Data-Efficient Learning On Structured Output Data **Raghav Goyal**

- Advised by Prof. Leonid Sigal
- **Committee members: Mark Schmidt and Kwang Moo Yi**
 - **External examiner: Dima Damen**
- **University examiners: Purang Abolmaesumi and Michiel van de Panne**
 - **Chair: Christoph Ortner**

Nov 19, 2024

Thesis Statement

We explore data-efficient learning approaches for visual structured prediction tasks

Positioning: Image understanding

Object Classification

Horse

Granularity of the tasks

Object Detection

Man

Horse

Object Segmentation

Woman

Horse

Man

Horse

Scene Graph Detection

Positioning: Image understanding

Fully-supervised Multi-task Semi-supervised Few-shot Weakly-supervised

> Object Classification

Woman

Horse

Granularity of the tasks

Object Detection

Man

Horse

Object Segmentation

Woman

Horse

Man

Horse

Scene Graph Detection

Positioning: Image understanding

Fully-supervised

Multi-task

Semi-supervised

Few-shot

Weakly-supervised

Object Classification

Woman

Horse

S Khandelwal*, **<u>R Goyal</u>*** and L Sigal. "UniT: Unified Knowledge Transfer for Any-shot Object Detection and Segmentation". In CVPR 2021.

 Fully supervised (a)
 Weakly supervised (b)
 Weakly supervised (c)
 Ours (d)

 R Goyal and L Sigal. "A Simple Baseline for Weakly-Supervised Human-centric Relation Detection". In BMVC 2021.

Granularity of the tasks

Object Detection

Man

Horse

Object Segmentation

Woman

Horse

Man

Horse

Scene Graph Detection

Positioning: Video understanding

Fully-supervised Multi-task Semi-supervised Few-shot Weakly-supervised

> Action Classification

Granularity of the tasks

Action Localization

Spatio-Temporal Localization

Video Object Segmentation

Carrying an object

Q:

Positioning: Video understanding

Fully-supervised

Multi-task

Semi-supervised

Few-shot

Weakly-supervised

Action Classification

R Goyal, E Mavroudi, X Yang, S Sukhbaatar, L Sigal, M Feiszli, L Torresani, D Tran sk Video Grounding From Multimodal Queries", arXiv, 2302.0806

<u>R Goyal</u>*, WC Fan*, M Siam, L Sigal, . "TAM-VT: Transformation-Aware Multi scale Video Transformer for Segmentation and Tracking". In WACV 2025

Granularity of the tasks

Action Localization

Overview of the presentation

Image tasks

(a) Squared Euclidean Distance (b) Squared Mahalanobis Distance

P Bateni, **R Goyal**, V Masrani, F Wood and L Sigal. "Improved Few-Shot Visual Classification". In CVPR 2020.

S Khandelwal*, **<u>R Goyal</u>*** and L Sigal. "UniT: Unified Knowledge Transfer for Any-shot Object Detection and Segmentation". In CVPR 2021.

R Goyal and L Sigal. "A Simple Baseline for Weakly-Supervised Human-centric Relation Detection". In BMVC 2021.

* denotes equal contribution

Video tasks

IV

<u>R Goyal</u>, E Mavroudi, X Yang, S Sukhbaatar, L Sigal, M Feiszli, L Torresani, D Tran. "MINOTAUR: Multi-task Video Grounding From Multimodal Queries". arXiv. 2302.08063.

<u>R Goyal</u>*, WC Fan*, M Siam, L Sigal, . "TAM-VT: Transformation-Aware Multi-scale Video Transformer for Segmentation and Tracking". In WACV 2025.

NB Gundavarapu*, L Friedman*, **<u>R Goyal</u>***, C Hegde*, E Agustsson, S M Waghmare, M Sirotenko, MH Yang, T Weyand, B Gong, L Sigal . "Extending Video Masked Autoencoders to 128 frames". In NeurIPS 2024.

Overview of the presentation

Image tasks

(a) Squared Euclidean Distance (b) Squared Mahalanobis Distance

P Bateni, **R Goyal**, V Masrani, F Wood and L Sigal. "Improved Few-Shot Visual Classification". In CVPR 2020.

