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Notes

! Final Project
• Please contact me this week with ideas, so

we can work out a good topic
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Reduced Coordinates

! Constraint methods from last class involved
adding forces, variables etc. to remove degrees
of freedom

! Inevitably have to deal with drift, error, …
! Instead can (sometimes) formulate problem to

directly eliminate degrees of freedom
• Give up some flexibility in exchange for eliminating

drift, possibly running a lot faster

! “Holonomic constraints”: if we have n true
degrees of freedom, can express current
position of system with n variables
• Rigid bodies: centre of mass and Euler angles

• Articulated rigid bodies: base link and joint angles
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Finding the equations of motion

! Unconstrained system state is x, but holonomic
constraints mean x=x(q)
• The vector q is the “generalized” or “reduced”

coordinates of the system

• dim(q) < dim(x)

! Suppose our unconstrained dynamics are

• Could include rigid bodies if M includes inertia tensors
as well as standard mass matrices

! What will the dynamics be in terms of q?

! 

d

dt
Mv( ) = F
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Principle of virtual work

! Differentiate x=x(q):

! That is, legal velocities are some linear
combination of the columns of
• (coefficients of that combination

are just dq/dt)

! Principle of virtual work: constraint force
must be orthogonal to this space

! 

v =
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"q
˙ q 
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Equation of motion

! Putting it together, just like rigid bodies,

• Note we get a matrix times second derivatives, which
we can invert at any point for second order time
integration

• Generalized forces on right hand side

• Other terms are pseudo-forces (e.g. Coriolis,
centrifugal force, …)
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Generalized Forces

! Sometimes the force is known on the
system, and so the generalized force just
needs to be calculated
• E.g. gravity

! But often we don’t care what the true force
is, just what its effect is: directly specify
the generalized forces
• E.g. joint torques
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Cleaning things up

! Equations are rather messy still

! Classical mechanics has spent a long time
playing with the equations to make them
nicer
• And extend to include non-holonomic

constraints for example

! Let’s look at one of the traditional
approaches: Lagrangian mechanics
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Setting up Lagrangian Equations

! For simplicity, assume we model our system
with N point masses, positions controlled by
generalized coordinates

! We’ll work out equations via kinetic energy
! As before
! Using principle of virtual work, can eliminate

constraint forces:

! Equation j is just
! 

F
constraint

+ F = Ma
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Introducing Kinetic Energy

  

! 

mi

v 
a i "

#
v 
x i

#q ji=1

N

$ = mi

d

dt

v 
v i "

#
v 
x i

#q j

% 

& 
' ' 

( 

) 
* * +

v 
v i "

d

dt

#
v 
x i

#q j

% 

& 
' ' 

( 

) 
* * 

i=1

N

$

= mi

d

dt

v 
v i "

#
v 
v i

# ˙ q j

% 

& 
' ' 

( 

) 
* * +

v 
v i "

#
v 
v i

#q j

% 

& 
' ' 

( 

) 
* * 

i=1

N

$

= mi

d

dt

1

2

#

# ˙ q j
vi

2
% 

& 
' ' 

( 

) 
* * +

1

2

#

#q j

vi

2
% 

& 
' ' 

( 

) 
* * 

i=1

N

$

=
d

dt

#

# ˙ q j

1

2
mi vi

2

i=1

N

$
% 

& 
' ' 

( 

) 
* * +

#

#q j

1

2
mi vi

2

i=1

N

$

=
d

dt

#T

# ˙ q j
+
#T

#q j 10cs533d-winter-2005

Lagrangian Equations of Motion

! Label the j’th generalized force

! Then the Lagrangian equations of motion
are (for j=1, 2, …):
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Potential Forces

! If force on system is the negative gradient of a
potential W (e.g. gravity, undamped springs, …)
then further simplification:

! Plugging this in:

! Defining the Lagrangian L=T-W,
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Implementation

! For any kind of reasonably interesting articulated figure,
expressions are truly horrific to work out by hand

! Use computer: symbolic computing, automatic
differentiation

! Input a description of the figure

! Program outputs code that can evaluate terms of
differential equation

! Use whatever numerical solver you want (e.g. Runge-
Kutta)

! Need to invert matrix every time step in a numerical
integrator
• Gimbal lock…



13cs533d-winter-2005

Fluid mechanics
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Fluid mechanics

! We already figured out the equations of motion for
continuum mechanics

! Just need a constitutive model

! We’ll look at the constitutive model for “Newtonian” fluids
today
• Remarkably good model for water, air, and many other simple

fluids

• Only starts to break down in extreme situations, or more
complex fluids (e.g. viscoelastic substances)

! 

"˙ ̇ x =# $% + "g

! 

