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We describe a representation and set of inference techniques for the dynamic construction of
probabilistic and decision-theoretic models expressed as networks. In contrast to probabilistic reasoning
schemes that rely on fixed models, we develop a representation that implicitly encodes a large number
of possible model structures. Based on a particular query and state of information, the system constructs
a customized belief net for that particular situation. We develop an interpretation of the network
construction process in terms of the implicit networks encoded in the database. A companion method
for constructing belief networks with decisions and values (decision networks) is also developed that
uses sensitivity analysis to focus the model building process. Finally, we discuss some issues of control
of model construction and describe examples of constructing networks.
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1. INTRODUCTION

Network formalisms, such as influence diagrams and belief nets, are increasingly being
accepted as a means of representing and reasoning about uncertainty in artificial intelli-
gence (Henrion and Cooley 1987; Horvitz et al. 1988; Pearl 1988). Though numerous
methods for probabilistic reasoning in large, complex networks are being developed (Hor-
vitz et al. 1988; Lauritzen and Spiegelhalter 1987; Pearl 1986; Shachter 1986), there has
been very little research on automating the development or construction of probabilistic
models. This paper addresses the dynamic construction of belief and decision networks
from a general knowledge base that encodes many different network structures.!

The dominant assumption underlying much of current research in belief networks is
that a large, fixed network can be constructed offline that will encode all relevant relation-
ships and interactions that a system will be expected to address in its domain of expertise
(Agogino and Rege 1987; Andreassen et al. 1987; Heckerman et al. 1989). Each consul-
tation consists of observing values of some of the variables in the model, updating the
probability distributions on the unobserved variables, and (possibly) generating a decision
recommendation. In this research we take a different tack. We develop a representation
that implicitly encodes an enormous number of possible model structures, some of which
may be quite large. Based on a particular query and information state at run time, we
construct a belief net that is custom-tailored, and that can be used in a probabilistic
inference algorithm.

A system employing procedures for automated network construction has a number of
advantages over relying on a single fixed model. First, general patterns of dependency are
stored in a database and can then be assembled to apply to specific instances. Standard
pattern matching and deductive techniques can control the application of these general
relationships to the current situation. Thus, the structure of the network can be changed
depending on the applicability of various components and the general knowledge need not
be duplicated for each particular usage. A second motivation for model construction is to
reduce the computational effort for probabilistic reasoning by using contextual or observed
values for some events. Some existing belief-net algorithms use evidence (observations)

'We use the term belief network to refer to a probabilistic network consisting solely of nodes representing
uncertain quantities. A decision network is a belief network that has a value node representing preferences and
includes decision nodes representing alternative actions.
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to “block” belief propagation along particular paths in order to avoid unnecessary com-
putation. When constructing the model on the fly we can avoid even considering those
irrelevant distinctions, therefore constructing a much smaller network than might otherwise
be required. Finally, the importance of various uncertainties varies considerably from case
to case when providing decision recommendations using a decision-theoretic model. The
impact of including or excluding various considerations from a model depends on the
preferences of the decision maker. With dynamic model construction, we can use sensi-
tivity analysis to guide the model construction process by focusing on important attributes.

Other researchers who have explicitly addressed probabilistic model construction have
also recognized the need for context- and value-dependent construction of networks (Well-
man et al. 1992). Previous work in automating medical decision analysis used a rule-based
expert system to structure a decision-analytic consultation with a patient (Holtzman 1988).
The output of the consultation is an influence diagram structured for a specific patient’s
preferences and medical situation. In another study, an innovative approach to natural
language understanding (Charniak and Goldman 1989) uses word sequences as observations
and treats language understanding as a probabilistic evidential reasoning problem. In this
work, it is clear that a single network with all word sequences as potentially observable
evidence is infeasible. Networks are incrementally constructed as words are parsed. In
other research, a mechanism for network construction based on the formalism of qualitative
probabilistic networks has been developed (Wellman 1988). The representation allows for
construction at various levels of abstraction, as opposed to being driven by values or
evidence as in most other schemes, and is used in proving dominance relationships for
planning. This paper presents and extends previous work in this area (Breese 1987) by
integrating logical and probabilistic reasoning techniques, as well as providing a formal
interpretation of the model construction procedures.

The remainder of the paper is organized as follows. We first describe an example that
motivates the need for contextual, episodic construction of models. We then describe a
declarative knowledge representation for probabilistic and decision-theoretic information
(Section 3), followed by discussion of a set of procedures for constructing belief and
decision networks (Section 4). As part of the development of the inference procedures, in
Section 4.2 we develop an interpretation of the procedures in terms of more extensive
networks that are implicit in the database. Examples of constructed networks are then
provided, followed by a discussion of some of the main conclusions to be drawn from this
work.

2. AN EXAMPLE PROBLEM

Consider the following scenario, adapted and extended from Kim and Pearl (1983) and
Pearl (1988):

Mr. Holmes receives a telephone call from his neighbor, Dr. Watson, who states that he
hears the sound of a burglar alarm coming from the direction of Holmes’s home. As he is
preparing to rush home, Mr. Holmes reconsiders his hasty decision. He recalls that today
is April 1st, and in light of the April Fool’s prank he perpetrated on his neighbor last year,
he reconsiders the nature of the phone call. He also recalls that the last time the alarm
sounded, it had been triggered by an earthquake. If an earthquake has occurred, it will
surely be reported on the radio, so he turns on a radio. He also realizes that in the event
of a burglary, the likelihood of recovery of stolen goods is much higher if the crime is
reported immediately. It is therefore important, if in fact a burglary did occur, to get home
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as soon as possible. On the other hand, if he rushes home he will miss an important sales
meeting with clients from Big Corp. that could result in a major commission. Should Mr.
Holmes rush home?

This example illustrates several characteristics typically not dealt with explicitly in
research in uncertainty management. The problem statement is clearly context dependent.
The fact that the phone call from Dr. Watson occurred on April 1st changes the structure
of a possibly more general relationship between alarms and phone calls from neighbors.
Though we can in principle represent this context dependency in a belief network, we
would like a method that does not require us to explicitly enumerate every possible
confluence of contextual factors in a fixed probabilistic representation. If we have a large
fixed network, in any given instance, much of the network is irrelevant, so one is expending
space and processing power on irrelevant information.

More importantly, much of the general knowledge concerning probablhstlc relation-
ships, domain constraints, and the like must be replicated for various problem instances.
For example, another homeowner may have a burglar alarm that behaves identically to
Holmes’s while having different neighbors. A fixed network approach would require dif-
ferent networks prespecified for all homeowner, alarm, and neighbor configurations that
might be of interest. We need to represent these general relationships just once and then
apply them to particular instances.