S Khandelwal*, **<u>R Goyal</u>*** and L Sigal. "UniT: Unified Knowledge Transfer for Any-shot Object Detection and Segmentation". In CVPR 2021.

R Goyal and L Sigal. "A Simple Baseline for Weakly-Supervised Human-centric Relation Detection". In BMVC 2021.

* denotes equal contribution

Video tasks

<u>R Goyal</u>, E Mavroudi, X Yang, S Sukhbaatar, L Sigal, M Feiszli, L Torresani, D Tran . "MINOTAUR: Multi-task Video Grounding From Multimodal Queries". arXiv. 2302.08063.

R Goyal*, WC Fan*, M Siam, L Sigal, . "TAM-VT: Transformation-Aware Multi-scale Video Transformer for Segmentation and Tracking". In WACV 2025.

NB Gundavarapu*, L Friedman*, **R Goyal***, C Hegde*, E Agustsson, S M Waghmare, M Sirotenko, MH Yang, T Weyand, B Gong, L Sigal . "Extending Video Masked Autoencoders to 128 frames". In NeurIPS 2024.

IV

RMATION SYSTEMS

Chapter I

Image tasks

P Bateni, **R Goyal**, V Masrani, F Wood and L Sigal. "Improved Few-Shot Visual Classification". In CVPR 2020.

S Khandelwal*, **<u>R Goyal</u>*** and L Sigal. "UniT: Unified Knowledge Transfer for Any-shot Object Detection and Segmentation". In CVPR 2021.

R Goyal and L Sigal. "A Simple Baseline for Weakly-Supervised Human-centric Relation Detection". In BMVC 2021.

* denotes equal contribution

Video tasks

IV

R Goyal, E Mavroudi, X Yang, S Sukhbaatar, L Sigal, M Feiszli, L Torresani, D Tran. "MINOTAUR: Multi-task Video Grounding From Multimodal Queries". arXiv. 2302.08063.

R Goyal*, WC Fan*, M Siam, L Sigal, . "TAM-VT: Transformation-Aware Multi-scale Video Transformer for Segmentation and Tracking". In WACV 2025.

NB Gundavarapu*, L Friedman*, **R Goyal***, C Hegde*, E Agustsson, S M Waghmare, M Sirotenko, MH Yang, T Weyand, B Gong, L Sigal . "Extending Video Masked Autoencoders to 128 frames". In NeurIPS 2024.

I. Contributions

- framework
- Explored effectiveness of different (strong / weak) forms of supervision in a limited **budget setting**

• First method that seamlessly incorporates zero- to few-shot supervision in a single

I. Complexity of Annotation

Annotation is costlier for granular instance-level tasks like object detection and segmentation.

[1] Bearman et al., "What's the point: Semantic segmentation with point supervision", ECCV, 2016.

Cost of Annotation

Abundant

1____

Hoffman et al. "LSDA: Large scale detection through adaptation." In NeurIPS 2014. Tang et al. "Large scale semi-supervised object detection using visual and semantic knowledge transfer." In ICCV 2016. Kumar Singh et al. "Dock: Detecting objects by transferring common-sense knowledge". In ECCV 2018.

Image-level object data gives us weak detectors

Abundant

Novel classes

Image-level data

Hoffman et al. "LSDA: Large scale detection through adaptation." In NeurIPS 2014. Tang et al. "Large scale semi-supervised object detection using visual and semantic knowledge transfer." In ICCV 2016. Kumar Singh et al. "Dock: Detecting objects by transferring common-sense knowledge". In ECCV 2018.

Learn \triangle from weak to strong detectors

Abundant

Novel classes

Image-level data

Hoffman et al. "LSDA: Large scale detection through adaptation." In NeurIPS 2014. Tang et al. "Large scale semi-supervised object detection using visual and semantic knowledge transfer." In ICCV 2016. Kumar Singh et al. "Dock: Detecting objects by transferring common-sense knowledge". In ECCV 2018.

