
Learning

“The mind is a neural computer, fitted by natural se-
lection with combinatorial algorithms for causal and prob-
abilistic reasoning about plants, animals, objects, and peo-
ple.”

. . .
“In a universe with any regularities at all, decisions

informed about the past are better than decisions made
at random. That has always been true, and we would
expect organisms, especially informavores such as humans,
to have evolved acute intuitions about probability. The
founders of probability, like the founders of logic, assumed
they were just formalizing common sense.”

Steven Pinker, How the Mind Works, 1997, pp. 524, 343.
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Learning

Learning is the ability to improve one’s behavior based on
experience.

The range of behaviors is expanded: the agent can do more.

The accuracy on tasks is improved: the agent can do things
better.

The speed is improved: the agent can do things faster.
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Components of a learning problem

The following components are part of any learning problem:

task The behavior or task that’s being improved.
For example: classification, acting in an environment

data The experiences that are being used to improve
performance in the task.

measure of improvement How can the improvement be
measured?
For example: increasing accuracy in prediction, new skills that
were not present initially, improved speed.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 532P 4 / 31



Learning
Learning Overview
Supervised Learning

Black-box Learner

Model(s)Learner Reasoner

Experiences/
Data

Background knowledge/
Bias

Problem/
Task

Answer/
Performance
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Common Learning Tasks

Supervised classification Given a set of pre-classified training
examples, classify a new instance.

Unsupervised learning Find natural classes for examples.

Reinforcement learning Determine what to do based on
rewards and punishments.

Analytic learning Reason faster using experience.

Inductive logic programming Build richer models in terms of
logic programs.

Statistical relational learning learning relational
representations that also deal with uncertainty.
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Example Classification Data

Training Examples:

Action Author Thread Length Where

e1 skips known new long home
e2 reads unknown new short work
e3 skips unknown old long work
e4 skips known old long home
e5 reads known new short home
e6 skips known old long work

New Examples:

e7 ??? known new short work
e8 ??? unknown new short work

We want to classify new examples on feature Action based on the
examples’ Author , Thread , Length, and Where.
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Feedback

Learning tasks can be characterized by the feedback given to the
learner.

Supervised learning What has to be learned is specified for
each example.

Unsupervised learning No classifications are given; the learner
has to discover categories and regularities in the data.

Reinforcement learning Feedback occurs after a sequence of
actions.
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Measuring Success

The measure of success is not how well the agent performs on
the training examples, but how well the agent performs for
new examples.

Consider two agents:
I P claims the negative examples seen are the only negative

examples. Every other instance is positive.
I N claims the positive examples seen are the only positive

examples. Every other instance is negative.

Both agents correctly classify every training example, but
disagree on every other example.
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Bias

The tendency to prefer one hypothesis over another is called a
bias.

Saying a hypothesis is better than N’s or P’s hypothesis isn’t
something that’s obtained from the data.

To have any inductive process make predictions on unseen
data, an agent needs a bias.

What constitutes a good bias is an empirical question about
which biases work best in practice.
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Learning as search

Given a representation, data, and a bias, the problem of
learning can be reduced to one of search.

Learning is search through the space of possible
representations looking for the representation or
representations that best fits the data, given the bias.

These search spaces are typically prohibitively large for
systematic search. E.g., use gradient descent.

A learning algorithm is made of a search space, an evaluation
function, and a search method.
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Data

Data isn’t perfect:
I the features given are inadequate to predict the classification
I there are examples with missing features
I some of the features are assigned the wrong value
I there isn’t enough data to determine the correct hypothesis

overfitting occurs when distinctions appear in the training
data, but not in the unseen examples.
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Errors in learning

Errors in learning are caused by:

Limited representation (representation bias)

Limited search (search bias)

Limited data (variance)

Limited features (noise)
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Choosing a representation for models

The richer the representation, the more useful it is for
subsequent problem solving.

The richer the representation, the more difficult it is to learn.

“bias-variance tradeoff”
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Characterizations of Learning

Find the best representation given the data.

Delineate the class of consistent representations given the
data.

Find a probability distribution of the representations given the
data.
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Supervised Learning

Given:

a set of inputs features X1, . . . ,Xn

a set of target features Y1, . . . ,Yk

a set of training examples where the values for the input
features and the target features are given for each example

a new example, where only the values for the input features
are given

predict the values for the target features for the new example.

classification when the Yi are discrete

regression when the Yi are continuous
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Example Data Representations

A travel agent wants to predict the preferred length of a trip,
which can be from 1 to 6 days. (No input features).