In addition, the example raises the issue of resource allocation and decision focus.
Reasoning under uncertainty is only relevant in a decision context—in this instance there
are subtle trade-offs between the choices available to Mr. Holmes. Getting the correct
probability of a burglary is only a portion of the problem: Holmes needs to allocate scarce
resources, namely his time. We need to represent the fact that Holmes faces an explicit
choice among actions, and furthermore, that he needs to weigh the benefits of returning
home versus the cost of missing the meeting. We will see how we use this decision context
to focus attention in model building.

3. REPRESENTATION

In this section we develop a language for representing general pat;?df relationships
in uncertain domains. The scheme subsumes popular logic programming methods by
allowing sentences in a logical language to be the representation of deterministic relation-
ships in the domain. In addition, we provide a mechanism to express general patterns of
probabilistic relationships for a domain that can be used to construct networks for a wide
variety of contexts. We will show how logical relationships, context dependency, and
decision alternatives are represented.

The basic scheme for building networks is shown in Fig. 1. The representation de-
scribed in this section is stored in a database of sentences. These sentences encode
probabilistic dependencies, as well as logical relationships and observations encoded as
facts. Given a query, the inference procedures described in the next section generate a
network. This network is then available to a network processor that performs probabilistic
or decision-theoretic inference.

3.1. Facts and Rules

Deterministic relationships in the domain are represented with a set of logical formulae.
A formula is atomic if it is of the form P(xy, x5, . . . , x,) where P is a relational constant
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FIGURE 1. An overview of the network construction process.

and the x; are variables (lowercase) or object constants (uppercase). All variables in a
formula are assumed to be universally quantified. Thus Neighbor(WATSON,HOLMES) is
read “Watson is a neighbor of Holmes”; Neighbor(WATSON,y) says “Watson is every-
body’s neighbor.” A Horn clause is a formula of the form

P—OINQG N+ /\Qn

where P and the Q; are positive atomic formulae and read as “P if Q; and Q> . . . .” Facts
(P <) and rules (P < Q) are defined in the normal manner for Horn-clause logic programs.
Statements of this form in the database are accepted as logically true, and are not subject
to updating.

3.2. Alternative Outcomes

Reasoning under uncertainty is reasoning about alternative possible outcomes for world
states. A strictly logic-based system represents uncertainty in terms of disjunctions-—we
know A or B or C has occurred but are uncertain about the individual truth values of the
components. Combinations of realizations of these possibilities define possible world states
(i.e., the sample space in probability theory) and provide a foundation for assigning a
probability measure. We have developed a shorthand notation for expressing mutually
exclusive, collectively exhaustive instantiations for an atomic formula. Although the al-
ternative outcomes of a logical formula are typically the formula and its negation, we
define a means of expressing multivalued outcomes. The variable range is a means of
restricting the possible values for a place in an atomic formula.

Definition 1 (Outcome Range). Given an atomic formula, F, of the form P(x;, x2, . . . ,
x»,) where the x; are object constants or variables, the set of object constants {X;, Xz,

. » Xim} is the outcome range associated with place i in F and is the set of mutually
exclusive, collectively exhaustive values of object constants for place i in F.

Typically, we will substitute the range for the variable in the formula; we will call this
an alternative outcome expression, as in Burglary({YES,NO},y). Associated with an alter-
native outcome expression is a set of alternative outcomes. The alternative outcomes are
just the set of alternative possible instantiations for the formula in question based on its
outcome ranges. The alternative outcome set for Burglary({YES,NO},y) is written '

QBurglary({ YES,NO},y) = {Bu"glary( YES ,}’) ,Burgla"y(NO,}’)}

A member of the alternative outcomes set {) will be referred to with the symbol, w,
as in
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WBurglary({YES,NO},y)

Or just ®Wgurglary When there is no ambiguity. There can be multiple outcome ranges for a
single atomic formula. The expression:

Weather((SUN,CLOUD,RAIN},{HOT, NORMAL,COOLY})

has nine members in its alternative outcomes set. The alternative outcomes set of a
conjunction are the members of the cross product of the alternative outcome sets for the
component expressions.

An alternative outcomes statement is an explicit assertion in the database that exactly
one of the alternative outcomes of the formula, based on its variable ranges, is true. For
example, the statement OneQf (Burglary ({YES,NO},y) ) has the interpretation that for
any substitution for y, exactly one of its alternative outcomes Burglary(YES, y) or Bur-
glary(NO, y) is true.?

An alternative outcome statement for an atomic formula can be handled in standard
logical notation, i.e., P({X1, X2}, y) = [(P(X1, ¥) VV P(X2, Y)] N\ <[(P(X1, ¥) )\ P(X2, Y))].
This exclusive-OR description becomes more cumbersome as the number of possibilities
increases. The structure developed here makes this accounting more convenient (in a
manner similar to the one-of construct introduced by de Kleer 1986), and additionally
enforces consideration of all possible values when constructing the database. This is an
important characteristic of decision-theoretic reasoning and will be used extensively in the
specification of probabilistic dependencies, described in the next section.

For some purposes it is necessary to provide an ordering based on the magnitude for
the outcome ranges in a formula. For quantitative outcomes this is straightforward, but it
is also necessary for symbolic variables, such as COOL, NORMAL, and HOT. In addition,
it is necessary to identify a “nominal” or “typical” value, roughly the median if we were
assigning a probability distribution over the values. We use this information to perform
sensitivity analysis (see Sect. 4.3.1). S

Y
/

3.3. Probability Distributions

Having defined atomic formulae and disjunctive information in the language, we now
need to express conditional and marginal (unconditional) probability information. A prob-
ability distribution maps each alternative outcome of an atomic formula to a probability.
Since the alternative outcomes are collectively exhaustive and mutually exclusive, the sum
of the probabilities is one.

Definition 2 (Probabilistic Dependency). A probabilistic dependency is an expression of
the form

PrQi N Qa A+ -+ A\ Qn = PR(@Pwg, A 0, A - - 1@,

where P is an alternative outcome expression and each Q; is an atomic formula (possibly
an alternative outcome expression) and Pr is a conditional probability distribution over
the alternative outcomes of P given the alternative outcomes for Q1 A Q2 \ - - + @,.. The
dependency describes the uncertainty regarding P in the state of information where Q; N\
Q2 N\ - -+ Qpis true.