Hoffman et al. "LSDA: Large scale detection through adaptation." In NeurIPS 2014. Tang et al. "Large scale semi-supervised object detection using visual and semantic knowledge transfer." In ICCV 2016. Kumar Singh et al. "Dock: Detecting objects by transferring common-sense knowledge". In ECCV 2018.

I. Limited budget for novel classes

[1] VOC dataset has 20 object classes and 2.8 objects on avg. per image
[2] Su, Hao, Jia Deng, and Li Fei-Fei. "Crowdsourcing annotations for visual object detection." In AAAI 2012.

Novel classes

I. Limited budget for novel classes

[1] VOC dataset has 20 object classes and 2.8 objects on avg. per image
[2] Su, Hao, Jia Deng, and Li Fei-Fei. "Crowdsourcing annotations for visual object detection." In AAAI 2012.

I. Limited budget for novel classes

Budget: 10 instance-level annotations

	%		AP ₅₀
More budget	Instance	Weak	111 30
towards	100	0	N/A
weak	90	10	49.2 ± 0.6
annotations	50	50	54.0 ± 0.8
	0	100	59.0 ± 1.5 .

[1] VOC dataset has 20 object classes and 2.8 objects on avg. per image
[2] Su, Hao, Jia Deng, and Li Fei-Fei. "Crowdsourcing annotations for visual object detection." In AAAI 2012.

Chapter II

Image tasks

P Bateni, **R Goyal**, V Masrani, F Wood and L Sigal. "Improved Few-Shot Visual Classification". In CVPR 2020.

S Khandelwal*, **R Goyal*** and L Sigal. "UniT: Unified Knowledge Transfer for Any-shot Object Detection and Segmentation". In CVPR 2021.

<u>R Goyal</u> and L Sigal. "A Simple Baseline for Weakly-Supervised Human-centric Relation Detection". In BMVC 2021.

* denotes equal contribution

Video tasks

IV

R Goyal, E Mavroudi, X Yang, S Sukhbaatar, L Sigal, M Feiszli, L Torresani, D Tran . "MINOTAUR: Multi-task Video Grounding From Multimodal Queries". arXiv. 2302.08063.

R Goyal*, WC Fan*, M Siam, L Sigal, . "TAM-VT: Transformation-Aware Multi-scale Video Transformer for Segmentation and Tracking". In WACV 2025.

NB Gundavarapu*, L Friedman*, **R Goyal***, C Hegde*, E Agustsson, S M Waghmare, M Sirotenko, MH Yang, T Weyand, B Gong, L Sigal . "Extending Video Masked Autoencoders to 128 frames". In NeurIPS 2024.

II. Contributions

results compared with stronger supervision

• Weaker supervision for human-object interaction (scene-graphs) leads to competitive

II. Spectrum of weak-supervision for scene-graph

Fully supervised

Object bounding boxes and their labels <u>Grounded</u> relation triplets <sub,pred,obj>

Bo Dai, Yuqi Zhang, and Dahua Lin. Detecting visual relationships with deep relational networks. In CVPR 2017. Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-Fei. Visual relationship detection with language priors. In ECCV 2016. Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei. Scene graph generation by iterative message passing. In CVPR 2017. Rowan Zellers, Mark Yatskar, Sam Thomson, and Yejin Choi. Neural motifs: Scene graph parsing with global context. In CVPR 2018.

II. Spectrum of weak-supervision for scene-graph

<u>Grounded</u> relation triplets <sub,pred,obj>

(b) Julia Peyre, Josef Sivic, Ivan Laptev, and Cordelia Schmid. Weakly-supervised learning of visual relations. In ICCV 2017. (b) Hanwang Zhang, Zawlin Kyaw, Jinyang Yu, and Shih-Fu Chang. Ppr-fcn: Weakly supervised visual relation detection via parallel pairwise r-fcn. In ICCV 2017. (c) Federico Baldassarre, Kevin Smith, Josephine Sullivan, and Hossein Azizpour. Explanation-based weakly-supervised learning of visual relations with graph networks. In ECCV 2020.

