning it
is crucial to explore ways to apply ideas from the lifted inference literature to inference
problems in asymmetric graphical models. This chapter further describes a lifted infer-
ence algorithm for asymmetric graphical models. It uses a symmetric approximation of the
original model to compute a proposal distribution for a Metropolis-Hastings chain. The ap-
proach combines a base MCMC algorithm such as the Gibbs sampler with the Metropolis
chain that performs jumps in the approximate symmetric model, while producing unbiased
probability estimates.

We conducted several experiments verifying that orbital Markov chains converge faster
to the true distribution than state of the art Markov chains. We also conduct experiments
where lifted inference is applied to graphical models with no exact symmetries and no
color-passing symmetries, and where every random variable has distinct soft evidence.
Yet, we are able to show improved probability estimates while remaining unbiased.

10.2 Background

We first recall basic concepts of group theory and finite Markov chains both of which are
crucial for understanding this chapter.

10.2.1 Group Theory
A symmetry of a discrete object is a structure-preserving bijection on its components. A
natural way to represent symmetries are permutation groups. A group is an algebraic
structure (G, �), where G is a set closed under a binary associative operation � with an
identity element and a unique inverse for each element. We often write G rather than
(G, �).

A permutation group G acting on a finite set ⌦ is a finite set of bijections g : ⌦ ! ⌦
that form a group. Let ⌦ be a finite set and let G be a permutation group acting on ⌦. If
↵ 2 ⌦ and g 2 G we write ↵g to denote the image of ↵ under g. A cycle (↵1 ↵2 ... ↵n)
represents the permutation that maps ↵1 to ↵2, ↵2 to ↵3,..., and ↵n to ↵1. Every permutation
can be written as a product of disjoint cycles where each element that does not occur in a
cycle is understood as being mapped to itself. A generating set R of a group is a subset of
the group’s elements such that every element of the group can be written as a product of
finitely many elements of R and their inverses.

We define a relation ⇠ on ⌦ with ↵ ⇠ � if and only if there is a permutation g 2 G
such that ↵g = �. The relation partitions ⌦ into equivalence classes which we call orbits.
We call this partition of ⌦ the orbit partition induced by G. We use the notation ↵G to
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denote the orbit {↵g | g 2 G} containing ↵. Let f : ⌦! R be a function from⌦ into the real
numbers and letG be a permutation group acting on⌦. We say thatG is an automorphism
group for (⌦, f ) if and only if for all ! 2 ⌦ and all g 2 G, f (!) = f (!g).

10.2.2 Finite Markov Chains
Given a finite set ⌦ a Markov chain defines a random walk (x0, x1, ...) on elements of ⌦
with the property that the conditional distribution of xn+1 given (x0, x1, ..., xn) depends only
on xn. For all x, y 2 ⌦, P(x ! y) is the chain’s probability to transition from x to y, and
Pt(x! y) = Pt

x(y) the probability of being in state y after t steps if the chain starts at state
x. We often refer to the conditional probability matrix P as the kernel of the Markov chain.
A Markov chain is irreducible if for all x, y 2 ⌦ there exists a t such that Pt(x ! y) > 0
and aperiodic if for all x 2 ⌦, gcd{t � 1 | Pt(x! x) > 0} = 1.

Theorem 10.1 Any irreducible and aperiodic Markov chain has exactly one stationary

distribution.

A distribution ⇡ on ⌦ is reversible for a Markov chain with state space ⌦ and transition
probabilities P, if for every x, y 2 ⌦

⇡(x)P(x! y) = ⇡(y)P(y! x).

We say that a Markov chain is reversible if there exists a reversible distribution for it.
The AI literature often refers to reversible Markov chains as Markov chains satisfying the
detailed balance property.

Theorem 10.2 Every reversible distribution for a Markov chain is also a stationary dis-
tribution for the chain.

10.2.3 Markov Chain Monte Carlo
Numerous approximate inference algorithms for probabilistic graphical models draw sam-
ple points from a Markov chain whose stationary distribution is that of the probabilistic
model, and use the sample points to estimate marginal probabilities. Sampling approaches
of this kind are referred to as Markov chain Monte Carlo methods. We discuss the Gibbs
sampler, a sampling algorithm often used in practice.

Let X be a finite set of random variables with probability distribution ⇡. The Markov
chain for the Gibbs sampler is a Markov chainM = (x0, x1, ...) which, being in state xt,
performs the following steps at time t + 1:

1. Select a variable X 2 X uniformly at random;
2. Sample x0t+1(X), the value of X in the state x0t+1, according to the conditional ⇡-distribution

of X given that all other variables take their values according to xt; and
3. Let x0t+1(Y) = xt(Y) for all variables Y 2 X \ {X}.
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(a) (b)
Figure 10.1: A ferromagnetic Ising model with constant interaction strength. In the pres-
ence of an external field, that is, when the variables have different unary potentials, the
probabilistic model is asymmetric (a). However, the model is rendered symmetric by as-
suming a constant external field (b). In this case, the symmetries of the model are generated
by the reflection and rotation automorphisms.

The Gibbs chain is aperiodic and has ⇡ as a stationary distribution. If the chain is ir-
reducible, then the marginal estimates based on sample points drawn from the chain are
unbiased once the chain reaches the stationary distribution.

10.3 Symmetries of Probabilistic Models

This section describes notions of symmetry in the context of probabilistic graphical mod-
els, as well as their relational extensions.

10.3.1 Graphical Model Symmetries
Symmetries of a set of random variables and graphical models have been formally de-
fined in the lifted and symmetry-aware probabilistic inference literature with concepts from
group theory (Niepert, 2013; Bui et al., 2012).

Definition 10.1 Let X be a set of discrete random variables with distribution ⇡ and let ⌦
be the set of states (configurations) of X. We say that a permutation group G acting on ⌦
is an automorphism group for X if and only if for all x 2 ⌦ and all g 2 G we have that
⇡(x) = ⇡(xg).

Note that the definition of an automorphism group is independent of the particular rep-
resentation of the probabilistic model. For particular representations, there are efficient
algorithms for computing the automorphism group. Typically, one computes the genera-
tors of the automorphism group with algorithms that derive permutation groups for colored
undirected graphs such as SAUCY and NAUTY (Niepert, 2012b). Note that we do not re-
quire the automorphism group to be maximal, that is, it can be a subgroup of a different
automorphism group for the same set of random variables.

Most probabilistic models are asymmetric. For instance, the Ising model which is used in
numerous applications, is asymmetric if we assume an external field as it leads to different
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unary potentials. However, we can make the model symmetric simply by assuming a
constant external field. Figure 10.1 depicts this situation. This is an example of an over-
symmetric approximation of the model, which we will use later in this chapter to do lifted
MCMC without biasing the probability estimates.