A substitution is a set of the form 6 = {x\/t1,x2/t2, . . . , xa/tn} Where the x; are variables and the #; are
variables, constants, or outcome ranges. F9 is the formula F with ¢; substituted for the variable x; in F.
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The left hand of the equality indicates a possible probabilistic dependence between P
and the Q;s; the right hand indicates the numerical values relating the different states. As
an example consider the following dependency:

Alarm({RING,NO RING},y)|.Burglary({YES,NO},y)
= Pr (wAlarmeBurglary) ==

Alarm(RING,y) Alarm(NO RING,y)
Burglary(YES,y) .95 .05
Burglary(NO,y) .01 .99

This rule expresses the quality of the alarm as a sensor of burglaries.
Precisely the same form is used to express a marginal probability distribution. For
example,

Burglary ({YES,NO},y)|p = Pr(wpurgiary) =

Burglary(YES,y) Burglary(NO,y)
.001 .999

A final function of a probabilistic rule of this form is to indicate the context where a
particular dependency relationship is valid. To do this, some of the Q; in the conditioning
statement are interpreted as conditions that must be true in the database for the particular
probability distribution to be applicable. For example, we have

PhoneCall ({REPORT,NONE}, n,y)|Neighbor(n,y) A
Alarm({RING,NO RING},y)

— " = Pr (wPhoneCalllmAlarm) =
PhoneCalllREPORT,n,y) PhoneCall(NONE,n,y)
Alarm(RING,y) .6 4
Alarm(NO RING,y) .0 1.0

This rule describes the probability of an unspecified individual, y, getting a phone call
reporting a burglary from a person, n, given that the alarm rang (or did not ring) at y’s
residence and that # is a neighbor of y. This dependency is universal across homeowners
who are known to be neighbors. The neighbor relation effectively limits the applicability
of this dependency to those cases. As another example, consider:

PhoneCall ({REPORT, NONE}, WATSON, HOLMES) |,
Neighbor (WATSON,HOLMES) A Date(APRIL,1)
Alarm, ({RING,NO RING},HOLMES) A
= Pr (wPhoneCalll‘-oAlarm) =

PhoneCall(REPORT,W,H) _ PhoneCalNONE,W,H)
Alarm(RING,H) .99 .01
Alarm(NO RING,H) .5 S

This dependency has more stringent applicability requirements, since it is written for
Holmes and Watson specifically (no variables in the rule) and is relevant only on April 1.
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Note that in the case where Holmes and Watson are neighbors, both rules are applicable.
We will have more to say about this later.

3.4. Identifying Decisions

As in any system that deals with action in the world (e.g., Al planning systems or
optimal control), we need to identify those variables or parameters that can be controlled
by the agent. In this context, we define an informational dependency as follows:

Definition 3 (Informational Dependency). An informational dependency is an expression
of the form

PiOi N Q2 N\ - N\ Qs

where P is an alternative outcome expression and each Q; is an atomic formula (possibly
an alternative outcome expression) where P represents a set of choice alternatives and Q,
A Q-+ /\ Q,is included in the information known at the time the choice is made.

An informational dependency identifies the consequent (P) as a decision under the
control of the decision maker. The range of decision alternatives are defined by the
alternative outcomes of the consequent outcome expression. The antecedent of the rule,
ONQ N -+ - /\ Q, defines the set of relations whose outcomes are known at the time
that the decision is made—hence the name informational dependency. In a manner anal-
ogous to probabilistic dependencies, if Q; is an atomic formula, it defines applicability
conditions for that informational dependency.

In the next section we will see how the building blocks described in this section are
used to generate belief and decision networks.

4. INFERENCE FOR NETWORK CONSTRUCTION

The purpose of these procedures is the formulation of decision-theoretic models ex-
pressed as networks consistent with the facts, deterministic rules, alternative outcomes,
and the probabilistic and informational dependencies in the database. We discuss construc-
tion of belief networks (Sect. 4.1), as well as decision networks (Sect. 4.3). Decision
networks have nodes that represent values and decisions in addition to uncertainties in a
network structure. Inference in the context of model construction is distinct from the
inferential mechanisms one uses to propagate uncertainties or to determine those decision
alternatives that maximize expected utility once the network is constructed. See Horvitz
et al. (1988), Lauritzer and Spiegelhalter (1987), Pearl (1988), and Shachter (1986) for more
detailed discussions of inference techniques for fixed models.

Fundamentally, we view the model building process in terms of theorem proving. We
use depth first, subgoal decomposition to control the search for a consistent belief or
decision network addressing some query.

4.1. Constructing Belief Networks

Inference is initiated by identifying an initial goal (the query) that we wish to explicate.
The database, A, consists of a set of facts and rules in Horn clause form, #, and a set of
probabilistic dependencies €%. The proof procedure will search the set of expressions A
to construct the appropriate belief network incorporating the goal expression. The proce-
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FiGUre 2. Construction of a network for a query (labeled Q) consists of searching for both
causal and diagnostic influences until evidence is encountered.

dure succeeds if it finds a coherent belief network with a node corresponding to the query.
The belief network is coherent in the sense that its distributions are true probability
distributions and the network has no directed cycles.? The belief net has the additional
property that it incorporates all of the relevant dependency information included in the
database. We make this notion more precise in Sect. 4.2.

There are two components to deriving the set of relevant dependencies for a proba-
bilistic conclusion. First, we search both probabilistic and deterministic dependencies that
could have an influence on or explain the proposition of interest. We will term these
dependencies as causal. We then search for propositions that may be influenced by the
proposition of interest or its effect. These propositions, if known, provide evidence about
the query formula of interest. We term this direction as diagnostic. The basic idea behind
the construction process is to search for all relevant chains of dependencies in the database,
both causal (upstream) and diagnostic (downstream), until a path is blocked by evidence.
These components are illustrated in Fig. 2.

The conclusion of a successful construction procedure results in a belief network
incorporating a node for the query expression. Throughout these procedures, we assume
that any context-related evidence or observation is encoded in #. Therefore evidence and
its consequences, ascertained by performing logical deduction on ¥, will be treated as -
evidence.

3A belief network, by definition, is an acyclic directed graph. If a construction procedure constructs a
network with a directed cycle, this indicates there may be inconsistency from the perspective of probability
theory in the database. See Wen (1989) for a discussion of resolving cycles in belief networks.
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The construction procedure is carried out by three procedures: one for causal reasoning
(CAUSAL BELIEF NET), one for diagnostic reasoning (DIAGNOSTIC BELIEF NET),
and one that combines their results (BELIEF NET). The top-level procedure for belief
net construction is BELIEF NET. It invokes CAUSAL BELIEF NET on the query, and
then iteratively applies DIAGNOSTIC BELIEF NET on nodes in the newly created
network. Each procedure is implicitly accessing the database A = # U €%.

Procedure BELIEF NET [P]

1. Invoke procedure CAUSAL BELIEF NET [P,9].
2. If successful with returned network substitution 6 and network N, then do until every
node in N is marked:
(a) For each unmarked node N; in N do:
(b) N is assigned to the result of applying DIAGNOSTIC BELIEF NET to node N;
and network N.
3. Return N.

The procedure BELIEF NET succeeds if the initial call to CAUSAL BELIEF NET
succeeds in finding a causal probabilistic model for the query. The subsequent calls to
DIAGNOSTIC BELIEF NET are applied iteratively in Step 2 until every node in the
network has been checked for possible diagnostic paths. Chaining on diagnostic paths is
achieved by checking all unmarked nodes in the current network. A node is ‘‘marked”’
once all diagnostic paths from it have been explored. This insures that the database has
been searched for all potentially relevant evidence.