II. Weak supervision

Ground-truth

person ride skis

Ground-truth

Prediction

person stand on surfboard

Prediction

person straddle horse

person straddle horse person lasso cow person hold cow

RelDN $[50]$	25.00	26.21
Graph R-CNN [44]	24.12	25.77
MSDN [17]	24.00	25.64
IMP [43]	23.88	25.52
Freq Prior [47]	24.03	24.87
Fully-supervised VRD [22]	10.28	10.94
Method	R@20	R@50

Action Genome dataset

Weak supervision can be competitive with fully-supervised approaches

Chapter III

Image tasks

P Bateni, **R Goyal**, V Masrani, F Wood and L Sigal. "Improved Few-Shot Visual Classification". In CVPR 2020.

S Khandelwal*, **R Goyal*** and L Sigal. "UniT: Unified Knowledge Transfer for Any-shot Object Detection and Segmentation". In CVPR 2021.

<u>R Goyal</u> and L Sigal. "A Simple Baseline for Weakly-Supervised Human-centric Relation Detection". In BMVC 2021.

Video tasks

IV

<u>R Goyal</u>, E Mavroudi, X Yang, S Sukhbaatar, L Sigal, M Feiszli, L Torresani, D Tran . "MINOTAUR: Multi-task Video Grounding From Multimodal Queries". arXiv. 2302.08063.

R Goyal*, WC Fan*, M Siam, L Sigal, . "TAM-VT: Transformation-Aware Multi-scale Video Transformer for Segmentation and Tracking". In WACV 2025.

NB Gundavarapu*, L Friedman*, **R Goyal***, C Hegde*, E Agustsson, S M Waghmare, M Sirotenko, MH Yang, T Weyand, B Gong, L Sigal . "Extending Video Masked Autoencoders to 128 frames". In NeurIPS 2024.

III. Contributions

- We study heterogenous video tasks under a **single, unified model**
- We find multi-task learning leads to cross-task transfer and generalization to unseen tasks

Let's find answers in the video!

When and where did I last see

When did I put the spanner?

When did l repair small equipment?

When and where did I last see

When did I put the spanner?

When did I repair small equipment?

Heterogeneous nature of output

When and wher

last see

When did spanner?

repair small equipment

Multi-modal nature of input queries

?

When and wher

object grounding

When did **spanner**

objects \leftrightarrow actions

repair small equipment

Video object tracking

Grauman et al. 2022 Xu et al. 2022

Grauman, Kristen, et al. "Ego4d: Around the world in 3,000 hours of egocentric video." In CVPR 2022

Video language grounding

Liu et al. 2022 Zhang et al. 2021 Yang et al. 2022

Zhang, Hao, et al. "Span-based localizing network for natural language video localization." arXiv:2004.13931 (2020)

Action detection

Yang et al. 2020 Zhao et al. 2021 Liu et al. 2022 Zhang et al. 2022

Zhao, Chen, Ali K. Thabet, and Bernard Ghanem. "Video self-stitching graph network for temporal action localization." In ICCV 2021.

Visual Query (VQ2D)

When and where did I last see

Natural Language Query (NLQ)

When did I put the spanner?

Moment Query (MQ) When did I repair small equipment?

III. Multi-task learning leads to cross-task transfer

We train on three tasks using multi-task learning

III. Multi-task learning leads to cross-task transfer

We train on three tasks using multi-task learning

		R	@5, tIoU=
Category	Template	NLQ only	All-Tasks
	Where is object X before / after event Y?	6.21	7.30
	Where is object X?	10.29	13.42
	What did I put in X?	5.43	7.67
	How many X's? (quantity)	17.67	23.67
Objects	What X did I Y?	9.94	13.78
	In what location did I see object X?	10.24	11.95
	What X is Y?	10.13	12.42
	State of an object Where is my object X?	11.31 6.49	22.02 11.69
Place	Where did I put X?	5.43	7.67
	Who did I interact with when I did activity X?	12.75	11.76
People	Who did I talk to in location X?	15.66	16.87
_	When did I interact with person with role X?	4.00	4.00