10.3.2 Relational Model Symmetries
Naturally, there is a close connection between the concept of symmetry and lifted infer-
ence. There are deep connections between automorphisms and the statistical notion of
exchangeability (Niepert, 2012b, 2013; Bui et al., 2012), which has been used to explain
the tractability of exact lifted inference algorithms (Niepert and Van den Broeck, 2014).
Moreover, the (fractional) automorphisms of the graphical model representation have been
related to lifted inference and exploited for more efficient inference (Niepert, 2012b; Bui
et al., 2012; Noessner et al., 2013; Mladenov and Kersting, 2013). For instance, lifted
belief propagation identifies and clusters indistinguishable ground atoms and features by
keeping track of the messages send and received by each of the corresponding nodes in a
factor graph (Singla and Domingos, 2008; Kersting et al., 2009). Bi-simulation type pro-
cedures group indistinguishable elements and, therefore, exploit symmetry in the model as
well (Sen et al., 2009b). There are a number of sampling algorithms that take advantage of
symmetries (Venugopal and Gogate, 2012; Gogate et al., 2012).

The algorithms in this chapter use group theory and, in particular, permutation groups
to compactly represent (exact and approximate) symmetries in graphical models (Niepert,
2012b). There are several reasons to consider group theory and permutation groups a
natural representation of symmetries in graphical models. First, an irredundant set of gen-
erators of a permutation group ensures exponential compression. For instance, for a set
of n exchangeable binary random variables, the permutation group acting on the variables
is the symmetric group on n which has n! permutations. However, we only need at most
n � 1 irredundant generators to represent this permutation group. In addition to the com-
pact representation, group theory also provides numerous remarkably efficient algorithms
for manipulating and sampling from groups. The product replacement algorithm (Celler
et al., 1995), for instance, samples group elements uniformly at random with impressive
performance.

Symmetry in statistical relational languages manifests itself at various syntactic levels
ranging from the set of constants to the assignment space. There is often symmetry at the
level of constants. In the well-known social network model (Singla and Domingos, 2008)
without evidence, for example, we have that the constants are indistinguishable meaning
that swapping two constants leads to an isomorphic statistical relational model. Now, the
permutations on the constant level induce permutations on the level of ground atoms and
formulas. From the irredundant generators of the permutation group modeling the sym-
metries on the constant level we can directly compute the irredundant generators of the
permutation group modeling the corresponding symmetries on the ground level. Indeed,
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Bob Anna

smokes(Anna) smokes(Bob)

{..., smokes(Anna)=1, smokes(Bob)=0, ...}
{..., smokes(Anna)=0, smokes(Bob)=1, ...}

¬smokes(Anna) ∨ cancer(Peter)
¬smokes(Bob) ∨ cancer(Peter)

Figure 10.2: Symmetry in the model is observable on different syntactical levels of the
relational model. The level of constants, the level of ground atoms (variables), the level of
clauses (features) and the level of possible worlds (assignments). Each permutation group
acting on the set of constants induces a permutation group acting on the set of ground
atoms. The latter induces a permutation group acting on the set of features. This permuta-
tion partitions (a) the variables and feature and (b) the assignment space.

it is well-known that isomorphisms between permutation groups always map irredundant
generators in one group to irredundant generators in the other. However, symmetry on
the ground level does not necessarily lead to symmetry on the constant level. Similarily,
while symmetry on the ground level induces symmetry on the space of assignments to the
random variables this is not true for the other direction. Figure 10.2 depicts the different
syntactical levels on which symmetries can arise.

Niepert (2012b) describes an approach that maps weighted formulas to colored undi-
rected graphs and applies graph automorphism algorithms to compute the symmetries of
the log-linear models defined over the weighted formulas (Niepert, 2012b). The resulting
permutation groups partition the (exponential) space of variable assignments when acting
on it. Since the state space of MCMC approaches is identical to the assignment space
of the probabilistic graphical models, we will investigate whether and to what extend the
partition induced by the models’ symmetries can be leveraged for more efficient MCMC
algorithms.

10.4 Lifted MCMC for Symmetric Models

We have seen that symmetries on different syntactical levels of statistical relational for-
malism ultimately lead to symmetries in the space of joint variable assignments. Now, the
space of possible variable assignments is the state space of Monte Carlo Markov chains
such as the Gibbs sampler that are often used for approximate probabilistic inference.
Since the permutation group modeling the symmetries induces a partition (the so-called
orbit partition) on the state space of these Markov chains, we will investigate whether this
can be exploited for more efficient MCMC approaches to probabilistic inference. The ba-
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0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1... ...

0 1 0 0 0 0 0 0 1 0 0 0... ...

0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1... ...

0 1 0 0 0 0 0 0 1 0 0 0... ...

0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1... ...

0 1 0 0 0 0 0 0 1 0 0 0... ...

(a)

(b)

(c)

Figure 10.3: (a) A fragment of a finite state space of a Markov chain with non-zero
transition probabilities indicated by directed arcs. (b) A lumping of the state space. Instead
of moving between individual states, the lumped chain moves between classes of states of
the original chain. (c) The benefits of lumping are also achievable by sampling uniformly
at random from the implicit equivalence classes (orbits) in each step.

sic idea is that lifted MCMC algorithms implicitly or explicitly operate on the partition of
the state space instead of the original state space.

10.4.1 Lumping
A lumping (also: collapsing, projection) of a Markov chains is a compression of its state
space which is possible under certain conditions on the transition probabilities of the orig-
inal Markov chain (Buchholz, 1994; Derisavi et al., 2003). The following definition for-
malizes the notion.

Definition 10.2 LetM be a Markov chain with transition matrix P and state space ⌦, and
let C = {C1, ...,Cn} be a partition of the state space. If for all Ci,Cj 2 C and all j0, j00 2 Cj

X

i02Ci

P(i0, j0) =
X

i02Ci

P(i0, j00)

thenM is ordinary lumpable. If, in addition, the stationary distribution has ⇡(j0) = ⇡(j00)
for all j0, j00 2 Cj and all Cj 2 C thenM is exactly lumpable.

Let ⇡̂ be the stationary distribution of the quotient Markov chain, that is, the exactly lumped
Markov chain whose state space consists of partitions C. Then, the probability ⇡(i) of a
state i 2 Ci ✓ ⌦ of the original chain can be computed as ⇡(i) = ⇡̂(i)/|Ci|.

The benefit of lumping a Markov chain is the potentially much smaller state space and
ultimately more rapid mixing. For instance, consider the case of n binary random vari-
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ables that are exchangeable. Here, the natural choice of a partition of the state space is
{C0,C1, ...,Cn} where each Ci contains the states with Hamming weight i, that is, the states
with i non-zeros. Please note that the Ci’s are the orbits (equivalence classes) of the orbit
partition of the permutation group acting on the set of states (variable assignments). In-
stead of 2n states the resulting lumped Markov chain has only n + 1 states and mixes more
rapidly than the original one. Figure 10.3 depicts (a) a fragment of a finite Markov chain
with non-zero probability transitions indicated by arrows and (b) a lumped Markov chain
that bundles several states of the original chain into a single one of the lumped chain.