4.1.1. Causal Construction. The search for causal probabilistic dependencies for an
expression, P, with respect to a network, N, is carried out by procedure CAUSAL BELIEF
NET. The procedure describes a depth-first, backward chaining search for a belief network
with a root node (no successors) corresponding to an atomic query. Non-atomic queries
are handled by first creating a node for the query with its atomic components as prede-
cessors. As the procedure finds various implicit network fragments in the dependencies in
the database, it constructs an explicit network of the search graph, and returns it as the
appropriate belief network. All processing is done with reference to the network that is
currently under construction in the procedure, hence the second argument, the network
N, to the procedure.

Procedure CAUSAL BELIEF NET [P, N]

1. If P is an atomic formula and is provable from the statements with ¥ with substitution
0, then return (6, N'). _

2. If P is an alternative outcomes statement and one of its outcomes is provable from
the statements in # with substitution 0, then:
(a) Create a new chance node N with name P.
(b) Install the outcome P0 as evidence on N.
(c) Mark node N.
(d) Return (0, N' U {N}).

3. If there exists a node N in N and a substitution 6 such that N8 = P9 then return
0, N).

4. For each probabilistic dependency in €% of the form
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A|pB = PI'(O)AI(DB)

with B = 1 A Q> /\ - - - O, and where there is a substitution 8o such that A8, = P8,
do
(a) If invoking CAUSAL BELIEF NET on each subgoal, Q.0;—; succeeds returning
substitution 6; and network N; for all i, then*
i. Create a new chance node N with name A6, and probability distribution
Pr(wAe,JwBe,,)
ii. Set the predecessors of N to be the nodes created in CAUSAL BELIEF NET
in response to subgoals O; AN Q> N\ - - - Q.
iii. Return

<en, U N U{N} U N>
i=1

(b) Otherwise, go to next influence in Step 4.
5. Otherwise, return ‘‘fail.”

This procedure returns a network (possibly empty) if expression P is true or if the
procedure can construct a belief net from the database that has a node for the goal or
query expression. The procedure is designed to return successfully for an input expression,
P, if and only if

» P is known or can be treated as evidence (Steps 1 and 2), or

* P is already accounted for in the current network N (Step 3), or

* P has a marginal or conditional distribution implicit in an influence in the database,
and if conditional, all antecedent expressions have causal belief nets.

Search paths terminate when a subgoal expression can be treated as evidence or matches
an unconditional probabilistic dependency in the database. If there is categorical infor-
mation regarding a node, i.e., evidence, as in Step 2, the node is marked, since no
diagnostic (downstream) information can ever change the belief in this proposition. Alter-
native paths are generated by exploring alternative conditional dependencies in the data-
base (Step 4), as well as due to alternative returned binding lists returned by the logic
theorem prover (used in Steps 1 and 2). CAUSAL BELIEF NET will fail if there are no
influences that can be found to construct a belief net for the query.

4.1.2. Diagnostic Construction. CAUSAL BELIEF NET is looking upstream in the
implicit network encoded in the database. In DIAGNOSTIC BELIEF NET, we are looking
downstream, in the form of a depth-first, forward chaining search for relevant influences.
The procedure is seeking those influences that lead to evidence that could cause an update
in an upstream node. The procedure takes a node, N, and a network, N, as arguments
and returns the (possibly modified) network.

Procedure DIAGNOSTIC BELIEF NET [N;,N]

1. For each probabilistic dependency of the form A|,B = Pr(ws|ws) where B is a con-
Jjunction of the form O; N\ Q> /\ - - - AQx and there is some Q; and 0 such that N =
Q0 do:

(a) Invoke procedure CAUSAL BELIEF NET on expression A6 and network N.

“If B is empty, as in an influence that describes a marginal probability distribution, then the recursive call
in this step succeeds by default.
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(b) If the call to CAUSAL BELIEF NET is successful returning modified network N,
with node M € N associated with A0 then:
i. If one of the outcomes in M is provable from ¥ then install the evidence on M
and mark node M.
ii. Otherwise leave M unmarked.
(c) Go to next influence in Step 1.
2. Mark node N.
3. Return (8,N).

The basic idea behind this procedure is that we search for all probabilistic dependencies
that might be affected by node N, thus step 1 looks for all influences that mention an
expression that matches N in their list of conditioning expressions. A diagnostic influence
is applicable, as verified by the call to CAUSAL BELIEF NET, if we can create a network
with the diagnostic node (40) as the root. The network returned at this point is the input
network expanded by any nodes created in the call to CAUSAL BELIEF NET.

The marking procedure is a means of making certain that diagnostic evidence paths
have been checked for all nodes in the network. Step 2 verifies that we have checked node
N for diagnostic evidence. In Step 1(b)i, we prevent invocation of DIAGNOSTIC BELIEF
NET on nodes that have evidence. If left unmarked, subsequent calls to DIAGNOSTIC
BELIEF NET will continue to search this path. Thus, search paths terminate if there are
no applicable influences or there is evidence for a node. DIAGNOSTIC BELIEF NET
cannot fail in the sense of there being insufficient information available to construct a
network. If no active diagnostic paths are found, the procedure will return the original
network. Note that DIAGNOSTIC BELIEF NET will return all paths that have the
potential for providing relevant diagnostic evidence, whether or not that path actually
results in an observation.

4.2. Interpreting Constructed Networks

In this section we provide an interpretation for the networks produced by the construc-
tion procedures, as well as a justification for the procedures themselves. The procedures
described above extract a network from a database that implicitly describes a large number
of extensive networks. For example, queries resulting in different instantiations of univer-
sally quantified variables in the database will produce different networks. The procedure
is designed such that all causal and diagnostic paths are explored, except when blocked
by evidence. In this section we utilize some results regarding expression of conditional
independence in graphs to assure that we are not excluding relevant information in con-
structing the networks.

We show that a network constructed by the procedures described above is guaranteed
to be sanctioned by the database. The sufficiency of the constructed network, in terms of
the validity of probabilistic inferences one can make with it, can only be gauged by
assuming a probabilistic interpretation for the sentences in the database. We show that if
the sentences have a particular probabilistic interpretation, then the constructed networks
are valid.

We first introduce the notion of an interpretation network. An interpretation network
is a probabilistic network that is sanctioned by the database in the following sense:

Definition 4 (Interpretation Network). Given a database A = ¥ U 4P, we say that the
belief network $ is an interpretation network of A if for each node X; € $ one of the two
following conditions hold:
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1. Node X; has attached evidence E; such that 7 = E,.
2. There exists a probabilistic dependency A|,B in 6P and a substitution 6 such that

A is the name of node X;
Pr(wA|wB) =P (xi,HX,-)

Ilx, C BO

¥ E BOly,

The distribution function P(x;|IIx) encodes the link probabilities of the node given its
immediate predecessors (IIx) and the symbol  stands for logical entailment.