Two representations of the same data:
— Y is the length of trip chosen.
— Each Yi is an indicator variable that has value 1 if the chosen
length is i , and is 0 otherwise.

Example Y

e1 1
e2 6
e3 6
e4 2
e5 1

Example Y1 Y2 Y3 Y4 Y5 Y6

e1 1 0 0 0 0 0
e2 0 0 0 0 0 1
e3 0 0 0 0 0 1
e4 0 1 0 0 0 0
e5 1 0 0 0 0 0

What is a prediction?
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Evaluating Predictions

Suppose we want to make a prediction of a value for a target
feature on example e:

oe is the observed value of target feature on example e.

pe is the predicted value of target feature on example e.

The error of the prediction is a measure of how close pe is to
oe .

There are many possible errors that could be measured.

Sometimes pe can be a real number even though oe can only have
a few values.
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Measures of error

E is the set of examples, with single target feature. For e ∈ E , oe
is observed value and pe is predicted value:

absolute error L1(E ) =
∑
e∈E
|oe − pe |

sum of squares error L22(E ) =
∑
e∈E

(oe − pe)2

worst-case error: L∞(E ) = max
e∈E
|oe − pe |

number wrong: L0(E ) = #{e : oe 6= pe}
A cost-based error takes into account costs of errors.
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Measures of error (cont.)

With binary feature: oe ∈ {0, 1}:
likelihood of the data∏

e∈E
poee (1− pe)(1−oe)

log likelihood∑
e∈E

(oe log pe + (1− oe) log(1− pe))

log loss is the negative of log likelihood.
in terms of bits: negative of number of bits to encode the
data given a code based on pe .
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Information theory overview

A bit is a binary digit.

1 bit can distinguish

2 items

k bits can distinguish 2k items

n items can be distinguished using log2 n bits

Can we do better?
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Information and Probability

Consider a code to distinguish elements of {a, b, c, d} with

P(a) =
1

2
,P(b) =

1

4
,P(c) =

1

8
,P(d) =

1

8

Consider the code:

a 0 b 10 c 110 d 111

The string aacabbda has code

00110010101110.
The code 0111110010100 represents string adcabba
This code uses 1 to 3 bits. On average, it uses

P(a)× 1 + P(b)× 2 + P(c)× 3 + P(d)× 3

=
1

2
+

2

4
+

3

8
+

3

8
= 1

3

4
bits.
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Information Content

To identify x , we need − log2 P(x) bits.

Give a distribution over a set, to a identify a member, the
expected number of bits∑

x

−P(x)× log2 P(x).

is the information content or entropy of the distribution.

The expected number of bits it takes to describe a
distribution given evidence e:

I (e) =
∑
x

−P(x |e)× log2 P(x |e).
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Information Gain

Given a test that can distinguish the cases where α is true from
the cases where α is false, the information gain from this test is:

I (true)− (P(α)× I (α) + P(¬α)× I (¬α)).

I (true) is the expected number of bits needed before the test

P(α)× I (α) + P(¬α)× I (¬α) is the expected number of bits
after the test.
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Linear Predictions
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Point Estimates

To make a single prediction for feature Y , with examples E .

The prediction that minimizes the sum of squares error on E
is

the mean (average) value of Y .

The prediction that minimizes the absolute error on E is the
median value of Y .

The prediction that minimizes the number wrong on E is the
mode of Y .

The prediction that minimizes the worst-case error on E is
(maximum + minimum)/2

When Y has values {0, 1}, the prediction that maximizes the
likelihood on E is the empirical probability.

When Y has values {0, 1}, the prediction that minimizes the
entropy on E is the empirical probability.

But that doesn’t mean that these predictions minimize the error
for future predictions....
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Training and Test Sets

To evaluate how well a learner will work on future predictions, we
divide the examples into:

training examples that are used to train the learner

test examples that are used to evaluate the learner

...these must be kept separate.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 532P 30 / 31



Learning
Learning Overview
Supervised Learning

Simplest case of learning

To predict the value of a Boolean variable X from data.

Consider the following scenario:

Pick random number p ∈ [0, 1]. This will be the ground truth
of P(X ).

Generate n samples from the distribution with P(X ) = p.
Observe n0 samples with X = false, and n1 samples with
X = true, so n = n0 + n1.

Which predictor is best on test cases (other cases sampled
from P(X ) = p)? When error is
I absolute error?
I sum-of-squares error?
I log loss?
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