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“The mind is a neural computer, fitted by natural selection
with combinatorial algorithms for causal and probabilistic reason-
ing about plants, animals, objects, and people.

It is driven by goal
states that served biological fitness in ancestral environments, such
as food, sex, safety, parenthood, friendship, status and knowledge.

. . .
“In a universe with any regularities at all, decisions informed
about the past are better than decisions made at random. That
has always been true, and we would expect organisms, especially
informavores such as humans, to have evolved acute intuitions
about probability. The founders of probability, like the founders
of logic, assumed they were just formalizing common sense.”

Steven Pinker, How the Mind Works, 1997, pp. 524, 343.
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Outline

1 What are relational probabilistic models and relational learning?
Relational Models
Knowledge Graphs

2 Learning Knowledge Graphs

3 Learning General Knowledge: Lifted Graphical Models

4 Bayesian ⇒ Exchangeability ⇒ Lifted Inference

5 Identity and Existence Uncertainty
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Motivation

AI studies what agents should
do.

Acting is gambling: agents
who don’t use probabilities
will lose to those who do.
No prediction is certain:
never believe anyone who
gives definitive predictions!

What is the world made up of?

ML: Features or random
variables
Everyone else: things
(entities, individuals) that
each have properties, and
there are relationships among
them

How can we reconcile these?

Probability Predicate 
Logic

Propositional 
Logic

Relational  
Probabilistic

Models

relations+logical 
variables+ 

quantification

measures over 
possible worlds
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What is a relational models?

Introductions to AI and machine learning typically start with learning from
relations, e.g.:

Example Author Thread Length Where read User action

e1 known new long home skips
e2 unknown new short work reads
. . . . . . . . . . . . . . . . . .

What makes relational models in ML special is that the values are
meaningless names. E.g., student #, product id, user id, movie id:

User Movie Rating Timestamp

196 242 3 881250949
186 302 3 891717742
. . . . . . . . . . . .

(Movielens 100k)

Names can be changed or exchanged with exactly same meaning.
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Choosing Entities and Relations in Logic

First-order logical languages allow many different ways of representing
facts.
E.g., How to represent: “Pen #7 is red.”

red(pen7).

color(pen7, red).

prop(pen7, color , red).

a single relation can be implicit −→ triples:
(pen7, color , red).
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Triples are universal representations of relations

All relations can be represented in terms of triples:

. . . Pj . . .

. . . . . . . . .
ri . . . vij . . .

. . . . . . . . .

can be represented as

the triple (ri ,Pj , vij).

ri is either a primary key or a reified entity.

Examples of reified entities: a booking, a marriage, a talk, a lab
report, an event, a party, a meeting, a drink

prop(Entity ,Property ,Value) is the only relation needed:
(Entity ,Property ,Value) triples, semantic network, entity relationship
model, knowledge graphs, . . .
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Warning: Many knowledge graphs convert to triples naively

Projecting onto pairs loses information:

For example:
Air Canada flies from New York to Vancouver
Air Canada flies from Vancouver to Los Angeles

These are true triples:
(Air Canada,Flies From,New York)
(Air Canada,Flies To, Los Angeles)

However, Air Canada does not fly from New York to Los Angeles.
The information about flights is lost!
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Warning: Many knowledge graphs convert to triples naively

FB15K, a knowledge base commonly used in research papers, contains test
cases:

(Jade North,
/sports/pro athlete/teams./soccer/football roster position/position,
Defender (association football))
“Jade North plays position defender.”

(Real Zaragoza,
/soccer/football team/current roster./sports/sports team roster/position,
Defender (association football))
“Real Zaragoza football club has position defender.”