These conditions require that each node in the network $ either be observed or have
a corresponding dependency in the database. If an atomic formula appears on the condi-
tioning side of a probabilistic dependency associated with a node and is not explicitly
represented in the network, it must be logically entailed by the database. The following
theorem further explicates the definition and shows that the BELIEF NET procedure
produces interpretation networks.

Theorem 1. If N is a network constructed using the procedure BELIEF NET, then N is
an interpretation network.

Proof: The procedure BELIEF NET consists of a set of calls to CAUSAL BELIEF NET
and DIAGNOSTIC BELIEF NET. All nodes are created in CAUSAL BELIEF NET.
Nodes created in Step 2 of CAUSAL BELIEF NET correspond to nodes in Condition 1
of Definition 4. Nodes created in Step 4a of CAUSAL BELIEF NET correspond to nodes
in Condition 2 of Definition 4. The predecessors of a node created by Step 4a are a subset
of all those mentioned in the influence (B0) because a call to CAUSAL BELIEF NET can
succeed without creating a node if the subgoal is provable from the database as in Step 1.
However, this is precisely the condition mentioned in the definition of an interpretation
network: ¥ F BO\L,. The logical database entails those atomic formulae appearing in the
antecedent of a rule but not represented among the predecessors of the node. g

The previous theorem sets up a correspondence between the sentences in the database
and a network model. However, the conditions for an interpretation network are very
weak in that they merely impose that each node and its predecessors must have a corre-
sponding expression in the database, without saying anything about nodes that remain
implicit in the database. We would like to derive a notion of the sufficiency of the
constructed network in terms of conditions on the joint probability distribution over the
set of random variables represented by the nodes in the network.’ These conditions have
implications for the semantics of the probabilistic sentences in the database, and the rules
of network construction embodied in the procedures. In the following definition, we draw
on the terminology of Pearl (1988) to impose some additional constraints on the probability
distributions and networks associated with a database.

Definition 5 (Bayesian Interpretation Network). Let $ be an interpretation network and
let P be a probability distribution over the set of variables {X, X> . . . , X} ordered such

’In the remaining results in this section, we use the term “variable” to refer to a random variable in a
probabilistic model, as opposed to our previous usage corresponding to universally quantifiable variables in
probabilistic or logical expressions in the database.



636 COMPUTATIONAL INTELLIGENCE

that if node X; is a predecessor of node X; then i > j. If there is a correspondence between
$ and P such that for each node X; its predecessors Ilyx, satisfy

P(inHX,.) = P(xi|x1, X2, o o vy x,-_l), HX‘ C {Xl, Xz, .« e ey X,'_l} (1)

then we say $ is a Bayesian interpretation network.

The existence of a Bayesian interpretation network for a database has far-reaching
consequences. If a network is a Bayesian interpretation, the set of probabilistic dependen-
cies in €% must be consistent with assignment of predecessors such that the probability
distribution of a node is conditionally independent of its non-immediate predecessors,
given its immediate predecessors (see Eq. (1)) for some distribution P. These conditions
imply that the builder of the database, at least with respect to the network $ in question,
was implicitly encoding a coherent and consistent probability model P. On a more oper-
ational level, positing the existence of a Bayesian interpretation to the networks created
by the procedures allows us to use “d-separation” as a criterion for conditional indepen-
dence.

Definition 6 (d-separation, Pearl 1988). If X, Y, and Z are three disjoint subsets of nodes
in a directed acyclic graph $, Z is said to d-separate X from Y if there is no path between
a node in X and a node in Y such that the following two conditions hold: (1) every node
with converging arrows is in Z or has a descendant in Z and (2) every other node is
outside Z.

Specifically, given a Bayesian interpretation, network $, a probability distribution P
over a set of variables, and disjoint sets of nodes X, Y, and Z if Z d-separates X from Y,
then the variables in P corresponding to X are independent of those corresponding to Y,
given values for those corresponding to Z. We will use this condition as a test of conditional
independence.

The purpose of the following theorem is to show that we have not ignored relevant
information, assuming that the constructed network has a “Bayesian” interpretation as
defined in Definition 5. Relevance is defined in terms of conditional independence: any
variables not included in the constructed network are conditionally independent of those
in the network, given the nodes with attached evidence.

Theorem 2 Given:

1. 9 is a Bayesian interpretation of a database A = ¥ U €%.

2. Nis a subnetwork of $, and N was constructed using the procedure BELIEF NET.6
3. € is the set of nodes in N with attached evidence.

4. F = N\¥ is the set of unobserved nodes in N.

5. $ = $\N are the nodes in $ and not in N.

Then the variables in $ are independent of the variables in & given evidence for nodes
in €.

Proof. The various sets in the theorem are illustrated in Fig. 3. Since $ is a Bayesian
interpretation, we can use d-separation as a criterion for conditional independence by
analyzing the paths between the sets of nodes. By the network construction procedure, if
N is a node in N then its neighbors (parents and children) are in N or they are in €. This

A network N is a subnetwork of $ if the nodes in N are a subset of those in $ and the arcs in N are a
subset of those in $ that connect nodes in N.
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FiGURe 3. The figure shows a Bayesian interpretation graph, $ = $ U € U %, where the
constructed network N = € U %. Nodes labeled J are in $ = $\N, nodes labeled E are in € and
have attached evidence, and nodes labeled F are in & = N\¢€.

occurs because procedure CAUSAL BELIEF NET chains back by creating nodes until a
marginal distribution is found or evidence is available for a node. In the procedure
DIAGNOSTIC BELIEF NET, downstream arcs are added until no more dependencies
apply or evidence is available for a node. Therefore the only way that a path can proceed
from a node in ¥ to a node in $ is by passing through a node in €. In this way € is a set
of boundary nodes between ¥ and §.

If a path has no nodes with converging arrows, then in order to be active (in the sense
of satisfying the conditions in Definition 6), all nodes on the path must be outside €. But
we just showed that all paths between % and $ do pass through %, therefore any path
between ¥ and $ without converging arrows must be inactive. If a path does have nodes
with converging arrows, by the definition of d-separation these nodes must be in € or have
a descendant in €. We can restrict our attention to the portion of the path that spans € as
in F — E < J where F, E, and J are members of the appropriate sets. By the construction
of N, the parents of E must be in N. Since $ and N are disjoint, there can be no path of
this form. Thus all paths between % and $ are inactive; hence the sets are d-separated
and the variables in & are independent of those in $ given €. O

Note that we do not require minimality of the predecessor sets in Definition 5, thus a
Bayesian interpretation network may have some spurious arcs and is not a minimal I-map
in Pearl’s terminology (1988). The d-separation independence test is still valid, however.
If we were to require minimality of the interpretation network, then the constructed
network would also be minimal.

