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“The mind is a neural computer, fitted by natural selection
with combinatorial algorithms for causal and probabilistic reason-
ing about plants, animals, objects, and people.

. . .
“In a universe with any regularities at all, decisions informed
about the past are better than decisions made at random. That
has always been true, and we would expect organisms, especially
informavores such as humans, to have evolved acute intuitions
about probability. The founders of probability, like the founders
of logic, assumed they were just formalizing common sense.”

Steven Pinker, How the Mind Works, 1997, pp. 524, 343.
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What is the real world made of?

A Features or random variables

B Words, pixels, phonemes . . .

C Entities and events (e.g., plants, people, diseases, lectures, university
courses)

D Huh? There is a real world?
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Motivation

AI studies what agents should
do.

Acting is gambling: agents
who don’t use probabilities
will lose to those who do.
No prediction is certain:
never believe anyone who
gives definitive predictions!

What is the world made up of?

ML: Features or random
variables
Everyone else: things
(entities, individuals) that
each have properties, and
there are relationships among
them

How can we reconcile these?

Probability Predicate 
Logic

Propositional 
Logic

Relational  
Probabilistic

Models

relations+logical 
variables+ 

quantification

measures over 
possible worlds
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What are relational models?

Introductions to AI and machine learning typically start with learning from
relations, e.g.:

Example Author Thread Length Where read User action

e1 known new long home skips
e2 unknown new short work reads
. . . . . . . . . . . . . . . . . .

What makes relational models in ML special is that the values include
meaningless names. E.g., student number, product id, user id, movie id:

User Movie Rating Timestamp

196 242 3 881250949
186 302 3 891717742
. . . . . . . . . . . .

(Movielens 100k)

Names can be changed or exchanged with exactly same meaning.
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Choosing Entities and Relations in Logic

First-order logical languages allow many different ways of representing
facts.
E.g., How to represent: “Pen #7 is red.”

red(pen7).

color(pen7, red).

prop(pen7, color , red).

a single relation can be implicit −→ triples:
(pen7, color , red).
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Triples are universal representations of relations

All relations can be represented in terms of triples:

. . . Pj . . .

. . . . . . . . .
ri . . . vij . . .

. . . . . . . . .

can be represented as

the triple (ri ,Pj , vij).

ri is either a primary key or a reified entity.

Examples of reified entities: a booking, a marriage, flight number,
transaction number, FIFA Wold Cup Final 2026.

prop(Entity ,Property ,Value) is the only relation needed:
(Entity ,Property ,Value) triples, semantic network, entity relationship
model, knowledge graphs, . . .
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Wikidata example: Christine Sinclair

Q262802

q262802-3B1AE42E

Q16

human

“크리스틴 싱클레어” (ko)

12 June 1983

“Canada” (en)

member_of_
sports_team

date_of_birth
name

instance_of

country_of_citizenship

name

Q30

“United States of 
America” (en)

name

“États-Unis” (fr) name

Q1446672

member_of_
sports_team

2013

start_time

65

number_
of_goals

161

number_of_
matches

“Portland Thorns” (en)

name

country

Q262802-9c5c267f

member_of_sports_team

Q499946

member_of_
sports_team

2000

start_time

190

number_
of_goals 319

number_of_
matches

“Canada women's 
national soccer team” (en)

name

country

“Christine Sinclair” (en)

name
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Warning: Many knowledge graphs convert to triples naively

Projecting onto pairs loses information:

For example:
Air Canada flies from New York to Vancouver
Air Canada flies from Vancouver to Los Angeles

These are true triples:
(Air Canada,Flies From,New York)
(Air Canada,Flies To, Los Angeles)

However, Air Canada does not fly from New York to Los Angeles.
The information about flights is lost!
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Warning: Many knowledge graphs convert to triples naively

FB15K, a knowledge base commonly used in research papers based on
FreeBase, contains test triples:

(Jade North,
/sports/pro athlete/teams./soccer/football roster position/position,
Defender (association football))
“Jade North plays position defender.”

(Derby County F.C.,
/soccer/football team/current roster./sports/sports team roster/position,
Defender (association football))
“Derby County football club has position defender.”