" =" x, t,#, ˙ # ( )
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Inviscid Euler model

! Inviscid=no viscosity

! Great model for most situations
• Numerical methods end up with viscosity-like error terms

anyways…

! Constitutive law is very simple:

• New scalar unknown: pressure p

• Barotropic flows: p is just a function of density
(e.g. perfect gas law p=k(!-!0)+p0 perhaps)

• For more complex flows need heavy-duty thermodynamics: an
equation of state for pressure, equation for evolution of internal
energy (heat), …

! 

" ij = #p$ij
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Lagrangian viewpoint

! We’ve been working with Lagrangian methods
so far
• Identify chunks of material,

track their motion in time,
differentiate world-space position or velocity w.r.t.
material coordinates to get forces

• In particular, use a mesh connecting particles to
approximate derivatives (with FVM or FEM)

! Bad idea for most fluids
• [vortices, turbulence]

• At least with a fixed mesh…
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Eulerian viewpoint

! Take a fixed grid in world space, track how
velocity changes at a point

! Even for the craziest of flows, our grid is always
nice

! (Usually) forget about object space and where a
chunk of material originally came from
• Irrelevant for extreme inelasticity

• Just keep track of velocity, density, and whatever else
is needed
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Conservation laws

! Identify any fixed volume of space

! Integrate some conserved quantity in it
(e.g. mass, momentum, energy, …)

! Integral changes in time only according to
how fast it is being transferred from/to
surrounding space
• Called the flux

• [divergence form]

! 
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Conservation of Mass

! Also called the continuity equation
(makes sure matter is continuous)

! Let’s look at the total mass of a volume
(integral of density)

! Mass can only be transferred by moving it:
flux must be !u

! 
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Material derivative

! A lot of physics just naturally happens in the
Lagrangian viewpoint
• E.g. the acceleration of a material point results from

the sum of forces on it

• How do we relate that to rate of change of velocity
measured at a fixed point in space?

• Can’t directly: need to get at Lagrangian stuff
somehow

! The material derivative of a property q of the
material (i.e. a quantity that gets carried along
with the fluid) is

! 

Dq

Dt
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Finding the material derivative

! Using object-space coordinates p and map x=X(p) to
world-space, then material derivative is just

! Notation: u is velocity (in fluids, usually use u but
occasionally v or V, and components of the velocity
vector are sometimes u,v,w)

! 

D

Dt
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q t,X(t, p)( )

=
"q

"t
+#q $

"x

"t
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Compressible Flow

! In general, density changes as fluid compresses
or expands

! When is this important?
• Sound waves (and/or high speed flow where motion is

getting close to speed of sound - Mach numbers
above 0.3?)

• Shock waves

! Often not important scientifically, almost never
visually significant
• Though the effect of e.g. a blast wave is visible! But

the shock dynamics usually can be hugely simplified
for graphics
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Incompressible flow

! So we’ll just look at incompressible flow,
where density of a chunk of fluid never
changes
• Note: fluid density may not be constant

throughout space - different fluids mixed
together…

! That is, D!/Dt=0

24cs533d-winter-2005

Simplifying

! Incompressibility:

! Conservation of mass:

! Subtract the two equations, divide by !:

" Incompressible == divergence-free velocity
• Even if density isn’t uniform!

! 
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Conservation of momentum

! Short cut: in

use material derivative:

! Or go by conservation law, with the flux due to
transport of momentum and due to stress:
• Equivalent, using conservation of mass

! 

"˙ ̇ x =# $% + "g

! 

"
Du

Dt
=# $% + "g

" ut + u $ #u( ) =# $% + "g
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"u( )
t
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Inviscid momentum equation

! Plug in simplest consitutive law (#=-p$)
from before to get

• Together with conservation of mass: the Euler
equations

! 

" ut + u # $u( ) = %$p + "g

ut + u # $u+
1

"
$p = g
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Incompressible inviscid flow

! So the equations are:

! 4 equations, 4 unknowns (u, p)

! Pressure p is just whatever it takes to make
velocity divergence-free

! In fact, incompressibility is a hard constraint;
div and grad are transposes of each other and
pressure p is the Lagrange multiplier
• Just like we figured out constraint forces before…

! 

ut + u " #u+ 1

$
#p = g

# " u = 0
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Pressure solve

! To see what pressure is, take divergence of
momentum equation

! For constant density, just get Laplacian (and this
is Poisson’s equation)

! Important numerical methods use this approach
to find pressure

! 

" # ut + u # "u+ 1

$
"p % g( ) = 0

" # 1

$
"p( ) = %" # ut + u # "u% g( )
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Projection

! Note that %•ut=0 so in fact

" After we add %p/! to u•%u, divergence must be zero

" So if we tried to solve for additional pressure, we get
zero

" Pressure solve is linear too

" Thus what we’re really doing is a projection of u•%u-g
onto the subspace of divergence-free functions:
ut+P(u•%u-g)=0

! 

" # 1
$
"p = %" # u # "u% g( )


