Characterizing affiliative touch in humans and its role in advancing haptic design

Abstract

An emerging view in cognitive neuroscience holds that the extraction of emotional relevance from sensory experience extends beyond the centralized appraisal of sensation in associative brain regions, including frontal and medial-temporal cortices. This view holds that sensory information can be emotionally valenced from the point of contact with the world. This view is supported by recent research characterizing the human affiliative touch system, which carries signals of soft, stroking touch to the central nervous system and is mediated by dedicated C-tactile afferent receptors. This basic scientific research on the human affiliative touch system is informed by, and informs, technology design for communicating and regulating emotion through touch. Here, we review recent research on the basic biology and cognitive neuroscience of affiliative touch, its regulatory effects across the lifespan, and the factors that modulate it. We further review recent work on the design of haptic technologies, devices that stimulate the affiliative touch system, such as wearable technologies that apply the sensation of soft stroking or other skin-to-skin contact, to promote physiological regulation. We then point to future directions in interdisciplinary research aimed at both furthering scientific understanding and application of haptic technology for health and wellbeing.

Publication
In Annals of the New York Academy of Sciences