The crucial question is whether the explicit construction of the lumped chain is compu-
tationally feasible. After all, if the computation of lumped Markov chains was intractable
we would not have gained much. Unfortunately, it turns out that the explicit construction
of the lumped state space is indeed intractable. Computing the coarsest lumping quotient
of a Markov chain with a bi-simulation procedure is linear in the number of non-zero prob-
ability transitions of the chain (Derisavi et al., 2003) and, hence, in most cases exponential
in the number of random variables. Moreover, other theoretical results show that special
cases of the lumping problem are also intractable. The results are negative even for the
important special case of partitions resulting from permutation groups acting on the state
space of the Markov chains. It is known that, given a permutation group acting on the state
space, merely computing the number of equivalence classes of the resulting orbit partition
of the state space is a #P-complete problem (Goldberg, 2001).

We hypothesize that the intractability of the explicit construction of the lumped chain’s
state space is the main reason that the technique of lumping, while well-understood on
a theoretical level, has not been seriously considered by communities that apply Markov
chain Monte Carlo methods to large-scale applications requiring probabilistic inference.
We are not aware of MCMC approaches to probabilistic reasoning that leverage the theory
of lumping.

10.4.2 Orbital Markov Chains
Under certain circumstances, the explicit computation of the partition of the state space
is not necessary to achieve the same computational gains as the lumped chain (Niepert,
2012b). The basic idea is that we only need, for each ! 2 ⌦, an efficient way to sample
uniformly at random from [!] the equivalence class containing !. The product replace-
ment algorithm (Celler et al., 1995) provides such an efficient method of sampling uni-
formly from the equivalence classes induced by a permutation group. This novel family
of Markov chains is referred to as orbital Markov chains (Niepert, 2012b). An orbital
Markov chain is always derived from an existing Markov chain so as to leverage the sym-
metries in the underlying model. In the presence of symmetries orbital Markov chains
are able to perform wide-ranging transitions reducing the time until convergence. In the
absence of symmetries they are equivalent to the original Markov chains. Orbital Markov
chains only require a generating set of a permutation group G acting on the chain’s state
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space as additional input. These generators can be computed on a colored graph represen-
tation of the distribution at hand, or directly on the relational representation, as described
in the previous section.

Let ⌦ be a finite set, letM0 = (X00,X
0

1, ...) be a Markov chain with state space ⌦, let ⇡ be
a stationary distribution ofM0, and letG be an automorphism group for (⌦, ⇡). The orbital
Markov chainM = (X0,X1, ...) forM0 is a Markov chain which at each integer time t + 1
performs the following steps:

1. Let X0t+1 be the state of the original Markov chainM0 at time t + 1;
2. Sample Xt+1, the state of the orbital Markov chainM at time t+1, uniformly at random

from X0Gt+1, the orbit of X0t+1.

The orbital Markov chainM, therefore, runs at every time step t � 1 the original chain
M
0 first and samples the state of M at time t uniformly at random from the orbit of the

state of the original chainM0 at time t. Figure 10.3 (c) depicts a fragment of the orbital
Markov chain for the original Markov chain (a). Instead of computing the equivalence of
the state space explicitely (b) novel transitions are introduced that make the chain behave
as if it was lumped.

Given a state Xt and a permutation group G orbital Markov chains sample an element
from Xt

G, the orbit of Xt, uniformly at random. By the orbit-stabilizer theorem this is equiv-
alent to sampling an element g 2 G uniformly at random and computing Xt

g. Sampling
group elements uniformly at random is a well-researched problem (Celler et al., 1995) and
computable in polynomial time in the size of the generating sets with product replacement
algorithms (Pak, 2000). These algorithms are implemented in several group algebra sys-
tems such as GAP (GAP) and exhibit remarkable performance. Once initialized, product
replacement algorithms can generate pseudo-random elements by performing, depending
on the variant, 1 to 3 group multiplications. We could verify that the overhead of step 2
during the sampling process is indeed negligible.

The following theorem relates properties of the orbital Markov chain to those of the
Markov chain it is derived from. A detailed proof can be found in the appendix.

Theorem 10.3 (Niepert (2012b)) Let ⌦ be a finite set and letM0 be a Markov chain with
state space ⌦ and transition matrix P0. Moreover, let ⇡ be a probability distribution on ⌦,
letG be an automorphism group for (⌦, ⇡), and letM be the orbital Markov chain forM0.
Then,

(a) ifM0 is aperiodic thenM is also aperiodic;
(b) ifM0 is irreducible thenM is also irreducible;
(c) if ⇡ is a reversible distribution for M0 and, for all g 2 G and all x, y 2 ⌦ we have

that P0(x, y) = P0(xg, yg), then ⇡ is also a reversible and, hence, a stationary distribution
forM.



MITPress NewMath.cls LATEX Book Style Size: 7x9 October 28, 2020 8:06pm

190 Chapter 10 Lifted Markov Chain Monte Carlo

The condition in statement (c) requiring for all g 2 G and all x, y 2 ⌦ that P0(x, y) =
P0(xg, yg) expresses that the original Markov chain is compatible with the symmetries cap-
tured by the permutation group G. This weak assumption is met by all of the practical
Markov chains we are aware of and, in particular, Metropolis chains and Gibbs sampler.

10.5 Lifted MCMC for Asymmetric Models

This section extends the lifted MCMC framework to construct mixtures of Markov chains
where one of the chains operates on the approximate symmetries of the probabilistic
model. The framework assumes a base Markov chainMB such as the Gibbs chain, the MC-
SAT chain (Poon and Domingos, 2006), or any other MCMC algorithm. We then construct
a mixture of the base chain and an Orbital Metropolis chain which exploits approximate
symmetries for its proposal distribution.

10.5.1 Mixing
Two or more Markov chains can be combined by constructing mixtures and compositions
of the kernels (Tierney, 1994). Let P1 and P2 be the kernels for two Markov chainsM1 and
M2 both with stationary distribution ⇡. Given a positive probability 0 < ↵ < 1, a mixture
of the Markov chains is a Markov chain where, in each iteration, kernel P1 is applied with
probability ↵ and kernel P2 with probability 1 � ↵. The resulting Markov chain has ⇡ as
a stationary distribution. The following result relates properties of the individual chains to
properties of their mixture.

Theorem 10.4 (Tierney (1994)) A mixture of two Markov chains M1 and M2 is irre-
ducible and aperiodic if at least one of the chains is irreducible and aperiodic.