Predicting one position in the tuple given two others varies widely in
difficulty!
Please look at a knowledge graph before you use it!
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Entities are not like words

When representing words as vectors, interesting relations are learned:

king −man + woman = queen

It is tempting to want (translational models):

Brussels = Belgium + capital of

Washington DC = USA + capital of

But this entails:

USA = Belgium − Brussels + Washington DC

Words can have simple meanings but (almost all) entities are
multi-faceted and complex.
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Aside: Probabilities ↔ sigmoid

P(h | e) =
P(h ∧ e)

P(h ∧ e) + P(¬h ∧ e)

=
1

1 + P(¬h ∧ e)/P(h ∧ e)

=
1

1 + e−(logP(h∧e)/P(¬h∧e))

= sigmoid(log odds(h | e))

sigmoid(x) = 1/(1 + e−x)

odds(h | e) =
P(h ∧ e)

P(¬h ∧ e)
=

P(h | e)

1− P(h | e)

Odds is a product ⇒ sigmoid of a sum → logistic regression
Typical: to learn probability of

Boolean feature: sigmoid of a linear function

discrete feature: softmax of a linear function
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Vector & Tensor Representations of Entities & Relations

To learn a binary relation, e.g., likes(Person,Movie) in pseudo
Python:

P(likes(p,m)) = sigmoid(
∑
f

E0[p][f ] ∗ E1[m][f ])

— matrix factorization.
Embedding = a vector of feature values
Embedding for each person (E0[p]) and movie (E1[m])

To learn triple: (h, r , t)

P((h, r , t)) = sigmoid(
∑
f

E0[h][f ] ∗ E1[r ][f ] ∗ E2[t][f ])

— polyadic decomposition model (1927): two vector embeddings for
each entity e (E0[e] and E2[e]) and one for reach relation r (E1[r ]).
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Polyadic decomposition variations

Polyadic decomposition doesn’t work very well...

Consider (p123, likes,m53) and (m53, directed by , p534).

Requires two embeddings per entity, but head embeddings and tail
embeddings do not interact.

DistMult: share same embedding for head and tail.
Problem: can only represent symmetric relations.

CompleX: like DistMult, but the embeddings are complex numbers,
tail is the conjugate of the head embedding

SimpleE: have an embedding for r−1 and learn to predict both
(h, r , t) and

(
t, r−1, h

)
SimpleE+ = SimplE with non-negative entity embeddings

can represent arbitrary relations
pointwise ≤ corresponds to implication
easy to explain what it learns
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What/how embedding-based models learn

PD+:

P((h, r , t)) = sigmoid(
∑
f

E0[h][f ] ∗ E1[r ][f ] ∗ E2[t][f ])

E0[h][f ] ≥ 0 E2[h][f ] ≥ 0.
Assume all embedding values are bounded.

Consider feature i : E0[h][i ] ∗ E1[r ][i ] ∗ E2[t][i ] ≈ 0
if E0[h][i ] ≈ 0 or E1[r ][i ] ≈ 0 or E2[r ][i ] ≈ 0.

Consider feature i : E0[h][i ] ∗ E1[r ][i ] ∗ E2[t][i ]� 0
if E0[h][i ]� 0 and E1[r ][i ]� 0 and E2[t][i ]� 0.

Feature i forms two soft clusterings of entities:
those e for which E0[e][i ] is high
those e for which E2[e][i ] is high

The entities in the first cluster are related to the entities in the
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Learning general knowledge vs learning about a data set

Suppose you want to create a model of who is friends with whom.

Options:

learn general knowledge, e.g., transitivity, how male and female
friendships work, how location affect friendship...
learn specific knowledge about who is friends with who; e.g., which
particular group of people are generally friends with each other.

The specific knowledge will tend to be more accurate on that
population, but doesn’t generalize to different populations.

The general knowledge will tend to transfer better.

Which is better depends on the goals and how success is measured.

Ideally we would try to do both; learn about specific entities and
general knowledge.

16 David Poole Probabilistic reasoning about objects
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Challenges of learning knowledge graphs

Evaluating predictions when only positive examples are provided
Consider the following relations:

Married to

— each person related to 0 or 1 other persons (with a few
exceptions)

Friend of

— each person related to tens or hundreds of others

Knows about

— each person might know about hundreds or thousands
of others. Some people my be known by millions or billions of others.