But use URIs (meaningless unique name) for Jade North, Derby County
F.C., etc

Please look at a knowledge graph before you use it!
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Entities are not like words

When representing words as vectors, interesting relations are learned:

king −man + woman = queen

It is tempting to want (translational models):

Dublin = Ireland + capital of

Ottawa = Canada+ capital of

But this entails:

Canada = Ireland − Dublin + Ottawa

Words can have simple meanings but (almost all) entities are
multi-faceted and complex.
Should we use the same sized vector for Canada as
Q262802-3B1AE42E (the reified relation between Christine Sinclair
and Portland Thorns)?
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Aside: Probabilities ↔ sigmoid

P(h | e) =
P(h ∧ e)

P(e)
=

P(h ∧ e)

P(h ∧ e) + P(¬h ∧ e)

=
1

1 + P(¬h ∧ e)/P(h ∧ e)

=
1

1 + e−(logP(h∧e)/P(¬h∧e))

= sigmoid(log odds(h | e))

sigmoid(x) = 1/(1 + e−x)

odds(h | e) = P(h ∧ e)

P(¬h ∧ e)
=

P(h | e)
1− P(h | e)

=
P(e | h)
P(e | ¬h)

P(h)

1− P(h)

Odds is a product ⇒ sigmoid of a sum → logistic regression
Typical: to learn probability of

Boolean feature: sigmoid of a linear function

discrete feature: softmax of a linear function
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Vector & Tensor Representations of Entities & Relations

To learn a binary relation, e.g., likes(Person,Movie) in pseudo
Python:

P(likes(p,m)) = sigmoid

(∑
f

E0[p][f ] ∗ E1[m][f ]

)

— matrix factorization.
Embedding = a vector of feature values
Embedding for each person (E0[p]) and movie (E1[m])

To learn triple: (h, r , t)

P((h, r , t)) = sigmoid

(∑
f

E0[h][f ] ∗ E1[r ][f ] ∗ E2[t][f ]

)

— polyadic decomposition model (1927): two vector embeddings for
each entity e (E0[e] and E2[e]) and one for reach relation r (E1[r ]).
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Polyadic decomposition variations

Polyadic decomposition doesn’t work very well...

Consider (p123, likes,m53) and (m53, directed by , p534).

Requires two embeddings per entity, but head embeddings and tail
embeddings do not interact.

DistMult: share same embedding for head and tail.
Problem: can only represent symmetric relations.

CompleX: like DistMult, but the embeddings are complex numbers,
tail is the conjugate of the head embedding

SimpleE: have an embedding for r−1 and learn to predict both
(h, r , t) and

(
t, r−1, h

)
SimpleE+ = SimplE with non-negative entity embeddings

can represent arbitrary relations
point-wise ≤ corresponds to implication
easy to explain what it learns
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What/how embedding-based models learn

PD+:

P((h, r , t)) = sigmoid

(∑
f

E0[h][f ] ∗ E1[r ][f ] ∗ E2[t][f ]

)
E0[h][f ] ≥ 0 E2[h][f ] ≥ 0.
Assume all embedding values are bounded.

Consider feature i : E0[h][i ] ∗ E1[r ][i ] ∗ E2[t][i ] ≈ 0
if E0[h][i ] ≈ 0 or E1[r ][i ] ≈ 0 or E2[r ][i ] ≈ 0.

Consider feature i : E0[h][i ] ∗ E1[r ][i ] ∗ E2[t][i ] ≫ 0
if E0[h][i ] ≫ 0 and E1[r ][i ] ≫ 0 and E2[t][i ] ≫ 0.
Feature i forms two soft clusterings of entities:

those e for which E0[e][i ] is high
those e for which E2[e][i ] is high

The entities in the first cluster are related to the entities in the
second cluster for any relations for which E1[r ][i ] is high.

Negative values of E1[r ][i ] provide exceptions.

17 David Poole Learning & reasoning about entities and relations



What/how embedding-based models learn

PD+:

P((h, r , t)) = sigmoid

(∑
f

E0[h][f ] ∗ E1[r ][f ] ∗ E2[t][f ]

)
E0[h][f ] ≥ 0 E2[h][f ] ≥ 0.
Assume all embedding values are bounded.

Consider feature i : E0[h][i ] ∗ E1[r ][i ] ∗ E2[t][i ] ≈ 0
if E0[h][i ] ≈ 0 or E1[r ][i ] ≈ 0 or E2[r ][i ] ≈ 0.

Consider feature i : E0[h][i ] ∗ E1[r ][i ] ∗ E2[t][i ] ≫ 0
if E0[h][i ] ≫ 0 and E1[r ][i ] ≫ 0 and E2[t][i ] ≫ 0.
Feature i forms two soft clusterings of entities:

those e for which E0[e][i ] is high
those e for which E2[e][i ] is high

The entities in the first cluster are related to the entities in the
second cluster for any relations for which E1[r ][i ] is high.