For a more in-depth discussion of combining Markov chains and the application to ma-
chine learning, we refer the interested reader to an overview paper (Andrieu et al., 2003).

10.5.2 Metropolis-Hastings Chains
Before we describe the approach in more detail, let us first review Metropolis samplers.
The construction of a Metropolis-Hastings Markov chain is a popular general procedure
for designing reversible Markov chains for MCMC-based estimation of marginal probabil-
ities. Metropolis-Hastings chains are associated with a proposal distribution Q(·|x) that
is utilized to propose a move to the next state given the current state x. The closer the
proposal distribution to the distribution ⇡ to be estimated, that is, the closer Q(x | xt) to
⇡(x) for large t, the better the convergence properties of the Metropolis-Hastings chain.

We first describe the Metropolis algorithm, a special case of the Metropolis-Hastings
algorithm (Häggström, 2002). Let X be a finite set of random variables with probability
distribution ⇡ and let⌦ be the set of states of the random variables. The Metropolis chain is
governed by a transition graph G = (⌦,E) whose nodes correspond to states of the random
variables. Let n(x) be the set of neighbors of state x in G, that is, all states reachable
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from x with a single transition. The Metropolis chain with graph G and distribution ⇡ has
transition probabilities

P(x! y) =

8>>>>>>><
>>>>>>>:

1
|n(x)| min

n
⇡(y)|n(x)|
⇡(x)|n(y)| , 1

o
if x and y are neighbors,

1 �
P

y02n(x)

1
|n(x)| min

n
⇡(y0)|n(x)|
⇡(x)|n(y0)| , 1

o
if x = y,

0, otherwise.

Being in state xt of the Markov chainM = (x0, x1, ...), the Metropolis sampler therefore
performs the following steps at time t + 1:

1. Select a state y from n(xt), the neighbors of xt, uniformly at random;
2. Let xt+1 = y with probability min

n
⇡(y)|n(x)|
⇡(x)|n(y)| , 1

o
;

3. Otherwise, let xt+1 = xt.

Note that the proposal distribution Q(·|x) is simply the uniform distribution on the set
of x’s neighbors. It is straight-forward to show that ⇡ is a stationary distribution for the
Metropolis chain by showing that ⇡ is a reversible distribution for it (Häggström, 2002).

Now, the performance of the Metropolis chain hinges on the structure of the graph G. We
would like the graph structure to facilitate global moves between high probability modes,
as opposed to the local moves typically performed by MCMC chains. To design such a
graph structure, we take advantage of approximate symmetries in the model.

10.5.3 Orbital Metropolis Chains
This section describes a class of orbital Metropolis chains that move between approxi-
mate symmetries of a distribution. The approximate symmetries form an automorphism
group G. We will discuss approaches to obtain such an automorphism group in Sec-
tion 10.6. Here, we introduce a Markov chain that takes advantage of the approximate
symmetries.

Given a distribution ⇡ over random variables X with state space ⌦, and a permutation
group G acting on ⌦, the orbital Metropolis chainMS for G performs the following steps:

1. Select a state y from xGt , the orbit of xt, uniformly at random;
2. Let xt+1 = y with probability min

n
⇡(y)
⇡(x) , 1

o
;

3. Otherwise, let xt+1 = xt.

Note that a permutation group acting on ⌦ partitions the states into disjoint orbits. The
orbital Metropolis chain simply moves between states in the same orbit. Hence, two states
in the same orbit have the same number of neighbors and, thus, the expressions cancel out
in line 2 above. It is straight-forward to show that the chainMS is reversible and, hence,
that it has ⇡ as a stationary distribution. However, the chain is not irreducible as it never
moves between states that are not symmetric with respect to the permutation group G. In
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the binary case, for example, it cannot reach states with a different Hamming weight from
the initial state.

10.5.4 Lifted Metropolis-Hastings
To obtain an irreducible Markov chain that exploits approximate symmetries, we construct
a mixture of (a) some base chainMB with stationary distribution ⇡ for which we know that
it is irreducible and aperiodic; and (b) an orbital Metropolis chainMS. We can prove the
following theorem.

Theorem 10.5 Let X be a set of random variables with distribution ⇡ and approximate
automorphisms G. Moreover, letMB be an aperiodic and irreducible Markov chain with
stationary distribution ⇡, and let MS be the orbital Metropolis chain for X and G. The
mixture ofMB andMS is aperiodic, irreducible, and has ⇡ as its unique stationary distri-
bution.

The mixture of the base chain and the orbital Metropolis chain has several advantages.
First, it exploits the approximate symmetries of the model which was shown to be advanta-
geous for marginal probability estimation (Van den Broeck and Darwiche, 2013). Second,
the mixture of Markov chains performs wide ranging moves via the orbital Metropolis
chain, exploring the state space more efficiently and, therefore, improving the quality of
the probability estimates. Figure 10.4 depicts the state space and the transition graph of
(a) the Gibbs chain and (b) the mixture of the Gibbs chain and an orbital Metropolis chain.
It illustrates that the mixture is able to more freely move about the state space by jumping
between orbit states. For instance, moving from state 0110 to 1001 would require 4 steps
of the Gibbs chain but is possible in one step with the mixture of chains. The larger the size
of the automorphism groups, the more densely connected is the transition graph. Since the
moves of the orbital Metropolis chain are between approximately symmetric states of the
random variables, it does not suffer from the problem of most proposals being rejected.
We will be able to verify this hypothesis empirically.

The general Lifted Metropolis-Hastings framework can be summarized as follows.

1. Obtain an approximate automorphism group G;
2. Run the following mixture of Markov chains:

(a) With probability 0 < ↵ < 1, apply the kernel of the base chainMB;

(b) Otherwise, apply the kernel of the orbital Metropolis chainMS for G.

Note that the proposed approach is a generalization of lifted MCMC for symmetric mod-
els, as described in the previous section, essentially using it as a subroutine, and that all MH
proposals are accepted if G is an exact automorphism group of the original model. More-
over, note that the framework allows one to combine multiple orbital Metropolis chains
with a base chain.
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Figure 10.4: The state space (self-arcs are omitted) of (a) the Gibbs chain for four binary
random variables and (b) the orbit partition of its state space induced by the permutation
group generated by the permutation (X1 X2)(X3 X4). The permutations are approximate
symmetries, derived from an over-symmetric approximation of the original model. The
Gibbs chain proposes moves to states whose Hamming distance to the current state is at
most 1. The orbital Metropolis chain, on the other hand, proposes moves between orbit
elements which have a Hamming distance of up to 4. The mixture of the two chains leads
to faster convergence while maintaining an unbiased stationary distribution.