Would get along with

— almost everyone gets along with almost
everyone else, but with some exceptions.

17 David Poole Probabilistic reasoning about objects
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Beware of ranking

Most knowledge graphs only contain positive information.

How can we evaluate a prediction?
(?, Plays Position, Defender)
(Jade North, Plays Position, ?)
(Real Zaragoza, Has Position, ?)
(?, Has Position, Defender)

Common to use measures based on ranking such as
mean reciprocal rank (MRR) or Hit@1 or Hit@10.

Problem #1: is it not good for answers for which there is no answer
or many answers:
Who is the pope married to? Who likes Drake’s music?

Problem #2: an oracle that knows everything does poorly on ranking
scores!

Challenge: design a good evaluation scheme. Log-likelihood seems
reasonable, but requires knowledge of negations.
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Predicting Properties

Tensor factorization models work well for predicting relations, but not
for predicting properties.
Tensor factorization relies on lower-dimensional representations, and
there isn’t one for properties.

Imagine trying to predict age(P), the age of person P, and
rating(P,M) the rating of person P on movie M.
One of the embeddings of each person can just memorize the age —
no generalization!
— there are too many parameters

We need to predict the age using properties of the movies and ratings.

Requires aggregation: some models provide implicit aggregation, and
some you can use whatever aggregation you want. We need better
models of aggregation.

19 David Poole Probabilistic reasoning about objects



Predicting Properties

Tensor factorization models work well for predicting relations, but not
for predicting properties.
Tensor factorization relies on lower-dimensional representations, and
there isn’t one for properties.

Imagine trying to predict age(P), the age of person P, and
rating(P,M) the rating of person P on movie M.
One of the embeddings of each person can just memorize the age —
no generalization!
— there are too many parameters

We need to predict the age using properties of the movies and ratings.

Requires aggregation: some models provide implicit aggregation, and
some you can use whatever aggregation you want. We need better
models of aggregation.

19 David Poole Probabilistic reasoning about objects



Predicting Properties

Tensor factorization models work well for predicting relations, but not
for predicting properties.
Tensor factorization relies on lower-dimensional representations, and
there isn’t one for properties.

Imagine trying to predict age(P), the age of person P, and
rating(P,M) the rating of person P on movie M.
One of the embeddings of each person can just memorize the age —
no generalization!
— there are too many parameters

We need to predict the age using properties of the movies and ratings.

Requires aggregation: some models provide implicit aggregation, and
some you can use whatever aggregation you want. We need better
models of aggregation.

19 David Poole Probabilistic reasoning about objects



Predicting Properties

Tensor factorization models work well for predicting relations, but not
for predicting properties.
Tensor factorization relies on lower-dimensional representations, and
there isn’t one for properties.

Imagine trying to predict age(P), the age of person P, and
rating(P,M) the rating of person P on movie M.
One of the embeddings of each person can just memorize the age —
no generalization!
— there are too many parameters

We need to predict the age using properties of the movies and ratings.

Requires aggregation: some models provide implicit aggregation, and
some you can use whatever aggregation you want. We need better
models of aggregation.

19 David Poole Probabilistic reasoning about objects



Beyond Triples

If we have relations with multiple arguments:

We could convert them to triples by reifying

. . . but the reified entities
have very few data points (number of arguments of original relations)

Design embedding-based model that work directly with original
relations

Allow them to be inferred from other relations
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Outline

1 What are relational probabilistic models and relational learning?
Relational Models
Knowledge Graphs

2 Learning Knowledge Graphs

3 Learning General Knowledge: Lifted Graphical Models

4 Bayesian ⇒ Exchangeability ⇒ Lifted Inference

5 Identity and Existence Uncertainty
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Example: Predicting Relations

Student Course Grade

s1 c1 A
s2 c1 C
s1 c2 B
s2 c3 B
s3 c2 B
s4 c3 B
s3 c4 ?
s4 c4 ?