Negative values of E1[r ][i ] provide exceptions.

17 David Poole Learning & reasoning about entities and relations



What/how embedding-based models learn

PD+:

P((h, r , t)) = sigmoid

(∑
f

E0[h][f ] ∗ E1[r ][f ] ∗ E2[t][f ]

)
E0[h][f ] ≥ 0 E2[h][f ] ≥ 0.
Assume all embedding values are bounded.

Consider feature i : E0[h][i ] ∗ E1[r ][i ] ∗ E2[t][i ] ≈ 0
if E0[h][i ] ≈ 0 or E1[r ][i ] ≈ 0 or E2[r ][i ] ≈ 0.

Consider feature i : E0[h][i ] ∗ E1[r ][i ] ∗ E2[t][i ] ≫ 0
if E0[h][i ] ≫ 0 and E1[r ][i ] ≫ 0 and E2[t][i ] ≫ 0.

Feature i forms two soft clusterings of entities:
those e for which E0[e][i ] is high
those e for which E2[e][i ] is high

The entities in the first cluster are related to the entities in the
second cluster for any relations for which E1[r ][i ] is high.

Negative values of E1[r ][i ] provide exceptions.

17 David Poole Learning & reasoning about entities and relations



What/how embedding-based models learn

PD+:

P((h, r , t)) = sigmoid

(∑
f

E0[h][f ] ∗ E1[r ][f ] ∗ E2[t][f ]

)
E0[h][f ] ≥ 0 E2[h][f ] ≥ 0.
Assume all embedding values are bounded.

Consider feature i : E0[h][i ] ∗ E1[r ][i ] ∗ E2[t][i ] ≈ 0
if E0[h][i ] ≈ 0 or E1[r ][i ] ≈ 0 or E2[r ][i ] ≈ 0.

Consider feature i : E0[h][i ] ∗ E1[r ][i ] ∗ E2[t][i ] ≫ 0
if E0[h][i ] ≫ 0 and E1[r ][i ] ≫ 0 and E2[t][i ] ≫ 0.
Feature i forms two soft clusterings of entities:

those e for which E0[e][i ] is high
those e for which E2[e][i ] is high

The entities in the first cluster are related to the entities in the
second cluster for any relations for which E1[r ][i ] is high.

Negative values of E1[r ][i ] provide exceptions.

17 David Poole Learning & reasoning about entities and relations



What/how embedding-based models learn

PD+:

P((h, r , t)) = sigmoid

(∑
f

E0[h][f ] ∗ E1[r ][f ] ∗ E2[t][f ]

)
E0[h][f ] ≥ 0 E2[h][f ] ≥ 0.
Assume all embedding values are bounded.

Consider feature i : E0[h][i ] ∗ E1[r ][i ] ∗ E2[t][i ] ≈ 0
if E0[h][i ] ≈ 0 or E1[r ][i ] ≈ 0 or E2[r ][i ] ≈ 0.

Consider feature i : E0[h][i ] ∗ E1[r ][i ] ∗ E2[t][i ] ≫ 0
if E0[h][i ] ≫ 0 and E1[r ][i ] ≫ 0 and E2[t][i ] ≫ 0.
Feature i forms two soft clusterings of entities:

those e for which E0[e][i ] is high
those e for which E2[e][i ] is high

The entities in the first cluster are related to the entities in the
second cluster for any relations for which E1[r ][i ] is high.

Negative values of E1[r ][i ] provide exceptions.

17 David Poole Learning & reasoning about entities and relations



What/how embedding-based models learn

PD+:

P((h, r , t)) = sigmoid

(∑
f

E0[h][f ] ∗ E1[r ][f ] ∗ E2[t][f ]

)
E0[h][f ] ≥ 0 E2[h][f ] ≥ 0.
Assume all embedding values are bounded.

Consider feature i : E0[h][i ] ∗ E1[r ][i ] ∗ E2[t][i ] ≈ 0
if E0[h][i ] ≈ 0 or E1[r ][i ] ≈ 0 or E2[r ][i ] ≈ 0.

Consider feature i : E0[h][i ] ∗ E1[r ][i ] ∗ E2[t][i ] ≫ 0
if E0[h][i ] ≫ 0 and E1[r ][i ] ≫ 0 and E2[t][i ] ≫ 0.
Feature i forms two soft clusterings of entities:

those e for which E0[e][i ] is high
those e for which E2[e][i ] is high

The entities in the first cluster are related to the entities in the
second cluster for any relations for which E1[r ][i ] is high.