10.6 Approximate Symmetries

The Lifted Metropolis-Hastings algorithm assumes that a permutation group G is given,
representing the approximate symmetries. We now discuss several approaches to the com-
putation of such an automorphism group. While it is not possible to go into technical detail
here, we will provide pointers to the relevant literature.

There exist several techniques to compute the exact symmetries of a graphical model and
construct G; see (Niepert, 2012b; Bui et al., 2012). The color refinement algorithm is also
well-studied in lifted inference (Kersting et al., 2014). It can find (exact) orbits of random
variables for a slightly weaker notion of symmetry, called fractional automorphism. These
techniques all require some form of exact symmetry to be present in the model.
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Detecting approximate symmetries is a problem that is largely open. One key idea is
that of an over-symmetric approximations (OSAs) (Van den Broeck and Darwiche, 2013).
Such approximations are derived from the original model by rendering the model more
symmetric. After the computation of an over-symmetric model, we can apply existing
tools for exact symmetry detection. Indeed, the exact symmetries of an approximate model
are approximate symmetries of the exact model. These symmetrization techniques are
indispensable to our algorithm.

10.6.1 Relational Symmetrization
Existing symmetrization techniques operate on relational representations, such as Markov
logic networks (MLNs). Relational models have numerous symmetries. For example,
swapping the web pages A and B in a web page classification model does not change the
MLN. This permutation of constants induces a permutations of random variables (e.g.,
between Page(A,Faculty) and Page(B,Faculty)). Unfortunately, hard and soft evidence
breaks symmetries, even in highly symmetric relational models (Van den Broeck and Dar-
wiche, 2013). When the variables Page(A,Faculty) and Page(B,Faculty) get assigned
distinct soft evidence, the symmetry between A and B is removed, and lifted inference
breaks down.20 Similarly, when the Link relation is given, its graph is unlikely to be sym-
metric (Erdős and Rényi, 1963), which in turn breaks the symmetries in the MLN. These
observations motivated research on OSAs. Van den Broeck and Darwiche (2013) propose
to approximate binary relations, such as Link, by a low-rank Boolean matrix factorization.
Venugopal and Gogate (2014a) cluster the constants in the domain of the MLN. Singla
et al. (2014) present a message-passing approach to clustering similar constants.

10.6.2 Propositional Symmetrization
A key property of our LMH algorithm is that it operates at the propositional level, re-
gardless of how the graphical model was generated. It also means that the relational
symmetrization approaches outlined above are inadequate in the general case. Unfortu-
nately, we are not aware of any work on OSAs of propositional graphical models. How-
ever, some existing techniques provide a promising direction. First, basic clustering can
group together similar potentials. Second, the low-rank Boolean matrix factorization used
for relational approximations can be applied to any graph structure, including graphical
models. Third, color passing techniques for exact symmetries operate on propositional
models (Kersting et al., 2009, 2014). Combined with early stopping, they can output ap-
proximate variable orbits.

20 Solutions to this problem exist if the soft evidence is on a single unary relation (Bui et al., 2012)
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10.6.3 From OSAs to Automorphisms
Given an OSA of our model, we need to compute an automorphism group G from it. The
obvious choice is to compute the exact automorphisms from the OSA. While this works in
principle, it may not be optimal. Let us first consider the following two concepts. When a
group G operates on a set ⌦, only a subset of the elements in ⌦ can actually be mapped to
an element other than itself. When ⌦ is the set of random variables, we call these elements
the moved variables. When ⌦ is the set of potentials in a probabilistic graphical model,
we call these the moved potentials. It is clear that we want G to move many random
variables, as this will create the largest jumps and improve the mixing behavior. However,
each LMH step comes at a cost: in the second step of the algorithm, the probability of the
proposed approximately-symmetric state ⇡(y) is estimated. This requires the re-evaluation
of all potentials that are moved by G. Thus, the time complexity of an orbital Metropolis
step is linear in the number of moved potentials. It will therefore be beneficial to construct
subgroups of the automorphism group of the OSA and, in particular, ones that move many
variables and few potentials.

10.7 Empirical Evaluation

This section empirically evaluates lifted MCMC, both on symmetric models where we use
orbital Markov chains, and on asymmetric models with approximate symmetries, where
we use then lifted Metropolis-Hastings algorithm.

10.7.1 Symmetric Model Experiments
We conduct experiments with the well-established social network Markov logic network
(the smokes-cancer MLN) exactly as specified in (Singla and Domingos, 2008). Here we
created two ground MLNs with 50 and 100, respectively, people in the domain, leading
to Markov networks with 2600 and 10200 variables, respectively. Building the ground
models took only a fraction of a second. We proceeded to apply the symmetry detection
algorithm (Niepert, 2012b) taking 24 and 136 ms, respectively, to compute the irredundant
generators of the automorphism group of the models. For n people in the domain, there are
n� 1 irredundant generators of the automorphism group and the group has size n! which is
exactly the size of the symmetric group on n. Please note that, based on our observation of
indistinguishability of objects on different syntactical levels of the model, it is actually not
necessary to use symmetry detection algorithms in this case. The irredundant generators of
the symmetric group representing the symmetries on the level of constants can be directly
used to compute the irredundant generators for the permutation group representing the
symmetries on the level of ground atoms and formulas.

We compared the standard Gibbs sampler, Alchemy’s MC-SAT algorithm (Poon and
Domingos, 2006), and the orbital Gibbs sampler on the models. The overhead of the
product replacement algorithm was again negligible and far outweighed by the faster con-



MITPress NewMath.cls LATEX Book Style Size: 7x9 October 28, 2020 8:06pm

196 Chapter 10 Lifted Markov Chain Monte Carlo

0 2 4 6 8 10
time in seconds

0

20

40

60

80

100

120

140
sy

m
m

et
ric

K
L

di
ve

rg
en

ce

Gibbs
MC-SAT
Orbital Gibbs

0 10 20 30 40 50 60
time in seconds

0

100

200

300

400

500

sy
m

m
et

ric
K

L
di

ve
rg

en
ce

Gibbs
MC-SAT
Orbital Gibbs

Figure 10.5: The results of the standard Gibbs sampler, Alchemy’s MC-SAT algorithm,
and the orbital Gibbs sampler for the social network MLN with 50 (top) and 100 (bottom)
people in the domain.

vergence of the orbital chain. Figure 10.5 plots the symmetric Kullback-Leibler divergence
for the single variable marginals.

Finally, Niepert (2012b) reports additional experiments on using orbital Markov chains
to sample independent sets, building on insert/delete Markov chains (Luby and Vigoda,
1999; Dyer and Greenhill, 2000).

10.8 Asymmetric Model Experiments

The LMH algorithm is implemented in the GAP algebra system which provides basic
algorithms for automorphism groups such as the product replacement algorithm that allows
one to sample uniformly from orbits of states (Niepert, 2012b).