4.3. Constructing Decision Networks

A decision network (or equivalently, an influence diagram) is a belief network that is
augmented to represent the alternative actions available to a decision maker (with decision -
nodes) and his preferences for alternative states (with a value node). In terms of construc-
tion of the network, we would like to be able to construct the value node from sentences
in the database as well as incorporate decision nodes into the construction process de-
scribed above.



638 COMPUTATIONAL INTELLIGENCE

4.3.1. Generating the Value. A value function is a mapping from the various possible
outcomes or states resulting in a particular decision problem to a single real number. In a
decision network there is a single value node —its predecessors are those uncertain vari-
ables (attributes) that affect values.

In terms of the syntax we defined for a probabilistic dependency, a value dependency
can be defined as follows:

Definition 7 (Value Dependency). A value dependency is an expression of the form

VIVQI A Q2 FANCICIEWAN Qn = v(an Wo,, * ", O)Q"),

where V is an atomic formula with a single variable designated the “value” variable, each
Q: is an atomic formula (possibly an alternative outcome expression), and v is a real valued

function over the alternative outcomes for Q; N\ Q» A\ - - - A Q,. A value dependency
reflects preferences for the various outcomes in @1 A @2 A - - - A\ Q, scored by the
function v.

For example, a value function for a medical treatment might look something like the
following, where PatientValue(v, p) stands for the relation “Patient p’s value is v.” The
variable v is the value variable in this predicate.

PatientValue(v,p)|Disease ({PRESENT, ABSENT},p} /A Treat ({YES, NO},p)
= V((’-)Diseasey‘»otreat) =

Trea(YES,p) Treat(NO,p)
Disease(PRESENT,p) 100 —100
Disease(ABSENT,p) -20 0

In general, direct specification of such a table for each possible decision and situation
is unwieldly and furthermore is subject to exactly the type of inflexibility and lack of
context sensitivity that we encounter with fixed probabilistic models. We therefore con-
struct these structures based on the set of deterministic dependencies, facts, and alternative
outcomes in the database. We wish to explicitly include only those alternative outcomes
that have a large impact on values.

Let 6 = {O;, O, . . .} be the set of alternative outcome statements in the database
and V be a value query. If computation were costless, we would compute the ramification
of all these disjunctions on the value. That is, determine V for every possible combination
in @ = QO0:) X YO) X - - - . This set of possible assumptions will generally be huge;
therefore we need to restrict our value dependency to the “relevant” subset of the possible
world outcomes entailed by 6. We use sensitivity analysis on values to determine this
relevant set.”

Let 00, min,00,n0m and ®o,max be the minimum, nominal, and maximum outcomes
according to the ordering associated with an alternative outcome statement. An assumption
set is a member of {2: one possible combination of outcomes from all the alternative
outcome statements in the database. We construct a value dependency via the following
procedure:

"This procedure is analogous to deterministic sensitivity analysis used by decision analysts (Howard and
Matheson 1984).
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Procedure SENSITIVITY ANALYSIS[V,0]

1. Determine the outcome of V with an assumption set consisting of ®o,snom /\ ©®0ysnom
/A - - - . This is the outcome of the value predicate where all alternative outcome
statements are assumed to be at their nominal outcomes.

2. For each O; € 0, determine the outcomes for V for the assumption sets consisting of
00, min ! \jzi ®0,nom ANA WO, max /\,-,é,- ®o,nom. This provides two value outcomes asso-
ciated with each alternative outcome statement—one associated with the minimum
outcome and one associated with the maximum outcome, while all others are set at
their nominal outcomes.

3. Each O, is now associated with a set of outcomes for V associated with its minimum,
nominal and maximum values. These are sorted according to

S = V((J.)ol,nom, .o oy WOo,max -+ - ) - V((n)ol,,,om, oo oy WO min . - )

Based on the results of the sensitivity analysis we create a value dependency of the
form

Vl"Ql N Q2 ZANERAN Qm = v(le’me s e ey me)’

where the Q; are the m different O; having the greatest impact on V, as measured by s;.
The selection of the parameter m is the critical design choice. For binary outcomes, the
size of the value table will be 2™. In practice, m is chosen in order to render the size of
the value table manageable.

The method of pruning the value function described here is analogous to 1-way sen-
sitivity analysis as used by decision analysts and other modelers, and can be extended to
2- or 3-way sensitivity in a straightforward, though computationally intensive manner. To
our knowledge, there has been no formal analysis of the effectiveness of sensitivity analysis
as a heuristic model construction procedure, though its use is widespread.?

4.3.2. Adding Uncertainties and Decisions. Constructing the value node is the first,
and perhaps most important step in constructing a decision network. The set of predeces-
sors (the Q) to the value node provides the attributes that must be further explicated in
order to provide a decision analysis. To this point the uncertainty in the predicates that
determine the value are expressed solely as disjunctions: we know the sets of possible
outcomes but have no measure over these possibilities and therefore cannot make trade-
offs. Therefore we need to construct a probabilistic structure that accounts for these
predicates. In addition, since decision making is the focus in this phase, we need to identify
relations that are under the control of the decision maker and the associated information
structure.

The method for doing this is to invoke the procedures in Sect. 4.1. There are two
modifications. First, we invoke the procedure BELIEF NET for each component of Q; /\
02\ - - -\ Qm as opposed to a single atomic predicate. Second, we augment the procedure
CAUSAL BELIEF NET with the following step, inserted between steps 3 and 4:

3’ For each informational dependency in 6% of the form

Al:B

*In the implementation of this method, we use multi-valued logic (Ginsberg 1988) to manage the theorem
proving and assumption set management associated with defining this structure.
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with B = Q1 A 0> A\ - - - /A O, and where there is a substitution 8 such as A9 = P9,
do
(@) If invoking CAUSAL BELIEF NET on each subgoal 0#;-; succeeds with substi-
tution 0; and network N; for all i, then
i. Create a new decision node N with name A0,.
ii. Set the predecessors of N to be the nodes created in CAUSAL BELIEF NET
in response to subgoals Oy A Q; A\ - - -+ A\ Q,.
ili. Return

<e,,, iL:Jl NiU{N} U N>

(b) Otherwise, go to next influence in Step 3'.

This step is analogous to the addition of a chance node in a causal belief net, except
that the node has no probability distribution.

4.4. Discussion: Control of Model Construction

As we discussed at the beginning of this section, network construction in this system
is coupled to an automated theorem-proving procedure. As in logic programming, the
selection of a subgoal to decompose, the ordering of conjuncts in a rule or dependency,
and the ordering of information in the database can dramatically affect the efficiency of
inference. Moreover, changing some of these selections can alter the structure of the model
constructed, just as control decisions in a theorem prover will alter the proof tree and the
associated answer substitutions.