Negative values of E1[r ][i ] provide exceptions.

17 David Poole Learning & reasoning about entities and relations



Learning general knowledge vs learning about a data set

Suppose you want to create a model of who is friends with whom.

Options:

learn general knowledge, e.g., transitivity, how male and female
friendships work, how location affect friendship...
learn specific knowledge about who is friends with who; e.g., which
particular group of people are generally friends with each other.

The specific knowledge will tend to be more accurate on that
population, but doesn’t generalize to different populations.

The general knowledge will tend to transfer better.

Which is better depends on the goals and how success is measured.

Ideally we would try to do both; learn about specific entities and
general knowledge.

18 David Poole Learning & reasoning about entities and relations
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Beware of ranking

Most knowledge graphs only contain positive information.

How can we evaluate a prediction?

Test cases from FB15K:
(Jade North, Plays Position, ?)
(?, Plays Position, Defender)
(Derby County F.C., Has Position, ?)
(?, Has Position, Defender)

Common to use measures based on ranking such as
mean reciprocal rank (MRR), Hit@1, Hit@10.
(And then the sigmoid/softmax can be ignored).

Problem #1: is it not good for answers for which there is no answer
or many answers:
Who is the pope married to? Who has streamed Drake’s music?

Problem #2: an omniscient agent does poorly on ranking scores!

Challenge: design a good evaluation scheme. Log-likelihood seems
reasonable, but requires knowledge of negations.
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Beyond Triples

If we have relations with multiple arguments:

We could convert them to triples by reifying

. . . but the reified entities
have very few data points (number of arguments of original relations)

Design embedding-based model that work directly with original
relations

Allow them to be inferred from other relations
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Beyond Triples

Distmult, Complex, Simple, Simple+. . .P((h, r , t)) is function of

E0(h)
E1(r)
E2(t)

where each window (of size 2) is treated separately and then summed.

P(r(a1, a2, a3)) is function of

E0(a1)
E1(a2)
E2(a3)

r

window size varies; each window independent

21 David Poole Learning & reasoning about entities and relations



Beyond Triples

Distmult, Complex, Simple, Simple+. . .P((h, r , t)) is function of

E0(h)
E1(r)
E2(t)

where each window (of size 2) is treated separately and then summed.
P(r(a1, a2, a3)) is function of

E0(a1)
E1(a2)
E2(a3)

r

window size varies; each window independent

21 David Poole Learning & reasoning about entities and relations



Outline

1 What are relational probabilistic models and relational learning?
Relational Models
Knowledge Graphs

2 Learning Knowledge Graphs

3 Existence and Identity Uncertainty

4 Lifted Graphical Models

5 Graph-based models

6 Missing data

7 Big Data

8 Bayesian ⇒ Exchangeability ⇒ Lifted Inference

9 Conclusion
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What can’t any of the previous models do?

The embedding gives a measure of similarity not identity.

Consider a flight with stopover:

flight with stopover(A,B) ↔ ∃C flight(A,C ) ∧ flight(C ,B)

The airport the second flight leaves from must be the same – not just
similar – as the airport the first flight arrived at.

23 David Poole Learning & reasoning about entities and relations
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Identity

Example: in the room was

Sam’s mother
Chris’s football coach
a brilliant computer scientist

How many people were in the room?

Answer: at least one

If we also specified that there was no one else: there are between 1
and 3 people.

Aside: We need knowledge graphs to (be able to) state “there are no
more . . . ”

24 David Poole Learning & reasoning about entities and relations
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Identity ̸= similarity

Similar (same make, shape and color); not the same chair:

Not similar, but the same person:

=

25 David Poole Learning & reasoning about entities and relations



Existence and Identity are tricky

Is this reference to the same paper as this other reference?

Was there a burglar here last night?

Was the burglar the same person as one of the people in the line up?

Existence isn’t a property of an entity!
When existence is false, there is no entity.

Two entities cannot be equal (have same identity); otherwise there is
only one object.

Many methods (e.g., graph neural networks, Markov logic networks,
probabilistic logic programs . . . ) assume that this is already solved:
we know what entities exist and what descriptions are equal.

26 David Poole Learning & reasoning about entities and relations
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Correspondence Problem

Symbols Entities

h2: The tall house

h1: The house with the brown roof

h3: The house with the green roof

h4: The house with the pink roof

Equality corresponds to partition of the symbols.