Language grounding (NLQ) benefits from Video tracking (VQ2D) task

III. Multi-task learning generalizes to <u>unseen</u> tasks

Input

Visual

Language / Class-label

Language

Output	Task
Spatio-Temporal	VQ2D
Temporal	NLQ / MQ
Spatio-Temporal	No supervision

III. Multi-task learning generalizes to <u>unseen</u> tasks

		Spatio-	temporal		Temporal
Model	spatial	st	IoU=0.3	mean	mean
110401	branch	R@ 1	R@5	stIoU	tIoU
NLQ-only	N/A	-	-	-	5.35
	random boxes	0 ± 0	0 ± 0	0.40 ± 0.04	
MINOTAUR (All-Tasks)	random centered boxes	0 ± 0	0.47 ± 0.38	1.25 ± 0.03	8.35
	All-Tasks	2.33	4.65	2.27	

Zero-shot spatio-temporal localization on NLQ task

Output	Task
Spatio-Temporal	VQ2D
Temporal	NLQ / MQ
Spatio-Temporal	No supervision

Evaluated on **spatially annotated** subset of validation data (=10 videos / question)

OBJECT CROP TO SEARCH IN THE VIDEO

III. A video example result

Chapter IV

Image tasks

(a) Squared Euclidean Distance (b) Squared Mahalanobis Distance

P Bateni, **R Goyal**, V Masrani, F Wood and L Sigal. "Improved Few-Shot Visual Classification". In CVPR 2020.

S Khandelwal^{*}, **R Goyal^{*}** and L Sigal. "UniT: Unified Knowledge Transfer for Any-shot Object Detection and Segmentation". In CVPR 2021.

R Goyal and L Sigal. "A Simple Baseline for Weakly-Supervised Human-centric Relation Detection". In BMVC 2021.

^t denotes equal contribution

Video tasks

R Goyal, E Mavroudi, X Yang, S Sukhbaatar, L Sigal, M Feiszli, L Torresani, D Tran . "MINOTAUR: Multi-task Video Grounding From Multimodal Queries". arXiv. 2302.08063.

IV

<u>R Goyal</u>*, WC Fan*, M Siam, L Sigal, . "TAM-VT: Transformation-Aware Multi-scale Video Transformer for Segmentation and Tracking". In WACV 2025.

NB Gundavarapu*, L Friedman*, **R Goyal***, C Hegde*, E Agustsson, S M Waghmare, M Sirotenko, MH Yang, T Weyand, B Gong, L Sigal . "Extending Video Masked Autoencoders to 128 frames". In NeurIPS 2024.

RMATION SYSTEMS

IV. Contributions

- videos
- We find time-coded memory and transformation-aware loss to be crucial components

We explore spatio-temporal video object segmentation with deformations on long

IV. Video Object Segmentation under **Transformations**

Large deformations

State changes and/or multiple instances

Small objects (<1% relative area)

Objects can get lost at a typical feature map resolution $(=1/16^{th})$

Long videos (>20 secs)

Drift in tracking

IV. Video Object Segmentation under **Transformations**

Large deformations

State changes and/or multiple instances

Objects can get lost at a typical feature map resolution $(=1/16^{th})$

Dense propagation that takes semantics into account

Yang, Z., et al. Associating objects with transformers for video object segmentation. NeurIPS 2021 Oh, S.et al. Video object segmentation using space-time memory networks. ICCV 2019

Karim, Rezaul, et al. "MED-VT: Multiscale encoder-decoder video transformer with application to object segmentation." CVPR 2023. Seong, H., et al. Hierarchical memory matching network for video object segmentation. ICCV 2021.

Small objects (<1% relative area)

Long videos (>20 secs)

Drift in tracking

Multi-scale feature maps

Robust **memory** module to track changes long-term

Cheng, Ho Kei, et al. "Xmem: Long-term video object segmentation with an atkinson-shiffrin memory model." ECCV 2022. Hong, Lingyi, et al. "Lvos: A benchmark for long-term video object segmentation." ICCV 2023.