The most important of these control selections involves the selection of a particular
conditional or marginal probability dependency to address a specific goal. As shown in
Sect. 3, there may be multiple dependencies in the database that unify with a particular
subgoal. We propose the following as a set of heuristics to guide selection of probabilistic
dependencies:

1. Decisions. Informational dependencies have precedence over probabilistic dependen-
cies. Thus if the database indicates that a predicate is controllable by the decision
maker, then utilize this information over a probabilistic treatment.

2. Specificity. If two probabilistic dependencies A|,B and A|,C are in the database, prefer
Al,B if B is more specific than C or B is longer than C, either in terms of variable
bindings or additional applicability conditions.

The second heuristic expresses a notion of completeness: If the database contains
more specific data and refers to additional conditioning events, then use those relationships.
It prefers conditional to marginal treatments of the same subgoal if both are available. In
some situations the specificity heuristic may not be applicable.

Another important characteristic is computability: If there is a simple marginal prob-
ability for a relation, then use that in order to minimize the size of the model. This might
be a better heuristic for model building in a real-time environment. _

At present, the deductive model-building framework described here allows for the
implementation of different heuristics by adding additional applicability conditions to the
antecedents of probabilistic dependencies. In other work, researchers are examining the
use of decision theory to provide a richer framework for making this kind of modeling
trade-off at the metalevel (Breese and Fehling 1988; Horvitz et al. 1989; Wellman et al.
1992).
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HOLMES-BELIEF

<STOLEN-GOODS-VALUE_HOLMES >

HONE-CALL_JONES_HOLMES >

< BURGLARY_HOLMES >

o

ALARM_HOLMES
EARTHQUAKE

HONE-CALL_WATSON_HOLMES >

<_RADIO-ANNOUNCEMENT >

FIGURE 4. A belief network generated for Burglary(y, HOLMES).

5. EXAMPLE NETWORKS

The system of representation and inference has been implemented in a system called
ALTERID. A knowledge base for the burglary example has been developed and is shown
in the Appendix. Suppose we are interested in the probability of burglary for Holmes,
then our query is Burglary(y, HOLMES). Figure 4 shows a belief network generated for
this query.

Generation of the network proceeds in a backward chaining manner in CAUSAL
BELIEF NET. The formula Burglary(y, HOLMES) is not in the database or provable from
the database, therefore Step 1 in CAUSAL BELIEF NET fails. Since the network is
empty at this time, there are no possible common causes (Step 3). No probabilistic rules
mention Burglary in the consequent; however there is a marginal probabilistic dependency
that matches the query. This dependency is used to create a node for Burglary(y, HOLMES)
in the belief net in Step 4.

The initial call to CAUSAL BELIEF NET is now complete. Although we have a node
in the network corresponding to the original query, it is now necessary to search the
database for evidence that might indicate whether or not a burglary has occurred. This is
the purpose of the procedure DIAGNOSTIC BELIEF NET. The dependencies 1 and 4
refer to Burglary in their antecedents, and therefore are candidate dependencies to consider
for the model. The antecedent of 1 consists solely of BURGLARY({YES,NO},y) and so
invocation of CAUSAL BELIEF NET succeeds trivially. For 4, we call CAUSAL BELIEF
NET, with goal Earthquake({YES,NO}), to ascertain whether the dependency is applicable
in this context. It succeeds by matching dependency 5, another marginal dependency via
a sequence analogous to our initial sequence with Burglary. At this point the constructed
network consists of nodes for Burglary, StolenGoodsValue, Alarm, and Earthquake.

At this stage, there is a call to DIAGNOSTIC BELIEF NET for the Alarm node. Two
dependencies, 8 and 9, match Alarm, their antecedent. Dependency 8 succeeds with the
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SMITH-BELIEF

/@EN-GOODS-VALUE_SMITH

@GLARY_SMWD\
ALARM_SMITH =

EARTHQUAKE

< _RADIO-ANNOUNCEMENT >

FIGURE 5. A belief network generated for Burglary(y, SMITH).

substitution of JONES, since Jones is known to be a neighbor of Holmes. Dependency 9
succeeds because Watson is a neighbor of Holmes and it is April 1st. Furthermore,
Phonecal(REPORT,WATSON,HOLMES) has been observed, indicated by the italicized
node in Fig. 4.

The final step is identification and creation of the diagnostic node for Radio-
Announcement. This node, as well as those for StolenGoodsValue and Phone-
callREPORT,WATSON,HOLMES) are unobserved and have no diagnostic successors
implicit in the database. In the current state of information, these nodes have no impact
on the probability of the query given the information in the database. They are included
in the network since we had to search the database to find these connections in the event
one of them actually had been observed. It is possible to modify the construction procedure
to prune these paths. In addition, the network now contains nodes for all potentially
observable evidence that could affect the probability distribution for the query.

Figure 5 shows a similar belief network generated for a different individual, Smith,
who finds himself in a situation similar, but not identical, to that of Holmes. The construc-
tion is similar to that for Holmes, with the exception that the database contains
Alarm(RING ,SMITH) as a fact. Therefore the procedure DIAGNOSTIC BELIEF NET is
not invoked on the Alarm node, because it has been determined that dependency 4 is
applicable and its consequent Alarm(RING,SMITH) has indeed occurred. The fact that
Alarm has been observed separates the model for Burglary from other parts of the knowl-
edge base (i.e., the phone calls) that are only reachable via Alarm.

Figure 6 shows a complete decision network for Holmes in his decision regarding
whether or not to return home. Construction of this network is initiated by the query
Value(y,HOLMES). As described in Sect. 4.3.1, the first step is creating a value depen-
dency, based on the facts, rules, and alternative outcome statements in the database. The
procedure identifies StolenGoodsValue, GoodsRecovered, Sale as the important predeces-
sors to consider. Figure 7 shows a similar decision network for Smith. The value depen-
dency constructed for Smith does not include a Sale node because there is no uncertainty
regarding Sale for Smith and hence no sensitivity of Value to this proposition.
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HOLMES
BURGLARY_HOLMES »<ETOLEN-GOODS-VALUE_HOLMEE
OOD-RECOVERED_HOLM
<PHONE-CALL_JONES_HOLMESD 7 Sl
X BURGLARY-REPORT_HOLMES )
CALARM_HOLMES g VALUE_HOLME
GO-HOME_HOLMES
CFTONECALL, WATSON FOTVEES FALE_BIG-CORP_HOLME
CEARTHQUARE C MEETING_BIG-CORP_HOLMES .
RADIO-ANNOUNCEMENT

FIGURE 6. A decision network generated for Value(y, HOLMES).