There are more that exponential (in number of symbols) partitions (Bell
number).
Common to use MCMC.
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Outline

1 What are relational probabilistic models and relational learning?
Relational Models
Knowledge Graphs

2 Learning Knowledge Graphs
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Example: Predicting Relations

Student Course Grade

s1 c1 A
s2 c1 C
s1 c2 B
s2 c3 B
s3 c2 B
s4 c3 B
s3 c4 ?
s4 c4 ?

Students s3 and s4 have the same averages, on courses with the same
averages.

Which student would you expect to better on course c4?

29 David Poole Learning & reasoning about entities and relations



From Relations to Bayesian Belief Networks

Gr(s1, c1)
I(s1)

I(s2)

I(s3)

Gr(s2, c1)

Gr(s1, c2)

Gr(s2, c3)

D(c1)

D(c2)

I(s4)

D(c3)

D(c4)

Gr(s3, c2)

Gr(s4, c3)

Gr(s4, c4)

Gr(s3, c4)

I (S) D(C ) Gr(S ,C )
A B C

true true 0.5 0.4 0.1
true false 0.9 0.09 0.01
false true 0.01 0.09 0.9
false false 0.1 0.4 0.5

P(I (S)) = 0.5
P(D(C )) = 0.5

“parameter sharing”
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From Relations to Bayesian Belief Networks

Gr(s1, c1)
I(s1)

I(s2)

I(s3)

Gr(s2, c1)

Gr(s1, c2)

Gr(s2, c3)

D(c1)

D(c2)

I(s4)

D(c3)

D(c4)

Gr(s3, c2)

Gr(s4, c3)

Gr(s4, c4)

Gr(s3, c4)

I (S) D(C ) Gr(S ,C )
A B C

true true 0.5 0.4 0.1
true false 0.9 0.09 0.01
false true 0.01 0.09 0.9
false false 0.1 0.4 0.5

P(I (S)) = 0.5
P(D(C )) = 0.5

“parameter sharing”
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Example: Predicting Relations

http://artint.info/code/aispace/grades.xml
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Plate Notation

C

S

Gr(S,C)

I(S) D(C)

S , C logical variable representing students, courses

the set of entities of a type is called a population

I (S), Gr(S ,C ), D(C ) are parametrized random variables

Grounding:

for every student s, there is a random variable I (s)

for every course c , there is a random variable D(c)

for every s, c pair there is a random variable Gr(s, c)

all instances share the same structure and parameters
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Plate Notation

C

S

Gr(S,C)

I(S) D(C)

If there were 1000 students and 100 courses:
Grounding contains

1000 I (s) variables
100 D(c) variables
100000 Gr(s, c) variables

total: 101100 variables

To define the probabilities:
1 for I (S), 1 for D(C ), 8 for Gr(S ,C ) = 10 parameters.
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Outline

1 What are relational probabilistic models and relational learning?
Relational Models
Knowledge Graphs

2 Learning Knowledge Graphs

3 Existence and Identity Uncertainty

4 Lifted Graphical Models

5 Graph-based models

6 Missing data

7 Big Data

8 Bayesian ⇒ Exchangeability ⇒ Lifted Inference

9 Conclusion
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Relational Learning in (Lifted) Graphs

A common framework:

Nodes are entities (all existing, already disambiguated)

(Hyper)- edges between entities that are related.

Function of the dependency depends on the types of the entities.
(E.g., whether one person likes another depends on the properties of
entities, not their identity.)

Markov logic networks (MLNs), probabilistic logic programs (PLPs)
defined by factors with learnable parameters. All properties have a
probabilistic interpretation.

Graph neural networks (GNNs) defined by how properties
(embedding) of a node depend in its neighbours using a differentiable
function.

— main difference: in MLNs and PLPs, latent variables have a
probabilistic interpretation. GNNs choose the function to maximize
predictive performance.
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Aggregation

Aggregation is how the neighbours affect the prediction on a node.

Typically build a model of how neighbours of different types affect the
node.

When there can be an unboundedly many neighbours (of same type),
we need to combine them: aggregation

Example: predict gender(P) or age(P), the gender or age of person
P, from rating(P,M) the rating of person P on movie M.

E.g., Predict age of David from movies he rated.
Methods that project to lower dimensional representations don’t work,
because there isn’t one for gender or age.
One of the embeddings of each person can just memorize the age —
no generalization.