IV. Comparison to the previous chapter

+ Visual encoding at multiple scales
+ Memory module to store past predictions
+ Dense matching to propagate memory

Divide input video non-overlapping clips (each of length L frames)

Encode a query clip (=**L**) using image backbone and retrieve Memory (=**N**)

Perform **dense matching** b/w Query clip (=**L**) and Memory (=**N**) using attention over multiple-scales

#1 Relative Time Encoding (RTE)

Idea: Modulate association from memory based on time / recency

#2 Transformation-aware Loss

Idea: Place greater emphasis on frames that contains objects undergoing transformations

Use Pixel Decoder to obtain Contextualized Feature Pyramid, followed by Space-Time Decoder to obtain mask predictions

IV. Results

Approach	Dre training	VOST		
Approach	rie-training	$\mathcal{J}_{\mathrm{tr}}$	\mathcal{J}	
OSMN-Match [50]	Static + DAVIS [38]	7.0	8.7	
OSMN-Tune [50]	Static + DAVIS	17.6	23.0	
CRW [23]	IN1K [14] + DAVIS	13.9	23.7	
HODOR-Img ^[1]	COCO [32] + DAVIS	13.9	26.2	
HODOR-Vid [1]	COCO + DAVIS	25.4	37.1	
CFBI [51]	IN1K + COCO + DAVIS	32.0	45.0	
CFBI+ [53]	Static + DAVIS	32.6	46.0	
XMem [8]	Static + DAVIS	33.8	44.1	
AOT [†] [52]	Static	35.1	47.1	
AOT [52]	Static + DAVIS	36.4	48.7	
TAM-VT(Ours)	Static	36.5	48.2	
TAM-VT(Ours)	Static + DAVIS	37.7	49.3	

(a) Val performance on VOST

Outperforms prior approaches

IV. Results

Dre training	VC	ST
rie-training	$\mathcal{J}_{ m tr}$	$\mathcal J$
Static + DAVIS [38]	7.0	8.7
Static + DAVIS	17.6	23.0
IN1K [14] + DAVIS	13.9	23.7
COCO [32] + DAVIS	13.9	26.2
COCO + DAVIS	25.4	37.1
IN1K + COCO + DAVIS	32.0	45.0
Static + DAVIS	32.6	46.0
Static + DAVIS	33.8	44.1
Static	35.1	47.1
Static + DAVIS	36.4	48.7
Static	36.5	48.2
Static + DAVIS	37.7	49.3
	Pre-training Static + DAVIS [38] Static + DAVIS IN1K [14] + DAVIS COCO [32] + DAVIS COCO = DAVIS IN1K + COCO + DAVIS Static + DAVIS Static + DAVIS Static + DAVIS Static + DAVIS Static + DAVIS	$\begin{array}{r c} \mbox{Pre-training} & \begin{tabular}{ c c c c } \hline VC \\ \hline \mathcal{J}_{tr} \\ \hline Static + DAVIS [38] & 7.0 \\ Static + DAVIS & 17.6 \\ IN1K [14] + DAVIS & 17.6 \\ IN1K [14] + DAVIS & 13.9 \\ COCO [32] + DAVIS & 13.9 \\ COCO + DAVIS & 25.4 \\ IN1K + COCO + DAVIS & 25.4 \\ IN1K + COCO + DAVIS & 32.0 \\ Static + DAVIS & 32.6 \\ Static + DAVIS & 32.6 \\ Static + DAVIS & 33.8 \\ Static & 35.1 \\ Static + DAVIS & 36.4 \\ \hline Static + DAVIS & 36.5 \\ Static + DAVIS & 37.7 \\ \hline \end{array}$

(a) Val performance on VOST

Outperforms prior approaches

	OSMN		HODOR	AOT [50]	TAM-VT(Ours)
	Tune [50]		Vid [1]	AUI [J2]	(diff with AOT [52])
All	17.6	32.6	25.4	36.4	37.7 (+1.3)
LNG	12.4	30.4	25.0	34.7	41.9 (+7.2)
MI	14.7	26.4	20.6	27.2	29.2 (+2.0)
SM	14.4	23.3	16.6	24.7	28.4 (+3.7)

(b) Quantitative analysis of factors on VOST.