For both networks, the procedure CAUSAL BELIEF NETWORK is invoked for the
predecessors of the value. The link to StolenGoodsValue results in the networks shown
in Figs. 4 and 5 to be replicated in the decision networks. The presence of the Sale and
GoodsRecovered nodes as predecessors to Value causes the creation of deterministic nodes
(double ovals in the figures). These nodes are created by a procedure similar to that used
for the value node, except there is no value variable by which to gauge sensitivity, therefore
all relevant alternative outcome statements are incorporated in the dependency. The de-
cision node is created using the informational dependency in the database.

6. CONCLUSIONS

We have presented procedures for model construction that use a data-directed style
of reasoning to construct belief and decision networks. As we saw in the previous exam-
ples, small changes in the facts included in the database can have a large impact on the
structure and size of the constructed network. The method is able to utilize general
relationships to derive a potentially large number of distinct networks based on the form
of a query and the context encoded as facts in the database. We have shown that proba-
bilistic networks constructed by these procedures ignore no relevant dependency infor-

[SMITH

BURGLARY_SMITH P _STOLEN-GOODS-VALUE_SMITH >

OD-RECOVERED SMITH >

C_BURGLARY-REPORT_SMITH D

VALUE_SMITH

GO-HOME_SMITH

EARTHQUAKE

RADIO-ANNOUNCEMENT

FIGURE 7. A decision network generated for Value(y, SMITH).
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mation included in the database. The method provides a context-dependent, episodic, and
flexible technique for utilizing decision-theoretic constructs in knowledge-based systems
by providing an inherently modular approach to representing the domain.
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APPENDIX A. EXAMPLE DATABASE

Facts
Date(April-1)
PhoneCall (REPORT, WATSON, HOLMES)
Alarm(RING, SMITH)
Neighbor (WATSON, HOLMES)
Neighbor (JONES, HOLMES)
Neighbor (KENDALL, SMITH)
Neighbor (LEARY, SMITH)
SaleValue (BIG-CORPF, 250)
SaleValue (MICRO-CORP, 150)
Client (BIG-CORP, HOLMES)
Client (MICRO-CORP, SMITH)
Sale(OBTAINED, MICRO—CORP, SMITH)

Rules
Value(x,y) « Losses(s,y) N Income(i,y) A Subtract(i,s,x)
Losses(0,y) « GoodsRecovered(Yes,y)
Losses(z,y) « GoodsRecovered(NO,y) A StolenGoodsValue(z,y)
Income(v,y) « Client(z,y) N Sale(VALUE,z,v) A Sale(OBTAINED,z,y)
Income(0,y) « Client(z,y) A Sale(NOT OBTAINED,z,y)
Meeting(NOT ATTEND,z,y) « GoHome(YES,y)
Meeting(ATTEND,z,y) «< GoHome(NO,y)
Burglaryreport (IMMEDIATE,y) « GoHome(YES,y) A Burglary(YES,y)
Burglaryreport(LATE,y) « GoHome(NO,y) A Burglary(YES,y)
Burglaryreport(NONE,y) « Burglary(NO,y)

Alternative Outcome Statements
OneOf(GoodsRecovered( {NO,YES},y))
OneOf(StolenGoodsValue ({0,500,5000},y))
OneOf(Sale({OBTAINED, NOT OBTAINED} BIG-CORP HOLMES))
OneOf(Burglary ({YES,NO},y))
OneOf(GoHome ({YES,NO},x))

Informational Dependencies
GoHome ({YES, NO},y) |:

Probabilistic Dependencies
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StolenGoodsValue({0,500,5000},y)|,Burglary({YES,NO},y)
= P r(wGoodsValuelmBurglary) =
GoodsValue(0,y) GoodsValue(500,y) GoodsValue(5000,y)

Burglary(YES,y) .05 .55 .4
Burglary(NO,y) 1 0 0

¢))

GoodsRecovered({NO, YES}, y¥)|o
BurglaryReport ({NONE, IMMEDIATE, LATE},y) A
Burglary ({YES,NO},y) )]
= Pr (mAlarmleepoﬂ,mBurglary) =

Recovered(NO,y) Recovered(YES,y)

Report(NONE,y) /\ Burglary(YES,y) .99 .01
Report(NONE,y) N Burglary(NO,y) 0 1
Report(IMMEDIATE,y) /\ Burglary(YES,y) .5 .5
Report(IMMEDIATE,y) /\ Burglary(NO,y) 0 1
Report(LATE,y) /\ Burglary(YES,y) -0 1
Report(LATE,y) A Burglary(NO,y) .9 1

Sale ({OBTAINED,NOT OBTAINED},z,y) Ip
Meeting({ATTEND,NOT ATTEND},z,y) 3
= P r(wSaleleeeting) =

Sale(OBTAINED,z,y) Sale(NOT OBTAINED,z,y)

Meeting(ATTEND,z,y) .5 .5
Meeting(NOT ATTEND,z,y) .1 .9

Alarm({RING, NO RING},y|.Burglary({YES,NO},y)A
Earthquake ({YES, NO})

= Pr (wAlarml(l)Burglary’wQuake) = (4)
Alarm(RING,y) Alarm(NO RING,y)

Burglary(YES,y) /\ Earthquake(YES) .99 _ .01

Burglary(YES,y) /\ Earthquake(NO) .10 .90

Burglary(NO,y) /\ Earthquake(YES) .80 .20

Burglary(NO,y) /A Earthquake(NO) .001 .999
Earthquake ({YES,NO},y)|o = PR(®Earthquake) = ()

Earthquake(YES,y) Earthquake(NO,y)
.005 .995
Radlo({QUAKE NO QUAKE}) lpEarthquake({YES NO}) ©)
= Pr (wAlarmlearthquake) =
Radio(QUAKE) Radio(NO QUAKE)
Earthquake(YES,y) .98 .02

Earthquake(NO,y) .0 1.0
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Burglary ({YES,NO},¥)|p = Pr(wsurgian) = @
Burglary(YES,y) Burglary(NO,y)
.001 .999

PhoneCall ({REPORT,NONE},n,y)|,Neighbor(n,y) A
Alarm, ({RING,NO RING},y)

8
= Pr (wPhoneCalllwAlarm) = ( )
PhoneCall(REPORT,n,y) PhoneCallNO REPORT,n,y)
Alarm(RING,y) .6 .4
Alarm(NO RING,y) .0 1.0
PhoneCall ({REPORT, NONE}, WATSON, HOLMES) |p
Neighbor (WATSON,HOLMES) A Date(APRIL1) A )

Alarm({RING,NO RING}, HOLMES)
=P r(wPhoneCaIIIwAlarm) =

PhoneCall(REPORT,W,H) PhoneCalllNO REPORT,W,H)

Alarm(RING,H) .99 .01
Alarm(NO RING,H) .5 .5