Students s3 and s4 have the same averages, on courses with the same
averages.

Which student would you expect to better?

22 David Poole Probabilistic reasoning about objects



From Relations to Bayesian Belief Networks

Gr(s1, c1)
I(s1)

I(s2)

I(s3)

Gr(s2, c1)

Gr(s1, c2)

Gr(s2, c3)

D(c1)

D(c2)

I(s4)

D(c3)

D(c4)

Gr(s3, c2)

Gr(s4, c3)

Gr(s4, c4)

Gr(s3, c4)

I (S) D(C ) Gr(S ,C )
A B C

true true 0.5 0.4 0.1
true false 0.9 0.09 0.01
false true 0.01 0.09 0.9
false false 0.1 0.4 0.5

P(I (S)) = 0.5
P(D(C )) = 0.5

“parameter sharing”
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Example: Predicting Relations

http://artint.info/code/aispace/grades.xml
24 David Poole Probabilistic reasoning about objects
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Plate Notation

C

S

Gr(S,C)

I(S) D(C)

S , C logical variable representing students, courses

the set of entities of a type is called a population

I (S), Gr(S ,C ), D(C ) are parametrized random variables

Grounding:

for every student s, there is a random variable I (s)

for every course c , there is a random variable D(c)

for every s, c pair there is a random variable Gr(s, c)

all instances share the same structure and parameters

25 David Poole Probabilistic reasoning about objects
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Plate Notation

C

S

Gr(S,C)

I(S) D(C)

If there were 1000 students and 100 courses:
Grounding contains

1000 I (s) variables
100 D(c) variables
100000 Gr(s, c) variables

total: 101100 variables

To define the probabilities:
1 for I (S), 1 for D(C ), 8 for Gr(S ,C ) = 10 parameters.
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Representations of Lifted Graphical models

How is a relation affected by other relationships? “aggregation”

Common representations:

Undirected Directed

Weighted Formulas Markov Logic Net-
works (MLNs)

Relational Logistic Re-
gression (RLR)

Existential quantifica-
tion (logic programs)

Independent Choice
Logic / Problog

. . . . . . . . .

MLNs and RLR are identical when “everything else” is observed.

Also: relational dependency networks: directed models that induce a
Markov chain.

27 David Poole Probabilistic reasoning about objects
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Example of polynomial dependence of population

α0 : q
α2 : q ∧ r(X )
α4 : r(X )
α7 : q ∧ r(X ) ∧ r(Y )

In RLR and in MLN, if all r(ai ) are observed:

P(q | obs) = sigmoid(α0 + n1α2 + n21α7)

r(X ) is true for n1 individuals
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Danger of fitting to data without understanding the model

Consider sigmoid of polynomials of degree 2:

sigmoid(−0.01n2 − 0.2n + 8)

sigmoid(0.01n2 − n + 16)

Both go from ≈ 1 at n = 10 to ≈ 0 at n = 30.
What happens as n→∞?

0 20 40 60 80 100
n

0.0

0.2

0.4

0.6

0.8

1.0

va
lu
e

−0.01n2 +−0.2n+8

0.01n2 +−1n+16

29 David Poole Probabilistic reasoning about objects



Danger of fitting to data without understanding the model

Consider sigmoid of polynomials of degree 2:

sigmoid(−0.01n2 − 0.2n + 8)

sigmoid(0.01n2 − n + 16)

Both go from ≈ 1 at n = 10 to ≈ 0 at n = 30.
What happens as n→∞?

0 20 40 60 80 100
n

0.0

0.2

0.4

0.6

0.8

1.0

va
lu
e

−0.01n2 +−0.2n+8

0.01n2 +−1n+16

29 David Poole Probabilistic reasoning about objects



Outline

1 What are relational probabilistic models and relational learning?
Relational Models
Knowledge Graphs

2 Learning Knowledge Graphs

3 Learning General Knowledge: Lifted Graphical Models

4 Bayesian ⇒ Exchangeability ⇒ Lifted Inference

5 Identity and Existence Uncertainty
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Exchangeability

Before we know anything about entities, they are indistinguishable,
and so should be treated identically.
exchangeability — names can be exchanged and the model doesn’t
change.