LNG: Long videos (>20 sec) **MI**: Multiple instances

Long videos (LNG) and Small objects (SM)

SM: Small objects (<0.5% rel. area)

Meaningful gains over

IV. Results

Dre training	VC	ST
rie-training	$\mathcal{J}_{ m tr}$	$\mathcal J$
Static + DAVIS [38]	7.0	8.7
Static + DAVIS	17.6	23.0
IN1K [14] + DAVIS	13.9	23.7
COCO [32] + DAVIS	13.9	26.2
COCO + DAVIS	25.4	37.1
IN1K + COCO + DAVIS	32.0	45.0
Static + DAVIS	32.6	46.0
Static + DAVIS	33.8	44.1
Static	35.1	47.1
Static + DAVIS	36.4	48.7
Static	36.5	48.2
Static + DAVIS	37.7	49.3
	Pre-training Static + DAVIS [38] Static + DAVIS IN1K [14] + DAVIS COCO [32] + DAVIS COCO = DAVIS IN1K + COCO + DAVIS Static + DAVIS Static + DAVIS Static + DAVIS Static + DAVIS Static + DAVIS	$\begin{array}{r c} \mbox{Pre-training} & \begin{tabular}{ c c c } \hline VC \\ \hline \mathcal{J}_{tr} \\ \hline Static + DAVIS [38] & 7.0 \\ Static + DAVIS & 17.6 \\ IN1K [14] + DAVIS & 17.6 \\ IN1K [14] + DAVIS & 13.9 \\ COCO [32] + DAVIS & 13.9 \\ COCO + DAVIS & 25.4 \\ IN1K + COCO + DAVIS & 25.4 \\ IN1K + COCO + DAVIS & 32.0 \\ Static + DAVIS & 32.6 \\ Static + DAVIS & 32.6 \\ Static + DAVIS & 33.8 \\ Static & 35.1 \\ Static + DAVIS & 36.4 \\ \hline Static + DAVIS & 36.5 \\ Static + DAVIS & 37.7 \\ \hline \end{array}$

(a) Val performance on VOST

Outperforms prior approaches

	OSMN Tune [50]	CFBI+ [53]	HODOR Vid [1]	AOT [52]	TAM-VT(Ours) (diff with AOT [52])
All	17.6	32.6	25.4	36.4	37.7 (+1.3)
LNG	12.4	30.4	25.0	34.7	41.9 (+7.2)
MI	14.7	26.4	20.6	27.2	29.2 (+2.0)
SM	14.4	23.3	16.6	24.7	28.4 (+3.7)

(b) Quantitative analysis of factors on VOST.

LNG: Long videos (>20 sec) **MI**: Multiple instances

Meaningful gains over objects (SM)

SM: Small objects (<0.5% rel. area)

Relative Time Encoding (RTE)

Long videos (LNG) and Small

RTE learns higher weights for recent and first frame

IV. A video example result

Conclusion

Fully-supervised Multi-task Semi-supervised Few-shot Weakly-supervised

We explore data-efficient learning approaches for visual structured prediction tasks

-Supervised Human-centric Relation Detection". In BMVC 2021

Granularity of the tasks

Questions?

Thanks to everyone with whom I had the pleasure of collaborating* during my PhD

PhD Supervisor

University collaborators

Meta Al

Internship, 2022

Google Research

Internship, 2023

Leonid Sigal

Frank Wood

Effrosyni Mavroudi

Nitesh B. Gundavarapu

Peyman Bateni

Xitong Yang

Luke Friedman

Khandelwal

Matt Feiszli

Boging Gong

Wan-Cyuan Fan

Sainbayar Sukhbaatar

Tobias Weyand

Mennatullah Siam

Du Tran

Sirotenko

* the list is not exhaustive, so please excuse me if I unintentionally excluded someone

Rahman