Requires aggregation: some models provide built-in aggregation, and
some you can use whatever aggregation you want.
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Representations of Lifted Graphical models

Common representations:

Aggregator Undirected Directed

Weighted Formulas Markov Logic Net-
works (MLNs)

Relational Logistic Re-
gression (RLR)

Existential quantifica-
tion = noisy-or

Probabilistic logic pro-
grams

explicit: typically sum,
average, or max

Graph Neural Net-
works
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Aggregation

For average and max aggregation , more data for a particular
individual doesn’t give better predictions.
E.g., one movie rated vs 1000 rated for a person.

for sum aggregation in GNNs, and aggregation in Markov Logic
networks and probabilistic logic programs, either

the prediction does not depend on neighbours, or
the prediction goes to 0 or 1 as the number of neighbours goes to
infinity, or
the numbers cancel out in an unstable way

for some models, this occurs even if there are no observations
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Real Data
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Observed P(25 < Age(u) < 45 | n), where n is number of movies watched
from the Movielens 100k dataset.
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Danger of fitting to data without understanding the model

Beware of models that fit polynomials of degree greater than 1.

Consider sigmoid of polynomials of degree 2:

sigmoid(−0.01n2 − 0.2n + 8)

sigmoid(0.01n2 − n + 16)

Both go from ≈ 1 at n = 10 to ≈ 0 at n = 30.
What happens as n → ∞?
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Outline

1 What are relational probabilistic models and relational learning?
Relational Models
Knowledge Graphs

2 Learning Knowledge Graphs

3 Existence and Identity Uncertainty

4 Lifted Graphical Models

5 Graph-based models

6 Missing data

7 Big Data

8 Bayesian ⇒ Exchangeability ⇒ Lifted Inference

9 Conclusion
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Missing data cannot be ignored

Example: there is a drug that only causes sick people to get sicker, and
drop out of study.

Placebo

Took drug

well

sick

very sick

dropped out

If people who drop out are ignored, it looks like the drug works:
A larger proportion of those who took the drug are well.

We need to go beyond the non-missing data to determine why data is
missing.

EM (and other methods) work, but produce nonsense!

Almost all data in relational models is missing, but missingness is
usually ignored
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Can’t Big Data and Deep Networks Just Solve This

Solution to poor prediction in ML models:

collect more data.

While knowledge graphs and relational databases might be huge,
there is often very little data about individual entities.

SNOMED CT is a medical ontology of clinical terms with about
100,000 concepts of what could be called diseases.
For almost every pair of symptoms, pair of diseases, no one in the
world has both!

Finding minerals to build batteries will help fight climate change.
For all mined commodities combined, there are fewer than 10,000
known high-grade deposits. These are complex. Undiscovered
deposits are (probably) unlike the known ones.

Reified entities have very few facts about them.

There is a long tail of entities about which we know very little
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Exchangeability

Before we know anything about entities, they are indistinguishable,
and so should be treated identically.
exchangeability — names can be exchanged and the model doesn’t
change.

Bayesianism: probability depends on what is known (conditioning)

Entities we have the same information about must have same
probability.

This provides a symmetry that can be exploited in Lifted Inference.

See Van den Broeck, Kersting, Natarajan and Poole (Eds) An
Introduction to Lifted Inference, MIT Press, 2021.
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probability.
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Conclusion / Challenges

We need to try to avoid overfitting to standard datasets.

We need better evaluation metrics
(e.g., one that an omniscient agent would do well on)
We need better ways to incorporate prior knowledge.
E.g., Wikidata has (almost) complete information about celebrities,
but the people in Wikidata is not a random sample.
Predicting properties of entities and relationships among entities are
(currently) different problems. Methods that work for one often don’t
work for other, but authors are often not explicit about what they do.
We need better models of aggregation.
We need to take existence and identity (equality) of entities more
seriously in general learning models.
We need to model missing data (causal problem)
Lots of (environmental) data coming, but need to deal with time,
ontologies, causality, big data (but small data about almost
everything) . . .
Will you step up to this challenge? There is still lots to do!
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What is now required is to give the greatest possible development
to mathematical logic, to allow to the full the importance of rela-
tions, and then to found upon this secure basis a new philosophical
logic, which may hope to borrow some of the exactitude and cer-
tainty of its mathematical foundation. If this can be successfully
accomplished, there is every reason to hope that the near future
will be as great an epoch in pure philosophy as the immediate past
has been in the principles of mathematics. Great triumphs inspire
great hopes; and pure thought may achieve, within our generation,
such results as will place our time, in this respect, on a level with
the greatest age of Greece.

– Bertrand Russell, Mysticism and Logic and Other Essays (1917)
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