For our first experiments, we use the standard WebKB data set, consisting of web pages
from four computer science departments (Craven and Slattery, 2001). The data has infor-
mation about approximately 800 words that appear on 1000 pages, 7 page labels and links
between web pages. There are 4 folds, one for each university. We use the standard MLN
structure for the WebKB domain, which has MLN formulas of the form shown above,
but for all combinations of labels and words, adding up to around 5500 first-order MLN
formulas. We learn the MLN parameters using Alchemy.

We consider a collective classification setting, where we are given the link structure and
the word content of each web page, and want to predict the page labels. We run Gibbs
sampling and the Lifted MCMC algorithm (Niepert, 2012b), and show the average KL di-
vergence between the estimated and true marginals in Figure 10.6. When true marginals
are not computable, we used a very long run of a Gibbs sampler for the gold standard
marginals. Since every web page contains a unique set of words, the evidence on the word
content creates distinct soft evidence on the page labels. Moreover, the link structure is
largely asymmetric and, therefore, there are no exploitable exact symmetries and Lifted
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MCMC coincides with Gibbs sampling. Next we construct an OSA using a rank-5 approx-
imation of the link structure (Van den Broeck and Darwiche, 2013) and group the potential
weights into 6 clusters.

From this OSA we construct a set of automorphisms that is efficient for LMH as follows.
First, we compute the exact automorphisms G1 of the OSA. Second, we compute the vari-
able orbits ofG1, grouping together all variables that can be mapped into each other. Then,
for every orbit O, we construct a set of automorphisms as follows. We greedily search
for a O0 ✓ O such that the symmetric group GO0 on O0 maximizes the ratio between the
number of moved variables (i.e., |O0|) and the number of moved potentials, while keeping
the number of moved potentials bounded by a constant K. This guarantees that GO0 yields
an efficient orbital Metropolis chain. Finally, we remove O0 from O and recurse until O
is empty. From this set of symmetric groups GO0 , we construct a set of orbital Metropolis
chains, each with it own set of moved potentials.

Figure 10.6 shows that the LMH chain, with mixing parameter ↵ = 4/5, has a lower KL
divergence than Gibbs and Lifted MCMC vs. the number of iterations. Note that there is
a slight overhead to LMH because the orbital Metropolis chain is run between base chain
steps. Despite this overhead, LMH outperforms the baselines as a function of time. The
orbital Metropolis chain accepts approximately 70% of its proposals.

Figure 10.7 illustrates the effect of running Lifted MCMC on OSA, which is the current
state-of-the-art approach for asymmetric models. As expected, the drawn sample points
produce biased estimates. As the quality of the approximation increases, the bias reduces,
but so do the speedups. LMH does not suffer from a bias. Moreover, we observe that its
performance is stable across different OSAs (not depicted).

We also ran experiments for two propositional models that are frequently used in real
world applications. The first model is a 100x100 ferromagnetic Ising model with constant
interaction strength and external field (see Figure 10.1(a) for a 4x4 version). Due to the
different potentials induced by the external field, the model has no symmetries. We use the
model without external field to compute the approximate symmetries. The automorphism
group representing these symmetries is generated by the rotational and reflectional sym-
metries of the grid model (see Figure 10.1(b)). As in the experiments with the relational
models, we used the mixing parameter ↵ = 4/5 for the LMH algorithm. Figure 10.8(c)
and (d) depicts the plots of the experimental results. The LMH algorithm performs better
with respect to the number of iterations and, to a lesser extent, with respect to time.

We also ran experiments on the Chimera model which has recently received some atten-
tion as it was used to assess the performance of quantum annealing (Boixo et al., 2013). We
used exactly the model as described in Boixo et al. (2013). This model is also asymmetric
but can be made symmetric by assuming that all pairwise interactions are identical. The KL
divergence vs. number of iterations and vs. time in seconds is plotted in Figure 10.8(a) and
(b), respectively. Similar to the results for the Ising model, LMH outperforms Gibbs and
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LMCMC both with respect to the number of iterations and wall clock time. In summary,
the LMH algorithm outperforms standard sampling algorithms on these propositional mod-
els in the absence of any symmetries. We used very simple symmetrization strategies for
the experiments. This demonstrates that the LMH framework is powerful and allows one
to design state-of-the-art sampling algorithms.

10.9 Conclusions

We have presented a perspective on lifted inference, where instead of directly operating
on the space of joint variable assignments, orbital Markov chains operate on a symmetry-
induced partition of this space. We related lifted MCMC to the notion of lumping of
Markov chains. Instead of computing the partition of the state space explicitly which is
usually intractable, orbital Markov chains operate on the original state space while having
convergence properties identical to the corresponding lumped Markov chain. We want
to point out that in the MCMC literature a lifting of a Markov chain (Chen et al., 1999)
is not the same as what has been coined lifted inference by the statistical relational AI
community. Quite the opposite, instead of operating on a more compact state space, lifting
in the classical sense introduces additional states. Nevertheless, there might be interesting
relationships between lumping, lifting and lifted inference.

We have also presented a Lifted Metropolis-Hastings algorithms capable of mixing two
types of Markov chains. The first is a non-lifted base chain, and the second is an orbital
Metropolis chain that moves between approximately symmetric states. This allows lifted
inference techniques to be applied to asymmetric graphical models.

Numerous extensions to the lifted MCMC framework have been developed in recent
years, for example towards exploiting contextual and block-valued symmetries (Anand
et al., 2016; Madan et al., 2018), and continuous symmetries (Shariff et al., 2015). Holtzen
et al. (2019a) showed how to build an exact lifted inference algorithm that enumerates and
counts orbits, and how to sample orbits directly, without the need for Gibbs sampling to
move between orbits.

10.10 Acknowledgments

Lifted MCMC for symmetric models first appeared as Niepert (2012b) and Niepert (2012a).
Lifted MCMC for asymmetric models first appeared as Van den Broeck and Niepert (2015).

10.11 Appendix: Proof of Theorem 10.3

We first prove (a). Since M0 is aperiodic we have, for each state x 2 ⌦ and every time
step t � 0, a non-zero probability for the Markov chain M0 to remain in state x at time
t + 1. At each time t + 1, the orbital Markov chain transitions uniformly at random to
one of the states in the orbit of the original chain’s state at time t + 1. Since every state
is an element of its own orbit, we have, for every state x 2 ⌦ and every time step t � 0,
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a non-zero probability for the Markov chainM to remain in state x at time t + 1. Hence,
M is aperiodic. The proof of statement (b) is accomplished in an analogous fashion and
omitted.