Bayesianism: probability depends on what is known (conditioning)

Entities we have the same information about must have same
probability.

This provides a symmetry that can be exploited in Lifted Inference.

See Guy Van den Broeck’s Computers and Thought lecture from
IJCAI 2019.
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Outline

1 What are relational probabilistic models and relational learning?
Relational Models
Knowledge Graphs

2 Learning Knowledge Graphs

3 Learning General Knowledge: Lifted Graphical Models

4 Bayesian ⇒ Exchangeability ⇒ Lifted Inference

5 Identity and Existence Uncertainty
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Identity

(Lifted) inference requires counting.

Example: in the room was

Sam’s mother
Chris’s football coach
a brilliant mathematician

How many people were in the room?
Answer: at least one

If we also specified that there was no one else: there are between 1
and 3 people.

We need knowledge graphs to (be able to) state “there are no more
. . . ”
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Correspondence Problem

Symbols Entities

h2: The tall house

h1: The house with the brown roof

h3: The house with the green roof

h4: The house with the pink roof

c symbols and i entities −→ c i+1 correspondences
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Clarity Principle

Clarity principle: probabilities must be over well-defined propositions.

What if an entity doesn’t exist?

house(h4) ∧ roof colour(h4, pink) ∧ ¬exists(h4)

What if more than one entity exists? Which one are we referring to?
—In a house with three bedrooms, which is the second bedroom?
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Handling Number and Existence Uncertainty

distribution over the number of entities. For each number, reason
about the correspondence.

For each observation in sequence, hypothesize its correspondance
e.g., if you observe a radar blip, there are three hypotheses:

the blip was produced by plane you already hypothesized
the blip was produced by another plane
the blip wasn’t produced by a plane
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Existence Example

false
alarm

plane

false
alarm plane

observe blip

false
alarm

same
plane

another
plane

false
alarm

plane

another blip

third blip
false
alarm

same
plane

another
plane

false
alarm

same
plane

another
plane

false
alarm

same
plane

another
plane

false
alarm

first
plane

another
plane

second
plane
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First-order Semantic Trees

Split on quantified first-order formulae:

∃x:τ(x)
tf
x

defined

...

x
undefined

The “true” sub-tree is in the scope of x

The “false” sub-tree is not in the scope of x

A logical generative model generates a first-order semantic tree.
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First-order Semantic Tree (cont)

f

f

f

t

t

t

∃a: apartment(a)

∃r1: bedroom(r1)∧in(r1,a)

∃r2: room(r2)∧in(r2,a)∧green(r2)
①

②

③ ④

À there is no apartment

Á there is no bedroom in the apartment

Â there is a bedroom but no green room

Ã there is a bedroom and a green room

All probabilities are over well-defined first-order formulae.
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Conclusion

Challenge model and learn uncertainty about:

Properties of entities

Relationships among entities

How properties and relations interrelate

Identity (equality) of entities

Existence (and number) of entities

Interactions with time, ontologies, causality . . .

Will you step up to this challenge? There is still lots to do!
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What is now required is to give the greatest possible development
to mathematical logic, to allow to the full the importance of rela-
tions, and then to found upon this secure basis a new philosophical
logic, which may hope to borrow some of the exactitude and cer-
tainty of its mathematical foundation. If this can be successfully
accomplished, there is every reason to hope that the near future
will be as great an epoch in pure philosophy as the immediate past
has been in the principles of mathematics. Great triumphs inspire
great hopes; and pure thought may achieve, within our generation,
such results as will place our time, in this respect, on a level with
the greatest age of Greece.

– Bertrand Russell, Mysticism and Logic and Other Essays (1917)
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