Let P(x, y) and P0(x, y) be the probabilities ofM andM0, respectively, to transition from
state x to state y. Since ⇡ is a reversible distribution for M0 we have that ⇡(x)P0(x, y) =
⇡(y)P0(y, x) for all states x, y 2 ⌦. For every state x 2 ⌦ let xG be the orbit of x. Let
Gx := {g 2 G | xg = x} be the stabilizer subgroup of x with respect to G. We have thatX

g2G

P0(x, yg) =
X

y02yG
|Gy0 |P0(x, y0)

= |Gy|
X

y02yG
P0(x, y0)

= (|G|/|yG|)
X

y02yG
P0(x, y0)

(10.1)

where the last two equalities follow from the orbit-stabilizer theorem. We will now prove
that ⇡(x)P(x, y) = ⇡(y)P(y, x) for all states x, y 2 ⌦. By definition of the orbital Markov
chain we have that ⇡(x)P(x, y) = ⇡(x)(1/|yG|)

P
y02yG P0(x, y0) and, by equation (1), we have

⇡(x)(1/|yG|)
P

y02yG P0(x, y0)

= ⇡(x)(1/|yG|)(|yG|/|G|)
X

g2G

P0(x, yg)

= ⇡(x)(1/|G|)
X

g2G

P0(x, yg)

= (1/|G|)
X

g2G

⇡(x)P0(x, yg).

Since P0 is reversible and ⇡(x) = ⇡(xg) for all g 2 G we have (1/|G|)
P
g2G ⇡(x)P0(x, yg) =

(1/|G|)
P
g2G ⇡(yg)P0(yg, x) = ⇡(y)(1/|G|)

P
g2G P0(yg, x). Now, since P0(x, y) = P0(xg, yg)

for all x, y 2 ⌦ and all g 2 G by assumption, we have that ⇡(y)(1/|G|)
P
g2G P0(yg, x) =

⇡(y)(1/|G|)
P
g2G P0(y, x�g) = ⇡(y)(1/|G|)

P
g2G P0(y, xg) and, again by equation (1), we have

⇡(y)(1/|G|)
P
g2G P0(y, xg)

= ⇡(y)(1/|G|)(|G|/|xG|)
X

x02xG
P0(y, x0)

= ⇡(y)(1/|xG|)
X

x02xG
P0(y, x0) = ⇡(y)P(y, x). ⇤
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Böker, J. (2019). Color refinement, homomorphisms, and hypergraphs. ArXiv (CoRR),
arXiv:1903.12432 [cs.DM]. 352

Bollobás, B. (1982). Distinguishing vertices of random graphs. Annals of Discrete Mathematics,
13:33–50. 358

Borgwardt, S., Ceylan, I. I., and Lukasiewicz, T. (2017). Ontology-mediated queries for probabilistic
databases. In Thirty-First AAAI Conference on Artificial Intelligence. 101

Boutilier, C., Dean, T., and Hanks, S. (1999). Decision-theoretic planning: Structural assumptions
and computational leverage. Journal of Artificial Intelligence Research (JAIR), 11:1–94. 392

Boutilier, C., Friedman, N., Goldszmidt, M., and Koller, D. (1996). Context-specific independence in
Bayesian networks. In Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence
(UAI), 115–123. 89, 161, 392

Boutilier, C., Reiter, R., and Price, B. (2001). Symbolic dynamic programming for first-order MDPs.
In International Joint Conference on Artificial Intelligence (IJCAI-01), 690–697. Seattle. xix, 374,
381, 384, 387, 393
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Braun, T. and Möller, R. (2017b). Preventing groundings and handling evidence in the lifted junction
tree algorithm. In Joint German/Austrian Conference on Artificial Intelligence (Künstliche Intelli-
genz), 85–98. Springer. 147
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Mézard, M., Parisi, G., and Zecchina, R. (2002). Analytic and algorithmic solution of random
satisfiability problems. Science, 297:812–815. 213, 220



MITPress NewMath.cls LATEX Book Style Size: 7x9 October 28, 2020 8:06pm

414 Bibliography

Mihalkova, L., Huynh, T., and Mooney, R. J. (2007). Mapping and revising Markov logic networks
for transfer learning. In Proc. AAAI National Conference on Artificial intelligence, 608–614. Proc.
AAAI Conference on Artificial Intelligence, Vancouver, Canada. 45, 48

Milch, B., Marthi, B., Russell, S. J., Sontag, D., Ong, D. L., and Kolobov, A. (2005). BLOG: Proba-
bilistic models with unknown objects. In Kaelbling, L. P. and Saffiotti, A. (eds.), Proceedings of the
19th International Joint Conference on Artificial Intelligence (IJCAI-05), 1352–1359. Professional
Book Center. 37, 40, 319, 327

Milch, B. and Russell, S. J. (2006). First-order probabilistic languages: Into the unknown. In
International Conference on Inductive Logic Programming (ILP). 318, 319, 320, 327

Milch, B., Zettlemoyer, L. S., Kersting, K., Haimes, M., and Kaelbling, L. P. (2008). Lifted proba-
bilistic inference with counting formulas. In Proceedings of the 23rd AAAI Conference on Artificial
Intelligence (AAAI), 1062–1608. 57, 58, 66, 68, 71, 73, 75, 76, 79, 81, 82, 85, 89, 101, 105, 107,
113, 118, 120, 125, 127, 174, 276, 319

Mladenov, M., Ahmadi, B., and Kersting, K. (2012). Lifted linear programming. In Proceedings of
the 15th International Conference on Artificial Intelligence and Statistics (AISTATS), 788–797. 164,
208

Mladenov, M., Globerson, A., and Kersting, K. (2014). Lifted message passing as reparametrization
of graphical models. In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence
(UAI), 603–612. 256

Mladenov, M. and Kersting, K. (2013). Lifted inference via k-locality. In Proceedings of the 3rd
International Workshop on Statistical Relational AI. 185

Mohan, K. and Pearl, J. (2014). Graphical models for recovering probabilistic and causal queries
from missing data. In Welling, M., Ghahramani, Z., Cortes, C., and Lawrence, N. (eds.), Advances
of Neural Information Processing 27 (NIPS Proceedings), 1520–1528. 14

Montanari, A., Ricci-Tersenghi, F., and Semerjian, G. (2007). Solving constraint satisfaction prob-
lems through belief propagation-guided decimation. In Proceedings of the 45th Allerton Conference
on Communications, Control and Computing, 352–359. 213, 216, 217, 227

Mooij, J. M. (2008). Understanding and Improving Belief Propagation. Ph.D. thesis, Radboud
University Nijmegen. 252

Mooij, J. M. (2010). libDAI: A free and open source C++ library for discrete approximate inference
in graphical models. Journal of Machine Learning Research, 11:2169–2173. 224, 253

Morettin, P., Passerini, A., and Sebastiani, R. (2019). Advanced SMT techniques for weighted model
integration. Artificial Intelligence, 275:1–27. 101

Morik, K. and Kietz, J. (1989). A bootstrapping approach to concept clustering. In Proceedings of
the 6th International Workshop on Machine Learning (ML), 503–504. 239

Morris, C., Kriege, N. M., Kersting, K., and Mutzel, P. (2016). Faster kernels for graphs with
continuous attributes via hashing. CoRR, abs/1610.00064. 370

Morris, C., Ritzert, M., Fey, M., Hamilton, W., Lenssen, J., rattan, G., and Grohe, M. (2019). We-
isfeiler and leman go neural: Higher-order graph neural networks. In Proceedings of the 33rd AAAI
Conference on Artificial Intelligence. 370

Muggleton, S. (1996). Stochastic logic programs. In Advances in Inductive Logic Programming,
254–264. 25, 35



MITPress NewMath.cls LATEX Book Style Size: 7x9 October 28, 2020 8:06pm

Bibliography 415

Muggleton, S. and de Raedt, L. (1994). Special issue: Ten years of logic programming inductive
logic programming: Theory and methods. The Journal of Logic Programming, 19:629 – 679. 40
Murphy, K., Weiss, Y., and Jordan, M. (1999). Loopy Belief Propagation for Approximate Inference:
An Empirical Study. In Proc. of the Conf. on Uncertainty in Artificial Intelligence (UAI-99), 467–
475. 206
Natarajan, S., Khot, T., Kersting, K., Gutmann, B., and Shavlik, J. (2012). Gradient-based boosting
for statistical relational learning: The Relational Dependency Network case. Machine Learning
Journal. 45, 46, 47
Natarajan, S., Khot, T., Kersting, K., and Shavlik, J. (2015). Boosted Statistical Relational Learners:
From Benchmarks to Data-Driven Medicine. SpringerBriefs in Computer Science. 46
Natarajan, S., Tadepalli, P., Altendorf, E., Dietterich, T. G., Fern, A., and Restificar, A. C. (2005).
Learning first-order probabilistic models with combining rules. In De Raedt, L. and Wrobel, S.
(eds.), Proceedings of the 22nd International Conference on Machine Learning (ICML-05), volume
119 of ACM International Conference Proceeding Series, 609–616. ACM. 10, 33, 41, 51
Natarajan, S., Tadepalli, P., Dietterich, T. G., and Fern, A. (2009). Learning first-order probabilistic
models with combining rules. Special Issue on Probabilistic Relational Learning, AMAI. 36
Nath, A. and Domingos, P. (2010). Efficient lifting for online probabilistic inference. In Proceedings
of the 24th AAAI Conference on Artificial Intelligence (AAAI), 1193–1198. 228, 275, 341
Neville, J. and Jensen, D. (2007). Relational dependency networks. Journal of Machine Learning
Research, 8:653–692. 12, 31, 40, 45
Ng, R. and Subrahmanian, V. S. (1992). Probabilistic logic programming. Information and Compu-
tation, 101(2):150–201. 319
Ngo, L. and Haddawy, P. (1995). Probabilistic logic programming and Bayesian networks. In
Proceedings ACSC95. 39
Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E. (2016). A review of relational machine
learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33. 3
Niemira, M. P. and Saaty, T. L. (2004). An analytic network process model for financial-crisis
forecasting. International Journal of Forecasting, 20(4):573–587. 318
Niepert, M. (2012a). Lifted probabilistic inference: An MCMC perspective. In Proceedings of the
2nd International Workshop on Statistical Relational AI (StaRAI). 172, 198
Niepert, M. (2012b). Markov chains on orbits of permutation groups. In Proceedings of the 28th
Conference on Uncertainty in Artificial Intelligence (UAI), 624–633. 89, 164, 170, 174, 176, 184,
185, 186, 188, 189, 193, 195, 196, 198
Niepert, M. (2013). Symmetry-aware marginal density estimation. In Proceedings of the 27th Con-
ference on Artificial Intelligence (AAAI). 164, 174, 184, 185
Niepert, M. and Domingos, P. (2014). Exchangeable variable models. In Proceedings of the Inter-
national Conference on Machine Learning (ICML). 174
Niepert, M. and Van den Broeck, G. (2014). Tractability through exchangeability: A new perspective
on efficient probabilistic inference. In AAAI, 2467–2475. 175, 185
Nitti, D., De Laet, T., and De Raedt, L. (2013). A particle filter for hybrid relational domains. In
Amato, N. (ed.), Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS-13), 2764–2771. IEEE. 36



MITPress NewMath.cls LATEX Book Style Size: 7x9 October 28, 2020 8:06pm

416 Bibliography

Noessner, J., Niepert, M., and Stuckenschmidt, H. (2013). RockIt: Exploiting Parallelism and Sym-
metry for MAP Inference in Statistical Relational Models. In Proceedings of the 27th Conference on
Artificial Intelligence (AAAI). 164, 185

Paige, R. and Tarjan, R. (1987). Three partition refinement algorithms. SIAM Journal on Computing,
16(6):973–989. 350, 353

Pak, I. (2000). The product replacement algorithm is polynomial. In Proceedings of the 41st Annual
Symposium on Foundations of Computer Science, 476–485. 189

Pasula, H., Marthi, B., Milch, B., Russell, S. J., and Shpitser, I. (2003). Identity uncertainty and
citation matching. In Advances in Neural Information Processing Systems, 1425–1432. 37, 38

Pearl, J. (1986). Fusion, propagation and structuring in belief networks. Artificial Intelligence,
29(3):241–288. 117

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference.
Morgan Kaufmann Publishers. 3, 7, 10, 22, 26, 161, 174, 205, 263, 273

Pearl, J. (2009). Causality: Models, Reasoning and Inference. Cambridge University Press, 2nd
edition. 8, 14, 15

Pearson, M. and Michell, L. (2000). Smoke Rings: social network analysis of friendship groups,
smoking and drug-taking. Drugs: education, prevention and policy, 7:21–37. 126

Pednault, E. P. D. (1989). ADL: Exploring the middle ground between STRIPS and the situation
calculus. In International Conference on Principles of Knowledge Representation and Reasoning
(KR), 324–332. 374

Perlich, C. and Provost, F. J. (2003). Aggregation-based feature invention and relational concept
classes. In ACM SIGKDD international conference on Knowledge discovery and data mining (KDD).
10, 33

Pfeffer, A. (2007). The design and implementation of IBAL: A general-purpose probabilistic lan-
guage. In Getoor, L. and Taskar, B. (eds.), Statistical Relational Learning. MIT Press. 53

Pfeffer, A., Koller, D., Milch, B., and Takusagawa, K. T. (1999). Spook: A system for probabilistic
object-oriented knowledge representation. In Proceedings of the Fifteenth Conference on Uncertainty
in Artificial Intelligence, UAI 1999, 541–550. 39, 319
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